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Abstract: A novel anti-windup PID controller design method under holonomic constraints is proposed for 
nonlinear Euler-Lagrange systems with actuator saturation. The controller design is based on passivity, 
quasi-natural potential and saturated-position feedback. According to four saturation cases, switching of 
four integrating functions in the control law is utilized and four Lyapunov functions, such as hybrid control, 
are derived. Global asymptotic stability is ensured by energy dissipation between the four Lyapunov 
functions. The control performance is verified by numerical simulations using a two-link robot arm. 

 

1. INTRODUCTION 

Every plant system is subject to input limitations. When the 
controller requires an input that exceeds these limitations, the 
control performance is degraded and becomes unstable. 
Actuator saturation caused by exceeded input limitations 
gives rise to windup phenomena, which degrade the control 
performance. Over the past decade, several anti-windup 
controller design methods have been proposed for linear 
systems to suppress windup degradation (e.g., Kanamori et 
al., 2007). However, studies of specifically nonlinear robot 
systems are few. Several studies have investigated anti-
windup controller design for robot systems, including those 
by Kanamori (2011, 2013a,b), Khan et al. (2010), Lopez-
Araujo et al. (2012), Loria et al. (1997), Morabito et al. 
(2004), Suntibanez et al. (1996), Teo et al. (2009), and 
Zavara-Rio et al. (2009). Kanamori (2011) proposed an anti-
windup PID position controller for nonlinear Euler-Lagrange 
systems with input saturation. In this work, global asymptotic 
stability was guaranteed by the Lyapunov theorem based on 
the passivity described by Arimoto (1996). This anti-windup 
method was extended to adaptive tracking control 
considering input saturation (Kanamori, 2013a), and the 
control performance was demonstrated by experimentation 
(Kanamori, 2013b). A series of such works based on 
passivity imply that passivity is extremely suitable to 
stabilization that considers input saturation for nonlinear 
Euler-Lagrange systems. Since, in general, holonomic 
constraints have given rise to almost all robot systems (Khan 
et al., 2010), an anti-windup control method based on 
passivity is expected. 

In the present paper, the anti-windup adaptive law by 
Kanamori (2013a) is extended to anti-windup PID position 
control under holonomic constraints for nonlinear Euler-
Lagrange systems with input saturation. According to four 
saturation cases, switching of four integrating functions in the 
control law is utilized and four Lyapunov functions, such as 
hybrid control, are derived. Global asymptotic stability is 

ensured by energy dissipation between the four Lyapunov 
functions. The control performance of the proposed controller 
is verified by numerical simulations using a two-link robot 
arm under holonomic constraints. 

2. PRELIMINARY 

Let us consider the case where the endpoint of the 
manipulator is constrained on a surface (Arimoto, 1996). The 
surface is described by a scalar function as 

   0),,( 321 =xxxf ,   (1) 

where  

   [ ]Txxx 321=x   (2) 

denotes the Cartesian coordinates fixed at the internal 
reference frame. The contact force arises in the direction of 
the normal vector to the surface at point x and the contact 
friction arises in the direction of x− with 
magnitude xx  )(x , where )(⋅x is a positive scalar function. 
Then, the robot dynamics are described by 
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and f is the contact force. In addition, ]....[ 1 nqq=q T 

represents the angular vector of each joint, nn×∈ RqH )(  is 

the positive definite inertia matrix, nn×∈ RB0  is the positive 
diagonal constant matrix derived from the Raleigh dissipation 
function, nn×∈ RqqS ),(   is the skew-symmetric matrix, and 

)(qg  is the gravity term derived from the relation 

)()( qg
q
q

=
∂

∂U , where )(qU is the potential energy. 

Furthermore, ]....[ 1 nuu=u T is the control input torque 
vector, and ])(.....)([)( 1 nuu σσ=uσ T is the saturated 
input torque vector, defined as follows: 

if maxmin iii uuu ≤≤ , ii uu =)(σ , 
if ii uu << max0 ,   max)( ii uu =σ ,  (6) 

         if 0min << ii uu ,   min)( ii uu =σ , 

where minmax ii uu =  for ni ,...,1= . The estimation value of 
the input saturation ])(...)([)( 1 nuu ψψ=uψ T is introduced 
as 

)()( uuu σψ −= ,   (7) 

where 

        if maxmin iii uuu ≤≤ , 0)( =iuψ ,  

if ii uu << max0 ,   0)( max >−= iii uuuψ , (8) 

         if 0min << ii uu ,   0)( min <−= iii uuuψ . 

The closed-loop system is described as 

  0)),(),((),,( =+ fuσqgFqqqL  ,  (9) 

where 

qqqSqHBqqHqqqL  )},()(
2
1{)(),,( 0 +++=  

               qqJqJx  )()()( x
T

xx+ , (10) 

ff T)()()()),(),(( qJuσqguσqgF f−−= . (11) 

To achieve the state ),0,(),,( dd ff qqq → , where dq and 

df are the target vectors of each joint angle and target contact 
force, respectively, the following assumption is introduced. 

Assumption 1: Assume that the following conditions are 
satisfied for ni ,...,1=   for any target posture: 

           maxmin )( iii ugu << q ,  (12) 

  maxmin ])()([ iid
T

ddi ufu <+< qJqg f . (13) 

Take the appropriate output y and assume that the inner 
product of y and the closed-loop system (9) has the following 
form: 

              00),,( WV
dt
dT +=qqqLy  ,    (14) 

cici
T WV

dt
df +≥)),(),(( uσugFy , (15) 

where ciV and ciW  are switched for li ,...,1= . Adding (14) and 
(15), the following relation holds:  

  ,0 i
i W

dt
dV

+≥    (16) 

where  

  cii VVV += 0  and cii WWW += 0 .   (17) 

Assume that iV and iW  for li ,...,1= are positive definite and 

jV  is the minimum function, ( )lj VVV .....,,min 1= . Let us 

denote the difference between iV and jV  for ji ≠  by 

jii VVU −= . For asymptotic stability, the following lemma 
may be introduced (Kanamori, 2013a). 

Lemma 1: If we have the following two states for li ,...,1= : 

0>> ji VV  and 0<iV  for ji ≠  : state 1  (18) 

0>jV      and 0<jV   : state 2    (19) 

the minimum function jV  is a Lyapunov function of the whole 
trajectory of the closed-loop system and the equilibrium state 
is asymptotically stable. 

Outline Proof of Lemma 1: For the proof, it is sufficient to 
show that jV is dissipative on state 1 shown in (18). Taking 
the time integral of (16), the following relation holds: 

∫−−≤−
t

iiijj dtWtUUVtV
0

)()0()0()( . (20) 

If iU increases, then jV decreases. If iU decreases, then jV  
might increase; however, the increase value is bounded by 

)0(iU . Since iW is positive definite, the time integral of iW , 
which is the dissipated energy, always increases with the 
integral of time so that the increase in jV  turns into a 
decrease soon. This implies that jV is a Lyapunov function 
and the equilibrium state of the closed-loop system is 
asymptotically stable. 

Let us choose the following output y for the evaluation in 
Arimoto (1996): 

   )()( qsqQqy ∆+= φα ,  (21) 

where α is a positive definite scalar, )(qQφ is defined as 

   2
)(

)()(
)(

qJ

qJqJ
IqQ

φ

φφ
φ

T

−= , (22) 

which is regarded as a projection that projects vectors in joint 
space onto the plane tangent to the surface 0)( =qf  at the  
contact point q , and I denotes the identity matrix. The 

function )( qs ∆  is the output saturation function described in 
Arimoto (1996) as follows: 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9322



 
 

     

 

[ ]Tnn qsqsqs )(......)()()( 2211 ∆∆∆=∆qs ,    (23) 

where q∆  is the control error defined by  

   dqqq −=∆ .   (24) 

Property 1: Concering the projection )(qQφ , the following 
relations hold. 

         0)( =qqJ φ ,   (25) 
         qqqQ  =)(φ ,   (26) 

   0)()( =TqJqQ φφ ,  (27) 
   )()()( qQqQqQ φφφ = .  (28) 

Property 2: For the output saturation function in (23), the 
following properties are ensured. 
(a) There exists a positive convex function )( ii xS  such that 

the following relation is satisfied: 

  )()(
ii

i

ii xs
dx

xdS
= .      (29) 

Then, the following relations hold: 

iiiii qqsqS  ∆∆=∆ )()(  and qqs  T

i
ii qS )()( ∆=∆∑ .   (30) 

(b) There exists a positive real constant ic  such that the 
following inequality is satisfied:  

   2)()( iiiii qscqS ∆≥∆ .  (31) 

(c) There exists a positive real constant 0c  such that the 
following inequality is satisfied: 

    qqHqQqs  )()()( φ
T∆−  

qqqSqQqHqQqHqQqs  )},()()()()()(
2
1{)( φφφ +−−∆+ T  

2
0)},()( qqqqSqQ  c−≥+ φ . (32) 

Property 3: Based on the characteristics of the output 
saturation function )(⋅s  and condition (12), there exists a 
positive real constant ic0  such that the following inequality 
is satisfied. 

          })(,)(min{ minmax qq iiii gugu −−    

iiii cc )()()( 0max0 qsqQqs ∆≥∆≥ φ .      (33) 

For the inner product, as shown on the left-hand side of (15), 
notice that the term fTT )(qJy f is zero with the relations 
(25) and (27) in Property 1 in Arimoto (1996). According to 
the polarity of the inner product )(uψyT , the input saturation 
function )(⋅σ is eliminated, as shown in Property 1 in 
Kanamori (2013a). Replacing )()( qsqQ ∆f for y in Property 1 
in Kanamori (2013a) and using (33), the following property 

holds so that the margins between input limits and the gravity 
term are utilized for the stability. 

Property 4: The following inequality holds: 

       If 0)()()( <∆ uψqQqs f
T , then 

)),(),(()()( fT uσqgFqQqs f∆ ,            

)()()(min0 qsqQqs ∆∆≥ f
Tc ,  (34) 

where min0c is the positive minimum value of ic0  
for ni ,...,1=  as follows. 

]......min[ 001min0 nccc = .  (35) 

Property 5: The following inequalities are satisfied for 
saturation cases (I) through (IV) so that the input saturation 
function is eliminated by the inequalities (Kanamori, 2013a): 

(I) If 0)( ≥uψqT  and 0)()()( ≥∆ uψqQqs f
T , then 

),),(()),(),(( ff TT uqgFyuσqgFy ≥ ,  (36) 

(II) If 0)( ≥uψqT  and 0)()()( <∆ uψqQqs f
T , then 

)),(),(( fT uσqgFy  

)()()(),),(( min0 qsqQqsuqgFq ∆∆+≥ fα TT cf , (37) 

(III) If 0)( <uψqT  and 0)()()( ≥∆ uψqQqs f
T , then 

),),(()()()),(),(( faf TT uqgFqQqsuσqgFy f∆≥ , (38) 

(IV) If 0)( <uψqT  and 0)()()( <∆ uψqQqs f
T , then 

)()()()),(),(( min0 qsqQqsuσqgFy ∆∆≥ fα TT cf . (39) 

The inner product, as shown in (14), is determined by the 
given robot system. 0V  and 0W  are independent of the 
controller design and are obtained as follows (Arimoto, 1996).  

Property 6: 0V and 0W as shown in (14) become  

2
minmin00 )()()(

4
1 qsqqHq ∆−+≥ M

T cbV αγα , (40) 

2
0min00 )}()()(

2
1{ qqJqJx  x

T
xcbW xα +−≥  

0
2

2
1)[()(

2
1 BqQqs ∆∆− fα T  

)()()]()()( qsqQqJqJ ∆+ fx x
T

xx ,  (41) 

where minc  is the minimum value of ic as follows: 

  }......min{ 1min nccc = ,   (42) 

min0b is the minimum value of the diagonal component of the 
positive diagonal matrix 0B in (3), Mγ  is the maximum 
eigenvalue of )(qH , and 0B∆ is the difference between  

0B  and Imin0b  as follows: 

  0min000 ≥−=∆ IBB b .  (43) 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9323



 
 

     

 

Assumption 2: There exists positive real numbers α and 
min0c such that the following inequalities are satisfied: 

   0minmin0 >− Mcb αγ ,  (44) 

   00min0 >− cb α ,   (45) 

 0)}()()(
2
1{2 0min0 >+∆− qJqJBI x

T
xxc xα . (46) 

Property 7: There exists a positive real number a  such that 
the following inequalities are satisfied: 

  0
2

)()()( 2
>∆+∆−− qqgqqq aUU d

T
d , (47) 

0)()(
2

)}()(){()(
2

>∆+−∆ qsqQqgqgqQqs φφ
a

d
T . (48) 

Property 8: The contact force f is given by the following 
form: 

[ ] [ ]qqJXqHqJqJqHqJ  )()()()()()( 111
φφφφ −−= −−− Tφ , 

      (49) 
where  

qqqSqHBX  )},()(
2
1{ 0 ++−=  

      xqJxuσqg  T
x )()()()( x−+− .   (50) 

3. CONTROLLER DESIGN 

Let us consider the following proportional, integral and 
derivative (PID) control law: 

  ∫−−∆−=
t

dcba
0

)()( ttφ yqQqqu   

∫ ∆+−
t

T
d

T dff
0

)()()( ttβ ff qJqJ ,  (51) 

where a , b , c , and β are positive definite real numbers that 
are regarded as feedback gain, and f∆ is the error between 
contact force f and its target force df  represented as 

dfff −=∆ . Using the notation 

   ∫∆=∆
t

dfF
0

)( tt ,   (52) 

ττττ dd
τ

)()(
00
∫∫
∞

−= yyz and )()( 1

0
dcd qgy −

∞

−=∫ ττ , (53) 

)),(),(( fuσqgF  defined by (11) becomes 

qqgqQqguσqgF ∆+−= af d )()()()),(),(( f   

)()()()( uψqJzqQq +∆+∆−++ Ffcb T bff . (54) 

Let us take the following )(ty  according to the four 
saturation cases (Kanamori, 2013a): 

In CASE (I),   )()()( qsqQqy ∆+= φαt ,  (55) 

In CASE (II),  qy =)(t ,   (56) 
In CASE (III), )()()( qsqQy ∆= φαt ,  (57) 
In CASE (IV), 0)( =ty .   (58) 

The inner products, as shown on the right-hand side of (36) 
through (39), can be taken easily because )(⋅σ  is eliminated 
and ciV and ciW in (15) are also easily derived. In CASE (I), 

the inner product )),(),(( fT uσqgFy in (36) is represented as 
follows: 

1
1),),(()),(),(( c

cTT W
dt

dVff +=≥ uqgFyuσqgFy , (59) 

where 1cV and 1cW  are represented as  

2
1 2

)()()( qqgqqq ∆+∆−−≥
aUUV d

T
dc  

  22
min 2

)( zqs cbc +∆+α ,  (60) 

)}()(){()([1 d
T

cW qgqgqQqs −∆≥ φα  

  22
])()( qqsqQ ba +∆+ φ . (61) 

The suffix 1=i of 1cV and 1cW means saturation CASE (I). In 
the derivation, the following relation, (26) and (28) are 
utilized: 

  2

2
)( zzzzyzyzqQy

dt
dccccc TTTT ==== φ . (62) 

In the same manner, ciV and ciW for 3,2=i are obtained by 
using (56) and (57), respectively. Notice that the second term 

)()()(min0 qsqQqs ∆∆ fα Tc  on the right-hand side of (37) or 
(39) must be included in 2cW  or 4cW , respectively. In CASE 
(IV), there is no inner product on the right-hand side in (39); 
however, it is regarded that there is the inner product of zero 
and ),),(( fuqgF  as follows: 

  0),),(( 4 ==
dt

dVf cT uqgF0 , (63) 

where  

  2
4 2

zcVc = : constant.  (64) 

Then, 4cW becomes 

        )()()(min04 qsqQqs ∆∆≥ fα T
c cW . (65) 

It is confirmed that ciV  for 4,...,1=i is positive definite when 
the conditions (47) are satisfied, and iV  in the first equation 
in (17) is also positive definite, since 0V  is positive definite 
under (44). iW  for 4,...,1=i  in the second equation in (17) is 
also positive definite under (45), (46), (48) and the following 
condition: 

0)}()()(
2
1{ 0 >+∆− qJqJBI x

T
xxa xa . (66) 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9324



 
 

     

 

The above results imply that we have the following two states 
according to the saturation cases: 

04 >≥ VVi , 0<iV , for 3,2,1=i : state 1 (67) 

04 >V ,     04 <V .            : state 2 (68) 

where iV  is switched according to saturation cases (I) 
through (IV). Based on Lemma 1, we have the following 
main theorem. 

Main Theorem (Anti-windup PID control law): Assume that 
conditions (44) through (46) are satisfied. Choose feedback 
gain a as the positive real number such that the conditions 
(47), (48) and (66) are satisfied. Adopt the switching function 
as (55) through (58) for the control law (51). Then, the 
equilibrium state of the closed-loop system is globally 
asymptotically stable based on Lemma 1. 

Proposition (Practical anti-windup PID control law): 
Assume that the conditions in the Main Theorem are 
satisfied. For the control law (51), choose the function )(ty  
as follows: 

  )()()( 21 ttt yyy α+= ,  (69) 

where  

 if 0≥)ψ(uq ii , then ii qy =1 ,  (70) 
 if 0<)ψ(uq ii , then 01 =iy ,  (71) 

if 0)}()(Δ{ ≥)ψ(uii
T qQqs f , then, 

i
T

iy )}()(Δ{2 qQqs f= ,  (72) 

if 0)}()(Δ{ <)ψ(uii
T qQqs f , then 02 =iy , (73) 

for ni ,.....,1= , where i}{⋅  denotes the i-th component of the 
vector, kiy  denotes the following vector component: 

T
knkikk yyy ]......[ 1=y  and 2,1=k . (74) 

Then, the equilibrium state of the closed-loop system is 
globally asymptotically stable. 

4. CONTROL PERFORMANCE 

The control performance of the proposed anti-windup PID 
controller is examined by numerical simulations using a two-
link robot arm. A schematic two-link robot arm with contact 
force is depicted in Fig. 1, where 1L  and 2L  denote the 
length of the arm. 0L is the coordinate value of x1 and the 
start point of the constraint surface. In this system, the 
constraint surface is represented as (75) and (1) becomes 
(76).  

ss bxax += 12 , 10 xL ≤ ,  (75) 
012 =−−= ss bxaxf ,  (76) 

where sa and sb are real constants for the constraint surface. 
The system equation with actuators and the detail of the two-
link robot system have been described in (48) through (51) 
and TABLE 1 in Kanamori (2013b), respectively. Output 

saturation function )( ii xs in (23) has also been shown in (52) 
in Kanamori (2013b). Input limits 2± V are given for the 
shoulder joint input and 1± V are given for the elbow joint 
input. The following values are used for the simulations.  

10=df N, 3.0)( =xx Nm/s, 38.6=Mγ , (77) 
0.3=α , 0.10=a , 0.2=b , 0.5=c , 0.1=β .  (78) 

Fig. 2 shows the control performance using the normal PID 
controller. For the strict input limits, the windup phenomenon 
is observed at elbow joint input 2u , as shown in the upper 
plots in Fig. 2. As a result, considerable overshoots occur in 
shoulder joint angle 1q  and elbow joint angle 2q , as shown 
in the lower plots in Fig. 2. As shown in Fig. 3, the contact 
force also degrades for the input saturation. In contrast, the 
windup phenomenon is restrained by using the proposed anti-
windup PID controller, as shown in the upper plots in Fig. 4. 
As a result, considerable overshoots are restrained very well, 
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Fig. 1 Two-link robot arm with holonomic constraint 

 

 
   Fig. 2 Control performance using normal PID controller 

 
 

 
Fig. 3 Contact force using normal PID controller 
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Fig. 4 Control performance using the proposed controller 

 

 
Fig. 5 Contact force using the proposed PID controller 

 

 
Fig. 6 Confirmation plot of conditions (32), (47) and (48) 

 
as shown in the lower plots in Fig. 4. As shown in Fig. 5, the 
control performance of the contact force is improved in 
comparison with that in Fig. 3. Fig. 6 shows the validity of 
conditions (32), (47), and (48). The top plot shows the left-
hand side of (32), where the right-hand side is transposed to 
the left-hand side. The middle and the lower plots correspond 
to the left-hand sides of (47) and (48), respectively. Since 
these values are positive or zero, it is confirmed that 
conditions (32), (47), and (48) are satisfied. These simulation 
results validate the analysis and design of the proposed anti-
windup PID controller. 

5. CONCLUSIONS 

An anti-windup PID controller design for Euler-Lagrange 
systems under holonomic endpoint constraints has been 
presented. The control performance was examined by 
numerical simulations using a two-link robot arm with 
contact force. The simulation results validate the analysis and 
design of the proposed anti-windup PID controller. 
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