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Abstract: A novel anti-windup PID controller design method under holonomic constraints is proposed for
nonlinear Euler-Lagrange systems with actuator saturation. The controller design is based on passivity,
quasi-natural potential and saturated-position feedback. According to four saturation cases, switching of
four integrating functions in the control law is utilized and four Lyapunov functions, such as hybrid control,
are derived. Global asymptotic stability is ensured by energy dissipation between the four Lyapunov
functions. The control performance is verified by numerical simulations using a two-link robot arm.

1. INTRODUCTION

Every plant system is subject to input limitations. When the
controller requires an input that exceeds these limitations, the
control performance is degraded and becomes unstable.
Actuator saturation caused by exceeded input limitations
gives rise to windup phenomena, which degrade the control
performance. Over the past decade, several anti-windup
controller design methods have been proposed for linear
systems to suppress windup degradation (e.g., Kanamori et
al., 2007). However, studies of specifically nonlinear robot
systems are few. Several studies have investigated anti-
windup controller design for robot systems, including those
by Kanamori (2011, 2013a,b), Khan et al. (2010), Lopez-
Araujo et al. (2012), Loria et al. (1997), Morabito et al.
(2004), Suntibanez et al. (1996), Teo et al. (2009), and
Zavara-Rio et al. (2009). Kanamori (2011) proposed an anti-
windup PID position controller for nonlinear Euler-Lagrange
systems with input saturation. In this work, global asymptotic
stability was guaranteed by the Lyapunov theorem based on
the passivity described by Arimoto (1996). This anti-windup
method was extended to adaptive tracking control
considering input saturation (Kanamori, 2013a), and the
control performance was demonstrated by experimentation
(Kanamori, 2013b). A series of such works based on
passivity imply that passivity is extremely suitable to
stabilization that considers input saturation for nonlinear
Euler-Lagrange systems. Since, in general, holonomic
constraints have given rise to almost all robot systems (Khan
et al., 2010), an anti-windup control method based on
passivity is expected.

In the present paper, the anti-windup adaptive law by
Kanamori (2013a) is extended to anti-windup PID position
control under holonomic constraints for nonlinear Euler-
Lagrange systems with input saturation. According to four
saturation cases, switching of four integrating functions in the
control law is utilized and four Lyapunov functions, such as
hybrid control, are derived. Global asymptotic stability is
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ensured by energy dissipation between the four Lyapunov
functions. The control performance of the proposed controller
is verified by numerical simulations using a two-link robot
arm under holonomic constraints.

2. PRELIMINARY

Let us consider the case where the endpoint of the
manipulator is constrained on a surface (Arimoto, 1996). The
surface is described by a scalar function as

P(x1, %, %3) =0, (1
where
x=[x x xf )

denotes the Cartesian coordinates fixed at the internal
reference frame. The contact force arises in the direction of
the normal vector to the surface at point x and the contact

friction arises in the direction of —x with
magnitude §(||x||)||x||, where £(+) is a positive scalar function.

Then, the robot dynamics are described by

H@)ij+ (B, +%H<q)+S(q,q>}q+g<q)
=J,@) f-E(iPI (@ x+e@), ()

where

Jx(q){ag’i}i=1,2,3.,j=1,...,n, @)

J
M]TJ @
(Gx—z' , (5)
00

ox

J¢(q) =
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q,1"

represents the angular vector of each joint, H(q)e R™" is

and f is the contact force. In addition, g =[g,

the positive definite inertia matrix, B, € R™" is the positive
diagonal constant matrix derived from the Raleigh dissipation
function, S(q,4) € R™" is the skew-symmetric matrix, and

g(q) is the gravity term derived from the relation
%: g(q) , where U(q) is the potential energy.
q

Furthermore, u =[u, u,] " is the control input torque

vector, and o(u)=[o(y;) ..... o(u,)] T is the saturated

input torque vector, defined as follows:

lf uimin < ui < uimax > J(ut) = ui 2
i 0 <ty <ty O(u) =t (©)
lf ui < uimm < 0 ’ J(u:) = Z'timin 2
where [u, |=u, | for i=L..,n . The estimation value of

the input saturation w(u) =[y (u,) w(u,)]" is introduced

as
yw)=u-o(u), (7
where
ifu, <u<u_ , yu)=0,
if O<u,

imax

<u, V/(uz) =U U > 0, (®)

lf ui <uimin <05 l//(ui):ui_uimin <0
The closed-loop system is described as
L(q.9.9)+ F(g(q).0(u), /) =0, ©)

where

Lg.di) = H@ii+ B+ H@)+ S@.0)}d

+ (XTI T (@) .
F(g(q).0(u),f)=g@)-o)-J,(q)" /.

To achieve the state (q.,q,f)— (q,.,0,f,) , where ¢, and

(10)
(11)

[, are the target vectors of each joint angle and target contact
force, respectively, the following assumption is introduced.

Assumption 1: Assume that the following conditions are
satisfied for i =1,...,n for any target posture:

(12)
(13)

uimin < gz(q) < uimax H
Z'limin < [g(qd) + ‘I¢ (qd)de ]i < uimax .
Take the appropriate output y and assume that the inner

product of y and the closed-loop system (9) has the following
form:

. d
yTL(q,q,q)=EVo +W,, (14)

Y F(g(u). o). f) > %V o, (15)

where V;and W, are switched fori=1,...,/. Adding (14) and
(15), the following relation holds:

dv,
0>—L+, (16)
dt
where
V,=Vy+V, and W, =Wy +W,,. (17)

Assume that 7, and W, fori=1,...,/ are positive definite and
V, is the minimum function, ¥; =min(¥, ..., ;). Let us

denote the difference between V; and ¥V, for i#j by

U; =V, =V,;. For asymptotic stability, the following lemma

may be introduced (Kanamori, 2013a).
Lemma 1: If we have the following two states fori=1,...,1 :

(18)
(19)

V;>V, >0 and V; <0 for i # j : state |

Vj >0 and Vj <0 : state 2

the minimum function V; is a Lyapunov function of the whole

trajectory of the closed-loop system and the equilibrium state
is asymptotically stable.

Outline Proof of Lemma 1: For the proof, it is sufficient to
show that Vis dissipative on state 1 shown in (18). Taking

the time integral of (16), the following relation holds:

V(6)=V,(0) SUL(0)~U,(£)— j Wt (20)

If U, increases, then V, decreases. If U, decreases, then V,;

might increase; however, the increase value is bounded by
U,(0). Since W, is positive definite, the time integral of W,,
which is the dissipated energy, always increases with the
integral of time so that the increase in V, turns into a
decrease soon. This implies that Vis a Lyapunov function

and the equilibrium state of the closed-loop system is
asymptotically stable.

Let us choose the following output y for the evaluation in
Arimoto (1996):

y=q+a0,(q)s(Aq), (1)

where a. is a positive definite scalar, Q,(q)is defined as

RAORAO

0,0)=1 .
oa)

(22)

which is regarded as a projection that projects vectors in joint
space onto the plane tangent to the surface ¢(q)=0 at the

contact point ¢ , and I denotes the identity matrix. The

function S(Aq) is the output saturation function described in
Arimoto (1996) as follows:
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sAq)=[s(A) £(8q) e s,(Ag)] L @3)
where Aq is the control error defined by
Ag=q-q,. (24)

Property 1: Concering the projection Q,(q), the following

relations hold.

J,(9)g=0, (25)
0,(q=4, (26)
0,(q)J,(q)" =0, (27)
0,(9)0,(9)=0,(q). 28)

Property 2: For the output saturation function in (23), the
following properties are ensured.

(a) There exists a positive convex function S,(X,) such that

the following relation is satisfied:
B _ ).
/X

d (29)

1

Then, the following relations hold:

Si(AQi):Si(Aqi)Aqi and Zsi(Aqi) =S(Aq)T4- (30)

(b) There exists a positive real constant c; such that the

following inequality is satisfied:
S:(Ag;) = ¢;5,(Aq;)° . (31)

(c) There exists a positive real constant ¢, such that the
following inequality is satisfied.:

~5(Ap)" Q) H (q)q
+s(Aq)T{—%Q¢<q)H(q>—Q¢(q)H(q)+Q¢(q)S(q,q>}q
+0,( @S, =2l - (32)

Property 3: Based on the characteristics of the output
saturation function s(-) and condition (12), there exists a

positive real constant cy; such that the following inequality
is satisfied.
min {|uimax - gi(q)|7 |uimin —&i (q)|}
> ¢y s(Aq), ... 2 | (@)s(Ag)| -

33)

max

For the inner product, as shown on the left-hand side of (15),
notice that the term y’J,(¢)" f is zero with the relations
(25) and (27) in Property 1 in Arimoto (1996). According to
the polarity of the inner product y” w(u) , the input saturation
function o(:) is eliminated, as shown in Property 1 in
Kanamori (2013a). Replacing Q,(¢)s(Aq) for y in Property 1
in Kanamori (2013a) and using (33), the following property

holds so that the margins between input limits and the gravity
term are utilized for the stability.

Property 4: The following inequality holds:

If s(AQ)" Q,(q)w(u) <0, then
s(Aq)" Q,(q)F (g(g),0(u), f).

> CominS(AQ)" 0, (q)s(Aq) , (34)

where ¢y, IS the positive minimum value of c,;

fori=1,..,n as follows.
(35)

Property 5: The following inequalities are satisfied for
saturation cases (I) through (IV) so that the input saturation
function is eliminated by the inequalities (Kanamori, 2013a):

@ If ¢ ()0 and s(Aq)" Q,(q)y(u)>0, then
Y F(g(q).o(u), /)=y F(g(q).u,f),
(I If 4 w()20 and s(Aq)" Qy(q)y () <0, then
y' F(g(q),0(u). f)

> 4" F(g(q),u, /) + aComins(Aq) Qy(9)s(Aq), (37)
) If §"w(u) <0 and s(Aq)" Q,(q)w(u) =0, then
Y F(g(q).0(u). /)2 as(Aq) @y (@) F (g(q).u.[), (38)
@) If 4" w(u)<0 and s(Aq)" Q,(q)y(u)<0, then
Y F(g(q),6(u), /)2 acymins(A) Qy(q)s(Aq).  (39)

Comin = Min[c,,

(36)

The inner product, as shown in (14), is determined by the
given robot system. ¥, and W, are independent of the

controller design and are obtained as follows (Arimoto, 1996).

Property 6: V,and W as shown in (14) become

1. .
Vo224 H@+ abomeon —ari s, @0)
_ 1 . .12
Wo 2 omin — 0y + ¢ (7. @" . @34
1 1
—5@s(A0)" Q@) AB,
+&E(EDI @ T @12y (@)s(Ag) (41)
where c,,, is the minimum value of c; as follows:
Coin =Min{c, ... ¢}, (42)
by min 1S the minimum value of the diagonal component of the

positive diagonal matrix Bgin (3), Y, is the maximum
eigenvalue of H(q), and AB,is the difference between
B, and b, 1 as follows:

0min

AB, =B, by, I >0.

0min

(43)
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Assumption 2: There exists positive real numbers a and
Comin SUCh that the following inequalities are satisfied:

bOmincmin —QYy > 0, (44)
bOmin _aEO > 0’ (45)

1 .
2C0min1_a{§ABO +§(||x||)JX(‘I)TJx(q)} >0. (46)

Property 7: There exists a positive real number a such that
the following inequalities are satisfied:

Ul)-Ug,)~Aq"g(q)+]ag >0, 47)

5(A0)" 0, (9) g(0)~8(4, )} +5 @, (@)sag)] >0 (45)

Property 8: The contact force f is given by the following
form:

7=l @r@ 5,0 @@ X004,

(49)
where

X ——{B, %H(q) +S(4.9)

-g(q)+ o) &I ()" % . (50)

3. CONTROLLER DESIGN

Let us consider the following proportional, integral and
derivative (PID) control law:

u =—ahg—bg—cQy(q)[ ¥(z)dr
0

~J5@)" [+ BTy [ A (D)d7, (51)
0

where a,b, ¢, and f are positive definite real numbers that
are regarded as feedback gain, and Af is the error between
contact force f and its target force f, represented as
Af = f — f,, . Using the notation

AF = j A (2)dr, (52)

z= If(r)dr —J.ﬁ(r)dr and Ii(r)dr = —c"g(qd) , (53)

F(g(q),6(u), f) defined by (11) becomes

F(g(q).0(u), /) =28(q9)—04(9)8(q,)+alq
+bg+Q,(q)cz—J 4(q)" (Af + PAF) +y(u). (54)

Let us take the following y(¢#) according to the four
saturation cases (Kanamori, 2013a):

InCASE (I), (1) =g +aQ,(q)s(Aq), 5

In CASE (Il), y(1)=4, (56)
In CASE (I1D), y(1)=aQ,(q)s(Aq), (57)
In CASE (IV), y(1)=0. (58)

The inner products, as shown on the right-hand side of (36)
through (39), can be taken easily because o () is eliminated

and V,and W, in (15) are also easily derived. In CASE (1),

the inner product y’ F(g(q),a(u), /) in (36) is represented as
follows:

y' F(g(q),0(u). /)2y F(g(q).u f)= %Jr W, (59)
where ¥, and IV, are represented as
Va2 U(9)~Ulas) - Ag" g(qa) + A
+ abey|lsag)| +§"z"2 : (60)
W, =als(Aq)" 0,(9)ig(q)-g(q,)}
+alo,@sag)| 1+ 4 - (61)

The suffix i =10of V_ and W, means saturation CASE (I). In

the derivation, the following relation, (26) and (28) are
utilized:

VO =o' i= =ci =S el (62)

2
In the same manner, V,; and W, for i=2,3 are obtained by
using (56) and (57), respectively. Notice that the second term
acOmins(Aq)TQ¢(q)s(Aq) on the right-hand side of (37) or
(39) must be included in W, or W_,, respectively. In CASE

(IV), there is no inner product on the right-hand side in (39);
however, it is regarded that there is the inner product of zero
and F(g(q),u, f) as follows:

T dav.
0" F(g(q)u, f) =2t =0,

63
o (63)
where
V= %"z"2 : constant. (64)
Then, W_, becomes
W= aCOmins(A‘I)TQ,p (q)s(Aq) . (65)

It is confirmed that¥,, for i=1,...,4is positive definite when
the conditions (47) are satisfied, and V; in the first equation
in (17) is also positive definite, since V), is positive definite
under (44). W, for i=1,...,4 in the second equation in (17) is

also positive definite under (45), (46), (48) and the following
condition:

al —a{%ABo +&( DI @ (@)} > 0. (66)
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The above results imply that we have the following two states
according to the saturation cases:

V.2V,>0, V. <0, for i=1,2,3: state |
V,>0, V4<0.

(67)

cstate 2 (68)

where V; is switched according to saturation cases (I)

through (IV). Based on Lemma 1, we have the following
main theorem.

Main Theorem (Anti-windup PID control law): Assume that
conditions (44) through (46) are satisfied. Choose feedback
gain a as the positive real number such that the conditions
(47), (48) and (66) are satisfied. Adopt the switching function
as (55) through (58) for the control law (51). Then, the
equilibrium state of the closed-loop system is globally
asymptotically stable based on Lemma 1.

Proposition (Practical anti-windup PID control law):
Assume that the conditions in the Main Theorem are
satisfied. For the control law (51), choose the function y(t)

as follows:

YO =y +ay, (1), (69)
where
if q;y(u;) 20, then y,; =q;, (70)
if qy(u;) <0, then y;; =0, (71)
if {s(Aq)" Qy(@)}iy(u;) 20, then,
P =1s(A9)" Qs (@)} (72)
if {s(Aq)" @y (@)}iw(u;) <0, then 3, =0, (73)
for i=1,..,n, where {-}; denotes the i-th component of the

vector, y,; denotes the following vector component:

(74)

Then, the equilibrium state of the closed-loop system is
globally asymptotically stable.

V=[P Vi Vil and k=1,2.

4. CONTROL PERFORMANCE

The control performance of the proposed anti-windup PID
controller is examined by numerical simulations using a two-
link robot arm. A schematic two-link robot arm with contact
force is depicted in Fig. 1, where L, and L, denote the

length of the arm. L;is the coordinate value of x; and the

start point of the constraint surface. In this system, the
constraint surface is represented as (75) and (1) becomes
(76).

Xy =ax; +b,, Ly<x, (75)

¢p=x,—ax;—b, =0, (76)

where a and b, are real constants for the constraint surface.
The system equation with actuators and the detail of the two-
link robot system have been described in (48) through (51)
and TABLE 1 in Kanamori (2013b), respectively. Output

saturation function s;(x;) in (23) has also been shown in (52)

in Kanamori (2013b). Input limits +2 V are given for the
shoulder joint input and £1V are given for the elbow joint
input. The following values are used for the simulations.

Sy =10N, &(|x[)=0.3Nmys, y,, =638, (77)
a=3.0,a=100,5=2.0,c=50, f=1.0. (78)

Fig. 2 shows the control performance using the normal PID
controller. For the strict input limits, the windup phenomenon
is observed at elbow joint input u,, as shown in the upper

plots in Fig. 2. As a result, considerable overshoots occur in
shoulder joint angle ¢, and elbow joint angle ¢, , as shown

in the lower plots in Fig. 2. As shown in Fig. 3, the contact
force also degrades for the input saturation. In contrast, the
windup phenomenon is restrained by using the proposed anti-
windup PID controller, as shown in the upper plots in Fig. 4.
As a result, considerable overshoots are restrained very well,

Y/

Fig. 1 Two-link robot arm with holonomic constraint

Ideal input u W

& Solid: o(u1)

i\ Bloken: o(uz)
1] 2 4 i3 g 10
time t =zec

zaturated input zigmaofu W

il 2 4 i 2 1o
time t sec

S fbio.. i Thick:qs .

: | i Thin: qa1

2 4 f 2 10
time t gec

Fig. 2 Control performance using normal PID controller

14 fommotoo N io A Thick: g2 -

: : Thin: qe2

2 4 g g 10
time t gec

Rotational anele 9 and a9y rad.
Rotational angle =™ and Qs rad

Contact force f N

time ts

Fig. 3 Contact force using normal PID controller
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| solid: o(uz)
i Bloken: o(uz)
1} 2 4 i} 8 10
time t sec

deal input u W

Bloken: uz

1] 2 4 i 8 10
time t sec

=aturated input siemaofu W

_________________

! Thin: qas

Y S teeoooinnn..i. Thick: g2
H 1+ Thin: qa2

Rotational anele q, and O rad
Rotational anele g, and g, rad

. . 12 . .
0 2 4 g g 10 0 2 4 g g 10

time t sec time t sec

Fig. 4 Control performance using the proposed controller

Contact force f N

time ts

Fig. 5 Contact force using the proposed PID controller

04

Pasitivel

Fogitivel

PositiveZ

time t ¢

Fig. 6 Confirmation plot of conditions (32), (47) and (48)

as shown in the lower plots in Fig. 4. As shown in Fig. 5, the
control performance of the contact force is improved in
comparison with that in Fig. 3. Fig. 6 shows the validity of
conditions (32), (47), and (48). The top plot shows the left-
hand side of (32), where the right-hand side is transposed to
the left-hand side. The middle and the lower plots correspond
to the left-hand sides of (47) and (48), respectively. Since
these values are positive or zero, it is confirmed that
conditions (32), (47), and (48) are satisfied. These simulation
results validate the analysis and design of the proposed anti-
windup PID controller.

5. CONCLUSIONS

An anti-windup PID controller design for Euler-Lagrange
systems under holonomic endpoint constraints has been
presented. The control performance was examined by
numerical simulations using a two-link robot arm with
contact force. The simulation results validate the analysis and
design of the proposed anti-windup PID controller.
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