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Abstract: This paper investigates the problem of designing a feedback compensator to force
the response of a plant modeled by a switching linear system to match that of a prescribed,
switching linear model, for any choice of the switching law. The problem is stated by considering
both the situation in which the state of the model is measurable and that in which it is not.
Accordingly, static compensators or, alternatively, dynamic ones will be sought. The additional
requirement of asymptotic stability of the compensated system is introduced by reasonably
restricting the class of admissible switching laws. Using geometric methods, that extend classic
ones to the framework of switching systems, a complete solution, in terms of necessary and
sufficient conditions that are algorithmically checkable, is given for matching without stability
and for matching with asymptotic stability for a mildly restricted class of plants.

Keywords: Model matching problem; switching systems; geometric methods; stability and
regulation.

1. INTRODUCTION

Given two dynamical systems with the same output space,
respectively the model M and the plant P, the model
matching problem, in a general formulation, consists in
searching for a feedback compensator such that the forced
response of the compensated plant equals that of the
model. Stability and asymptotic matching of the global
responses, for all initial conditions, can be viewed as addi-
tional requirements.
The model matching problem has been introduced in [21]
in the early 70’s and then studied by many authors, using
different approaches, in several contexts, including, in par-
ticular, those of linear systems, nonlinear systems, time-
delay systems (see in particular [20], [18], [12], [19], [6],
[13], [7], [4]).
Here, we investigate the problem of matching, in a suitable
sense, a given model, in the case in which both the model
and the plant are switching systems. Namely, they are
dynamical structures that consist of an indexed family
Σ = {Σi}i∈I , where I is a finite set, of linear systems,
called modes, having the same input, output and state
space, and of a supervisory law, described by a map
σ : R

+ → I and called switching rule, that defines the
switching from one mode to another (see [10], [11], [17]).
Input/output behavior, free response and qualitative prop-
erties, like stability, of switching systems depend both on
the modes and on the choice of the switching law.
Taking into account this aspect, the problems we deal with
can be stated by requiring matching of the input/output
behavior, or equivalently of the forced response, for any

choice of the switching rule or by adding to this require-
ment, at least for switching rules in a restricted class, that
of asymptotic stability of the compensated system, so to
assure also asymptotic matching of the free responses for
all initial conditions. In designing the compensator that
achieves matching, one can then choose to consider static
feedback if the state of the model is accessible, or dynamic
feedback if it is not.
The approach we follow is based on tools and methods
which allow extension of the classic geometric approach
described in [2] and [22] to the framework of switching
systems. The same approach has already been used for in-
vestigating decoupling problems and regulation problems
involving switching systems in [15], [5], [16], [23], [24].
The results we obtain are represented, first, by a geo-
metric, structural, necessary and sufficient condition for
the existence of solutions to the model matching problem
by static feedback, if the state of the model is accessible,
or, alternatively, by dynamic feedback, if the state of the
model is not accessible. Then, we give a necessary and
sufficient condition for the existence of solutions to the
model matching problem with asymptotic stability of the
compensated system, for a restricted class of switching
rules, by static and by dynamic feedback.
All conditions can be practically checked and solutions,
if existing, can be practically constructed by means of
geometric algorithms.
The paper is organized in the following way. In Section 2,
we recall some notions and results of the geometric ap-
proach. In Section 3, we formally state the matching prob-
lems we consider and, in Section 4, we provide necessary
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and sufficient conditions for their solution. An illustrative
example is presented in Section 5. Section 6 contains some
concluding remarks.

2. PRELIMINARIES

Let R denote the field of real numbers. By a continuous-
time switching linear system Σσ we mean a dynamical
system defined by the equations

Σσ ≡
{
ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)
y(t) = Cσ(t)x(t)

(1)

where t ∈ R
+ is the time variable, x ∈ X = R

n is the state,
u ∈ U = R

m is the input, y ∈ Y = R
p is the output, σ is

a function that takes values in the set I = {1, . . . , N} and
that is assumed to depend on time only, that is σ : R+ → I,
and, finally, for any value i ∈ I taken by σ, Ai, Bi, Ci are
matrices of suitable dimensions with real coefficients.
In other terms, a continuous-time switching system Σσ

consists of an indexed family Σ = {Σi}i∈I of continuous-
time, time-invariant, linear systems of the form

Σi ≡
{
ẋ(t) = Aix(t) +Biu(t)
y(t) = Cix(t)

for i = 1, . . . , N, (2)

called modes of Σσ, and of a supervisory switching rule σ,
whose value σ(t) specifies the mode which is active at time
t.
A standard assumption on σ is that it generates only a
finite number of switches in any time interval of finite
length, so to exclude chattering phenomena.
According to the envisaged applications, interest can be in
studying properties of Σσ which hold for any choice of the
switching rule σ, as well as in investigating the existence
of (restricted classes of) switching rules that guarantee the
fulfillment of specific requirements (see e.g. [11]).
Both structural and qualitative properties can, in particu-
lar, be investigated by extending to the class of switching
systems tools and notion of the classic geometric approach
([2], [22]).
In order to follow this approach, let us recall a number
of geometric notions and results that will be used in the
sequel.
For a linear system Σi, defined by (2), a subspace Vi ⊆ X
is said to be a controlled invariant subspace, or an (Ai, Bi)-
invariant subspace, if

AiVi ⊆ Vi + Im Bi.

Controlled invariance of Vi is equivalent to the existence
of a feedback map, called friend of Vi, Fi : X → U such
that

(Ai +BiFi)Vi ⊆ Vi.

The set V (Ai, Bi,K) of all controlled invariant subspaces
for Σi contained in a given subspace K ⊆ X has a
maximum element that is denoted by Vi

∗(K).
The notion of controlled invariant subspace is extended to
the framework of switching system as follows.

Definition 1. ([1], [3]) Given a family Σ = {Σi}i∈I of
linear systems of the form (2), a subspace VR ⊆ X is called
a robust controlled invariant subspace for Σ if

AiVR ⊆ VR + Im Bi for all i = 1, . . . , N.

If Σ is the family of the modes of a switching linear
system Σσ of the form (1), any robust controlled invariant
subspace VR for Σ is said to be a controlled invariant
subspace for Σσ.

Proposition 2. Given a family Σ = {Σi}i∈I of linear
systems of the form (2), a subspace VR ⊆ X is a robust
controlled invariant for Σ if and only if there exists an
indexed family F = {Fi}i∈I of feedbacks Fi : X → U ,
with i ∈ I, such that

(Ai +BiFi)VR ⊆ VR for all i = 1, . . . , N.

Any family F of that kind is called a family of friends of
V .
For any subspace K ⊆ X , the set VR(K) of all robust con-
trolled invariant subspaces contained in K forms a semi-
lattice with respect to inclusion and sum of subspaces,
therefore VR(K) has a maximum element, denoted by
V∗
R(K), or simply V∗

R if no confusion arises.

An algorithm to compute V∗
R(K), which works, under

suitable hypotheses, also in the case of infinite families
of systems, was given in [3] and it was recently applied to
the framework of switching systems in [15].

Remark 3. Let us remark that, for all i ∈ I, V∗
R(K) is

contained in V∗
i (K), that is in the maximum controlled

invariant subspace of the i-th mode contained in K, and
that, in general, it may be smaller than the

⋂
i∈I V∗

i (K).

Standard techniques of the geometric approach can be
employed to prove Proposition 2 and the above statements
in a straightforward way (see [2] for proofs and related
notions).

3. PROBLEM FORMULATION

Let P be a switching system of the form (1), called the
Plant, defined by the equations

Pσ ≡
{
ẋ(t) = Aσ(t)x(t) +Bσ(t)w(t)
y(t) = Cσ(t)x(t)

(3)

with state x ∈ X = R
n′
; input w ∈ W = R

m′
; output

y ∈ Y = R
p.

Let Mσ be a switching system of the form (1), called the
Model, defined by the equations

Mσ ≡
{
ẋM (t) = AMσ(t)xM (t) +BMσ(t)u(t)
yM (t) = CMσ(t)xM (t)

(4)

with state xM ∈ XM = R
n; input u ∈ U = R

m; output
yM ∈ Y = R

p.
Without loss of generality, we assume that the matrices
BMi and Bi are full-column rank for all i ∈ I.
Note that, while the input and state spaces of the two
systems above differ and may have different dimensions,
their output space is assumed to be the same.

Remark 4. Note that in considering two or more switching
systems, like the Plant and the Model, on the same
time interval, say [0,+∞), we can assume without loss
of generality that they are governed by a single, common
switching law σ. In fact, letting the plant P and the
model M be governed by two different switching laws,
respectively, σP : R

+ → IP and σM : R
+ → IM , we

can define a common switching law σ : R+ → I, where
I = IP × IM , by σ(t) = (σP (t), σM (t)) for all t ∈ [0,+∞).

By remarking that the forced response and free response
of the plant P and of the model M depend, in particular,
on the specific switching law, we can consider the problem
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Fig. 1. Block diagram for model matching with static state
feedback

of compensating the plant in such a way that its forced
response matches, for any switching law σ, that of the
model.
A stronger request is that, in addition to the matching
of the forced responses, the plant is compensated in such
a way that its free response asymptotically matches that
of the model, at least for all the switching laws in a
sufficiently large class.
It is reasonable to assume, in the latter case, that the
model to match is asymptotically stable, at least for all
the switching laws in a sufficiently large class. Hence, the
stronger requirement implies, as we will see, the same kind
of stability for the compensated system.
It is well known that matching problems of the above kinds
are equivalent to disturbance decoupling problems for a
suitable system, that essentially compares the output of
the plant and that of the model (see [8]).
This fact has been used by many authors to reduce match-
ing problems to disturbance decoupling ones and to inves-
tigate them by means of geometric tools and methods.
In order to follow the same approach and to state formally
the above problems, let us introduce the output-difference
switching system ΣEσ and the disturbed output-difference
switching system ΣDσ, defined respectively by the equa-
tions

ΣEσ ≡
⎧⎨
⎩

ẋM (t) = AMσ(t)xM (t)
ẋ(t) = Aσ(t)x(t) +Bσ(t)w(t)
ȳ(t) = CMσ(t)xM (t)− Cσ(t)x(t)

(5)

and

ΣDσ ≡
⎧⎨
⎩

ẋM (t) = AMσ(t)xM (t) +BMσ(t)u(t)
ẋ(t) = Aσ(t)x(t) +Bσ(t)w(t)
ȳ(t) = CMσ(t)xM (t)− Cσ(t)x(t)

(6)

Model Matching Problem with Static Feedback
Given the plant (3) and the model (4) and assuming that
the state of the model is measurable, the Model Match-
ing Problem with Static Feedback (MMPSF) consists in
finding a static, switching feedback law

w(t) = FMσxM (t) + Fσ(t)x(t) +Gσ(t)u(t) (7)

for the disturbed system (6), such that the forced response
of compensated system

ΣCσ ≡

⎧⎪⎨
⎪⎩

ẋM (t) = AMσx(t) +BMσu(t)
ẋ(t) = (Aσ + BσFσ)x(t)+

+BσFMσxM (t) +BσGσu(t)
ȳ(t) = CMσxM (t)− Cσ(t)x(t)

(8)

is null for every switching law σ.

+
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Fig. 2. Block diagram for model matching with dynamic
feedback

Model Matching Problem with Dynamic Feedback
Given the plant (3) and the model (4), the Model Matching
Problem with Dynamic Feedback (MMPDF) consists in
finding an integer q and a dynamic, switching feedback
law

ẋa(t) = H1σx(t) +H2σxa(t) +Kσu(t) (9)

w(t) = F1σx(t) + F2σxa(t) +Gσ(t)u(t) (10)

with xa ∈ Xa = R
q such that the forced response of the

extended compensated system

ΣexCσ ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋM (t) = AMσx(t) +BMσu(t)
ẋ(t) =

(
Aσ(t) +Bσ(t)F1σ

)
x(t)+

Bσ(t)F2σxa(t) +Bσ(t)Gσ(t)u(t)
ẋa(t) = H1σx(t) +H2σxa(t)+

Kσu(t)
ȳ(t) = CMσxM (t)− Cσ(t)x(t)

(11)
is null for every switching law σ.

Note that in stating the above problems we have implicitly
assumed that the switching signal is simultaneously avail-
able to the output-difference switching system and to the
switching feedback regulator. The same assumption holds
also for the matching problem with stability defined in the
sequel.
The above problems actually consist in decoupling the
input u, viewed as a measurable disturbance, from the out-
put of the output-difference switching system ΣDσ given
by (6), in the case in which the entire state or, respectively,
only its component in X is measurable.
Since the feedback modifies only the dynamics of the
plant, achieving decoupling, that is annihilating the forced
response of the compensated system, causes the output of
the compensated plant to match that of the model.
In order to consider a realistic stability requirement for
the class of switching system we are dealing with, let us
recall that, given a switching law σ, a positive constant τσ
is called the dwell time of σ if the time interval between
any two consecutive switchings is no smaller than τσ.
Stability of switching systems can be conveniently dealt
with if we restrict the set of admissible switching laws by
considering only those whose dwell time verifies τσ ≥ α >
0 for a given value α.

Strong Model Matching Problems
Given the plant (3) and the model (4), the Strong Model
Matching Problems (SMMP) consists in finding a solution
of the form (7) of the MMPSF (respectively, an integer q
and a solution of the form (9-10) of the MMPDF) for which
there exists α ∈ R

+ such that the compensated system
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(8) (respectively, the extended compensated system (11))
is asymptotically stable for every switching law σ with
τσ ≥ α.

4. PROBLEM SOLUTION

We give now necessary and sufficient conditions for the
solution of the MMPSF and of the MMPDF in geometric
terms.
For this, let us consider the output-difference switching
system ΣEσ given in (5) and let us denote by K the
subspace of XM ⊕X defined by

K = ∩i∈NKer [CMi − Ci] .

We will denote by V∗
R the maximum controlled invariant

subspace V∗
R(K) for ΣEσ contained in K.

Proposition 5. Given the plant (3) and the model (4), the
MMPSF (respectively, the MMPDF) is solvable if and only
if the condition

Im

[
BMi

0

]
⊆ V∗

R + Im

[
0
Bi

]
(12)

holds for all i ∈ I.

Proof. As remarked above, the MMPSF consists in de-
coupling a measurable disturbance and, therefore, neces-
sity and sufficiency of (12) can be shown using geometric
methods as in [15] in the case of measurable disturbance.
For the MMPDF, assume that (12) holds and without loss

of generality let V =

[
V1 V2

V3 0

]
be a (n+n′)×(q+q′) matrix

whose columns are a basis of V∗
R (note that in particular V3

is left invertible). This implies, in particular, the equalities[
BMi

0

]
=

[
V1 V2

V3 0

] [
D1i

D2i

]
+

[
0
Bi

]
Gi

and [
AMi 0
0 Ai

] [
V1 V2

V3 0

]
=

[
V1 V2

V3 0

] [
L1i L2i

L3i L4i

]
+[

0
Bi

]
[M1i M2i ]

for suitable matricesD1i, D2i, Gi, L1i, L2i, L3i, L4i,M1i,M2i

for all i ∈ I. Then, we have that the subspace Vex spanned

in XM×X×Xa by the columns of the matrix V =

[
V1 V2

V3 0
0 Iq

]

is a controlled invariant subspace for the switched system
that one obtains by extending the output-difference system
ΣEσ by the switching dynamics (9) and also that Vex

contains Im

[
BMi

0
K1i

]
for K1i = D2i. Taking the matrices

H1i, H2i,K1i as H1i = L3iW where W is a left inverse of
V3 (i.e. WV3 = I), H2i = L4i and K1i = D2i for all i ∈ I,
it is possible to choose a friend F = {(FMi, F1i, F2i)}i∈I

of Vex letting FMi = 0, F1iV3 = M1i and F2i = M2i for all
i ∈ I and to construct a compensator of the form (9), (10)
that achieves decoupling of u from ȳ.

Remark 6. Note that the feedback F constructed in the
proof of Proposition 5 has an arbitrary component. The
equalities that F2i must verify, in fact, assign its value
only on the subspace of X spanned by V3. The remaining
degree of freedom will be exploited to solve, when possible,
the SMMP.

In order to give conditions for the solution of the SMMP,
we restrict our attention to the case in which the condition

Im

[
0
Bi

]
∩ V∗

R = 0 (13)

holds for all i ∈ I. Note that, Bi being full-column rank
for all i ∈ I, the previous condition is equivalent to left
invertibility of every mode of the plant (3).

Proposition 7. Assume that condition (13) holds for all
i ∈ I. Then, the set of all controlled invariant subspaces V
of ΣEσ such that V ⊆ K and Im

[
BiM

0

]
⊆ V +

[
0
Bi

]
for

all i ∈ I has a minimum element.

Proof. It is enough to show that the intersection of two
controlled invariant subspaces of ΣEσ is a controlled in-
variant subspace of Σe.

Denoting by V∗R the minimum controlled invariant sub-
space of ΣEσ contained in K such that

Im

[
BMi

0

]
⊆ V∗R + Im

[
0
Bi

]
, for all i ∈ I,

we have the following Proposition.

Proposition 8. Assume that condition (13) holds for all
i ∈ I and let V be a controlled invariant subspace of
ΣEσ that contain V∗R and is contained in K. Then, for
any family F ′ = {F ′

i}i∈I of friends of V and any family
F = {Fi}i∈I of friends of V∗R we have F ′

i (v) = Fi(v) for
all v ∈ V∗R and all i ∈ I.

Proof. For all v ∈ V∗R and all i ∈ I we have[
AMi 0
0 Ai

]
v = v′ +

[
0
Bi

]
F ′
i (v) = v” +

[
0
Bi

]
Fi(v) for

some v′ ∈ V and v” ∈ V∗R and the conclusion follows using
condition (13) and the assumption that Bi is full-column
rank for all i ∈ I.

Remark 9. Let V be any matrix whose columns are a basis
of V∗R. Then, we have from the above Propositions that,
for all i ∈ I, there exist a unique square matrix Li and a
unique matrix Mi of suitable dimension such that

[
AMi 0
o Ai

]
V = V Li +

[
0
Bi

]
Mi (14)

for all i ∈ I.

Proposition 10. Let Bi be full-column rank and assume
that condition (13) holds for all i ∈ I. Also assume
that all the modes of the model M are stable and that
all the modes of the plant P are stabilizable. Then, the
SMMP is solvable by a static feedback of the form (7) or,
respectively, by a dynamic feedback of the form (9-10), if
and only if the matrix Li defined, for any choice of a basis
V of V∗R, by (14) is Hurwitz.

Sketch of Proof Static feedback case
Let V be a matrix whose columns are a basis of V∗R and let
[V ′ V ] be a matrix whose columns are a basis of XM ⊕X .
By Proposition 8 and Remark 9, we have that, for any
solution v(t) = FMσxM (t) + Fσ(t)x(t) + Gσ(t)u(t) of the
form (7) of the MMPSF, the dynamic matrices of the i-th
mode of the compensated system ΣCσ given by (8), in the
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basis [V ′ V ], takes the form

[ ∗ ∗
0 Li

]
, where * denotes a

component of no interest for the present discussion. Since
any static feedback solution of the SMMP is a solution
of the MMPSF and since the condition of asymptotic
stability for any switching law σ with τσ ≥ α implies
asymptotic stability of any mode, necessity of the above
condition follows.
Sufficiency of the above condition for the existence of a
static feedback solution of the SMMP follows by remark-
ing, first, that it guarantees (using the same argument as
in the proof of Theorem 4.2-2 in [2]) the existence of a
feedback v(t) = FMixM (t)+Fix(t)+Giu(t) that decouples
with stability the input u from the output ȳ in each mode
of the disturbed system ΣDσ. Then, all the modes of ΣCσ

being asymptotically stable, the existence of α such that
ΣCσ is asymptotically stable for any switching law σ with
τσ ≥ α follows from [14] Lemma 2 (a procedure to find α
is also given in that paper).

Dynamic feedback case Let us consider, now the SMMP
with dynamic feedback. Existence of a solution of the
form (9-10) implies the existence of a subspace Ve of
XM ⊕ X ⊕ Xa which is invariant for the dynamics of the
extended compensated ΣexC given in (11), which contains

Im

[
BMi

BiGi

Ki

]
for all i ∈ I and which is contained in

Ker [CMi −Ci 0 ] for all i ∈ I. Using the assumption that
the reachable subspace and the kernel of the output map
of each mode of the model intersect only at the origin and
assuming, without loss of generality, that the dimension q
of Xa is the minimal for which a solution of the above
kind can be found, we can show that the subspace Ve

intersects XM only at the origin and that, in a suitable
basis of XM ⊕ X ⊕ Xa, it is generated by the columns of

a matrix Ve of the form Ve =

[
V1 V2

V3 V4

0 Iq

]
, where V3 is full-

column rank. This means that there exists a set of matrices
{Li}i∈I such that[

AMi 0 0
0 (Ai +BiF1i) BiF2i

0 H1i H2i

]
Ve = VeLi (15)

for all i ∈ I. Moreover, since asymptotic stability for any
switching law σ with δσ ≥ α implies asymptotic stability
of any mode, Li is Hurwitz for all i ∈ I. From these facts,
we can conclude that the subspace V spanned in XM ⊕X
by the columns of the matrix V =

[
V1 V2

V3 0

]
is a controlled

invariant subspace for the system ΣEσ, given by (5), that

contains Im

[
BMi

0

]
for all i ∈ I and such that the equality

[
AMi 0
0 Ai

]
V = V Li +

[
0
Bi

]
[ F1i F2i ] (16)

holds for all i ∈ I. Necessity of the condition in the
statement, then, follows from Proposition 8.
To show sufficiency, let us construct a solution of the
MMPDF exactly in the same way as in the proof of
Proposition 5 by using V∗R in the place of V∗

R, that is

letting the column of V =

[
V1 V2

V3 0

]
denote a basis of V∗R

instead of a basis of V∗
R. Note, that in such case, V is the

same matrix appearing in (14). If V ′ is a matrix such that
the columns of

[
V ′ V3

]
form a basis of X , the dynamics

of the modes of the extended compensated system ΣexCσ,

in the basis given by the columns of

⎡
⎣ In 0 V1 V2

0 V ′ V3 0
0 0 0 Iq

⎤
⎦,

takes the form

⎡
⎢⎣
AMi ∗ 0 0
0 Si 0 0
0 ∗ L1i L2i

0 ∗ L3i L4i

⎤
⎥⎦ for all i ∈ I, where

Li =

[
L1i L2i

L3i L4i

]
is the matrix appearing in (14). Note

that AMi and Li are Hurwitz for all i ∈ I and, using [2]
Property 4.1-16, it can be shown that the remaining degree
of freedom in F1i (see Remark 6) can be used to stabilize
the dynamics described by Si. Hence, all the modes of
ΣexCσ being asymptotically stable, the existence of α such
that ΣCσ is asymptotically stable for any switching law σ
with τσ ≥ α follows again from [14] Lemma 2.

Remark 11. By introducing the concept of average dwell
time τaσ of a switching law σ, the SMMP can be stated
in a slightly different way by asking for the existence of
a positive α such that asymptotic stability is guaranteed
for all switching law σ whose average dwell time τaσ ≥ α.
Then, the statement of Proposition 10 remains valid thank
to the results of [9] (see also [11] Theorem 12).

5. EXAMPLE

Let us consider the switching system Σσ(t), of the form

(1), where σ : R
+ → {1, 2}, whose modes are

A1 =

[
2 −2
3 −3

]
, B1 =

[
1
1

]
, C1 = [−1 0 ]

A2 =

[
2 0
1 −1

]
, B2 =

[
1
2

]
, C2 = [−1 0 ] .

Let the Model be the switching system Mσ(t), defined by
equations of the form (4) where

AM1 =

[−2 −1
1 −1

]
, BM1 =

[
1
0

]
, CM1 = [−1 −1 ]

AM2 =

[−2 0
−1 −1

]
, BM2 =

[
1
1

]
, CM2 = [ 1 −1 ] .

In the disturbed output-difference switching system ΣDσ

defined by equations (6), the subspace V∗
R(K) is spanned

by the columns of the matrix

V =

⎡
⎢⎣
−1 0 1
1 0 1
0 0 0
0 1 0

⎤
⎥⎦

and conditions (12) and (13) hold. In this case V∗
R(K)

coincides with V∗R. Following the construction outlined in
the proof of Proposition 5, we get the dynamic feedback
of the form (9) and (10), where

H11 = [−1 0 ] , H21 = [ 0 ] ,K1 = [ 0 ]
F11 = [−5 2 ] , F21 = [ 3 ] , G1 = [−1 ] ,

and
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H12 = [ 1 0 ] , H22 = [−2 ] ,K2 = [ 1 ]
F12 = [−3 0 ] , F22 = [ 0 ] , G2 = [ 0 ]

that provides the matching. The modes of the switched
extended compensated system (11), in a suitable basis,
are described by the matrices

[
AM1 0 0
0 A1 0
0 H11 H21

]
=

⎡
⎢⎢⎢⎣
−2 −1 0 0 0
1 −1 0 0 0
0 0 −3 0 3
0 0 −2 −1 3
0 0 −1 0 0

⎤
⎥⎥⎥⎦

[
BM1

B1G1

K1

]
=

⎡
⎢⎢⎢⎣

1
0
−1
−1
0

⎤
⎥⎥⎥⎦ , [CM1 −C1 0 ] = [ 1 −1 1 0 0 ]

[
AM2 0 0
0 A2 0
0 H12 H22

]
=

⎡
⎢⎢⎢⎣
−2 0 0 0 0
−1 −1 0 0 0
0 0 −1 0 0
0 0 −5 −1 0
0 0 1 0 −2

⎤
⎥⎥⎥⎦

[
BM2

B2G2

K2

]
=

⎡
⎢⎢⎢⎣
1
1
0
0
1

⎤
⎥⎥⎥⎦ , [CM2 −C2 0 ] = [ 1 −1 1 0 0 ]

which are easily seen to be Hurwitz stable. Hence, there
exists α > 0 such that the switched compensated extended
system is asymptotically stable for every switching rule σ
with τσ ≥ α by [14] Lemma 2.

6. CONCLUSION

Geometric methods have proved to be applicable and
useful in characterizing solvability conditions of model
matching problems for switching systems and in construct-
ing solutions. Stability has been considered for families of
switching laws with bounded dwell time and results can
be extended to families with bounded average dwell time.
Model matching problems with output feedback will be
the object of future investigations.
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