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Abstract: This paper describes a magnetic levitation system for use in graduate controls
education. We explain how to use this system to show the nonlinear system modeling, and
how to used advanced control techniques for this interesting and visually impressive equipment.
Several open problems in areas of electrical and control engineering are offered. Also, the paper
presents some initial outcomes in creating a laboratory environment for remote monitoring of
the magnetic levitation equipment.
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1. INTRODUCTION

Magnetic levitation techniques apply a magnetic field
to levitate or suspend a magnetic object based on the
interaction between the magnetic object and the applied
magnetic field. A magnetic object can be levitated and
stabilized in a magnetic system with an electronic feedback
control to dynamically adjust one or more electromagnets
in the system to stabilize the magnetically levitated object
at a desired location. A servo control is provided to control
the magnetic field that levitates the magnetic platform to
stabilize the levitated magnetic platform, Wong (1986).

The portable magnetic levitation system (MagLev) is a
classroom demonstration device. It is helpful in teaching
engineering courses particularly for automatic control. Ma-
gLev system is so simple and small that is very convenient
to be carried from class to class, Hurley (1997).

The mathematical model is very important for control
education. The advanced controller usually needs a math-
ematical model of the real system. Once a good model is
obtained and verified, a suitable control law can be imple-
mented to compensate the plant instability and improve
performance. The objects of the control education usually
includes, Barie and Chiasson (1996)

• System modeling
• Controller design

Due to its nonlinear and unstable nature, the Maglev sys-
tem is a very challenging plant. Normal feedback control,
such as PID control, can be used to control magnetic field
that levitates the platform to stabilize the platform. This
controller is very simple and does not require any knowl-
edge of mechanical systems. However it gives very large ac-
tuation and cannot guarantee zero tracking error with the
existence of disturbances, Kelly (1998). Various advanced
control schemes have been developed in the literature for
magnetic levitation systems, aee Qu and Dawson (1996),

and Ortega and Spong (1989). While model-based nonlin-
ear control can remove this error, it is usually restricted
to the case that the model is exactly known. Adaptive
control can compensate unknown dynamics if the structure
is known, Slotine and Lin (1988). The robust version of
adaptive control may achieve a good performance with
the system uncertainties and external disturbances, Singh
(1985). Non-adaptive control may also get high quality
performance with the parameters or structure uncertain-
ties. Robust feedback control, Dawson, et.al. (1993), and
optimal control, Li and Brandt (1996), may guarantee
closed-loop stable if the disturbances are bounded. All
of these works assume exact or partial knowledge of the
nonlinear dynamics. Obviously, this is a requirement that
generally cannot be met in practice.

In this paper we modify the prototype of magnetic levita-
tion system, InTeCo (2005), to test different modeling and
control methods.

2. SYSTEM DESCRIPTION

The MagLev system consists of the electromagnet, the
suspended hollow steel sphere, the sphere position sensors,
computer interface board and drivers, a signal conditioning
unit, real time control toolbox, see Fig. 1 and Fig.2.

This is a nonlinear, open-loop unstable and time varying
dynamic system. The basic principle of MLS operation
is to apply the voltage to an electromagnet to keep a
ferromagnetic object levitated. The object position is de-
termined through a sensor. Additionally the coil current
is measured to explore identification and multi loop or
nonlinear control strategies. To levitate the sphere a real-
time controller is required. The equilibrium stage of two
forces (the gravitational and electromagnetic) has to be
maintained by this controller to keep the sphere in a de-
sired distance from the magnet. When two electromagnets
are used the lower one can be used for external excitation
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Fig. 1. A magnetic levitation system -Real System

Fig. 2. A magnetic levitation system-Scheme.

or as contraction unit. The position of the sphere may be
adjusted using the set-point control and the stability may
be varied using different controllers.

Furthermore, changes of the parameters of the plant, such
as change of mass and suspension of the variations of
resistance and inductance due magnetic due to heat, must
also be taken into account. The magnetic levitation system
includes:

1) Measurement System: measuring the position of the
object to levitate, and with this information feedback to
the control stage. This system is built with light-receiving
sensors

2) Control System: this system is responsible for regulating
the position of the object based on information received by
the measurement system and a previously set reference.

3) Magnetics System: It consists in providing the necessary
magnetic force induced in the object, in order to counter-
act the force of gravity and maintain an equilibrium of
forces. It is noteworthy that the force which is generated
by this system varies depending on the position in which
the sphere is suspended and motionless.

4) Signal System: This system is responsible for adapting
and interpreting the signals provided by different systems
that make this prototype, so they can be processed prop-
erly.

5) Power System: This is responsible for transforming the
control signals of low voltage and low current signals useful
for the actuator, in this particular case, are transformed
into electric currents flowing through electromagnet .

6) Computer Control System: It is responsible for process-
ing all the input-output information, which determines the
state of the state in which the system is located. It is worth
mentioning that this levitation system has a fast dynamics,
then the response speed of this stage should be very high
and a large bandwidth

3. MODELING

Mathematical mode of this magnetic levitation system
includes three parts: mechanical model, electrical model
and sensor model. The mechanical model uses Newton law

̈ =  −  (1)

where  is the electromagnetic force,  and  are the
mass and position of the ball.

The electrical model uses Kirchhoff law

() = () + ()
()


−  (2)

where  is the resistance, () is the induction, () and
() are current and voltage,  is a constant current. Here
the induction () is a nonlinear function of the ball
position  Wong (1986),

() = 1 +
00


(3)

where 0 is the reference position, 1 and 0 () are
system parameters.

The magnetic energy of the system is a function of the coil
current  and the separation of the ball ferromagnetic 

 ( ) =
1

2
()2 (4)

The strength of electromagnetic on the ferromagnetic ball
is given by

 = −


= − 
2

2

∙
()



¸
(5)

Considering (3)

 = −1
2
00

µ




¶2
(6)

The electromagnetic force  can be approximated by
Hurley (1997)

 ≈ −
2

2−

 (7)

where  and  are system parameters. Or by Moon (1994)

 ≈ 

 (+ )
(8)

where   and  are system parameters. Or by Hajjaji
and Guladsine (2001)

 =
2

119944 − 091653 + 07159+ 00304 (9)

So (2) becomes

() = + 



− 00



2



−  (10)

If we define

 () =
0 ()0

2
(11)

1 as position of the sphere, 2 as velocity of the sphere,
3 as current,  () as control voltage. The final model is
obtained from (1), (2) and (10)

̇1 = 2

̇2 =  −  ()



µ
3
1

¶2
̇3 = − 

()
3 +

2

()

23
21

+
 ()

()

(12)
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Fig. 3. PWM control  via current 

To determine the value of parameter  in (11), an approx-
imation experiment is needed, see Cho, et.al. (1993). The
ball is located on a magnetic shelf. It is not directly below
the electromagnet. The exact position is recorded by the
position sensor, then a smooth ramp voltage is applied
to the magnetic circuit and the resulting position and
the current consumed by the electromagnet is measured.
Considering magnetic force equals the gravity force,  ()
is calculated as

 () =


2
2 (13)

There are several simplified models for
·
3 for example in

Hajjaji and Guladsine (2001)

·
3 =

 ()


− 


3 (14)

In arry and Casey (1999),

·
3 =

 ()


− 


3 −




(15)

In Taghirad, et.al. (2010)

·
3 =

1


1 ()− 


13 +

23
1

(16)

he parameters of the above models are  = 00571
0 = 0038514  = 0017521  = 00243  =
0005831  = 25165  = 981

3.1 Actuator and sensor

The pulse width modulation (PWM) of a signal or power
source is a technique in which modifies the duty cycle of
a periodic signal (a sinusoidal or a square, for example),
either to transmit information or to control the amount of
energy that is sent to a load. The pulse width modulation
is a technique used to control devices by providing a DC
voltage. The PWM response is nonlinear with respect to
control voltage and the current. However, in working area
the control current  can be approximated by the following
polynomial

 = 00168 ()2 + 1045 ()− 00317 (17)

It is almost linear in [0 25]  see Fig.3.

After the sensor calibration, the relation between the sen-
sor output (voltage) and the position of the levitated ob-
ject is still nonlinear, see Fig.4. It can also be approximated
by
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Fig. 4. Sensor output (voltage) and the position.

 = −25697073504595 + 1245050011254
−18773635923 + 79330242 − 15021+ 5015

(18)

4. ADVANCED CONTROL

Besides the classical PID control, in this session we use
several advanced control techniques for the magnetic lev-
itation system. These controller design methods will be
used for graduated students education. The PID controller
is

() = () +

Z 

0

()+

 ()


(19)

where
 () = 1 − ∗1

∗1 is the desired position of the ball, 1 is real position.
  and  are proportional, integral and derivative
gains of the PID controller, respectively.

4.1 Linear Control

The nonlinear model (12) can be approximated in the
equilibrium point (1 0 2 0 3 0) = (0 0 0)

̇ = +
 = 

(20)

where =

⎡⎢⎢⎢⎣
0 1 0

223 0
31 0

0 −23 0
21 0

0
23 0
()21 0

−


⎤⎥⎥⎥⎦   =

⎡⎣ 0
0

()−1

⎤⎦ 
 =

"
1
0
0

#


Since In the equilibrium point 1 = 
23 0
21 0

, 0 = 0

1 = − 0 2 =  3 = 3 − 0  =  − 0 The
PID controller (19) becomes Barie and Chiasson (1996),

 = 0

Z 

0

(1 − 1)+1(1 − 1)

+2(2 − 2) +3(3 − 3) + 

(21)

where

 = 3 +

µ
3 0
1 0

− 2

3 0

¶
2 −

µ
3 0
2

¶
1

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9034



4.2 Feedback Linearization

Consider the following transform coordinator

1 = 1 2 = 2

3 =  −
µ




¶µ
3
1

¶2
(22)

The system states are restricted to region where the
state space is 1  0 and 3  0 to ensure that the
transformation (22) is invertible. After the transformation
(22), (12) becomes

̇1 = 2
̇2 = 3
̇3 = () + ()

(23)

where () =
2



µµ
1− 2 

()1

¶
232
31

+


()

23
21

¶


() = − 23
()21

.

If the feedback linearization control is

 =

µ
−() + 

()

¶
(24)

The closed-loop system is"
̇1
̇2
̇3

#
=

"
0 1 0
0 0 1
0 0 0

#"
1
2
3

#
+

"
0
0


#
The reference  is chosen as

 = 0

Z 

0

(1 − 1)+1(1 − 1)

+2(2 − 2) +3(3 − 3) + 

(25)

where 1 () =  () 2 () =
1 ()


 3 () =

2()


  () =
3 ()


  () is input reference. In

this way, the closed-loop systems is stable.

4.3 Lyapunov Design

The Lyapunov design is to calculate analytically a global
feedback asymptotically stabilizes. The final control  will
be calculated in  steps, where  is the number of state
variables for the proposed case.

1) The first step, calculate tracking error for 1. Define the
tracking error as

1 = 1 − ∗1 (26)

where ∗1 is the desired trajectory of 1. The Lyapunov
function is selected as

1() =
1

2
21 (27)

The control object is force the Lyapunov function satisfy

̇1(1) = −121  0 (28)

After calculation, we find if we define a virtual control 2
as

2 = ˙1 − 1(1 − 1 ) (29)

and replace 2 with 2, (28) is established.

2) In the second step, we define the tracking error of 2 as

2 = 2 − 2 (30)

The Lyapunov function is selected as

2(1 2) =
1

2
21 +

1

2
22 (31)

we hope

̇2(1 2) = −121 − 2
2
2  0 (32)

After calculation, we find if we define a virtual control 3
as

3 = −
3(− 1)

2


[(1 + 2)(2 − ˙1 )

+(1 + 12)(1 − 1 )−  − ¨1 ]
(33)

and replace 3 with 3, (32) is established.

3) In the third step, we define the tracking error of 3 as

3 = 3 − 3 (34)

The Lyapunov function is selected as

3(1 2 3) =
1

2
21 +

1

2
22 +

1

2
23 (35)

If the control is selected as

 = 23 − 223
21
− (1

2
(1 + 2 + 3)3

+
(1
23

∙


221
[2 − ˙1 + 1(1 − 1 )]

¸
+
21


∙
(1 + 12)(1 − 1) + 

+(1 + 2)(2 − ˙1 )− ̈1

¸
(31 + 22)

+
2

2
1


[(1 + 12)(2 − ̇1 )

+(1 + 2)( − ̈1 )− 
(3)
1 ]

then

̇3(1 2 3) = −121 − 2
2
2 − 3|3|  0 (36)

4.4 Sliding mode controller

The tracking error is defined as

1 = 1 − ∗1

Let us define the sliding surface as  =

µ



+ 

¶
1when

 = 2

 =

µ



+ 

¶2
1 = ̈1 + 1̇1 + 21 (37)

We select Lyapunov function as

 =
1

2
2 (38)

We use (12) and (37)

 =  − 



µ
3
1

¶2
+ 12 + 2(1 − 1) (39)

We hop the derivative of 38 satisfies

̇ = ̇  0 (40)

We should use the control as

 =
1

1()

Ã
−1()− 1

Ã
 − 



µ
3
1

¶2!!
−22 − 

(41)

where SM=() 1() =


()
3 +

2

()

23
21



1() = −1() In order to reduce chattering, saturation
function is used as  = (). When the sliding
mode controller (41) is applied, the asymptotic stability is
gauntness

lim
→∞ 1 = 0
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Fig. 5. Real-time simulink program for PID control.

4.5 Neural control

A neural network can approximate the controller (41).
Here we use radial base function neural network

 =
X
=1



µ
−k  − 1 k2

1

¶
= (42)

where  is the number of hidden layers. An adaptive law is
used to adjust the weights for the search of optimal values
of the weights and obtain a stable convergence property

 = − 
̇


| =

That is  =  − 



|  =  Because

̇


=

̇


× 


 and ̇ = ˙̈ + 1̈ + 2̇ we find the

update law as follows

 = − 
−2
21

× 


' = (43)

This gradient update law can assure  go to  in (41).

5. OUR EXPERIMENTS

Here interfacing is based on a Xilinx FPGA microproces-
sor, comprising a multifunction analog and digital I/O
board dedicated to real-time data acquisition and control
in the Windows XP environment. The control program
operated in Windows XP with Matlab 6.5/Simulink. All
of the controllers employed a sampling frequency of 1.
All experiments can be repeated as experiments in real
time. In this way one can verify the accuracy of the model.

5.1 PID Control

Fig.5is a block diagram in Simulink. which is used for
testing in real time of PID control. The hardware platform
is shown in Fig.6

The PID gains are chosen as = 200, = 10  = 10.
The regulation results are shown in Fig.7 and Fig.8.

5.2 Nonlinear control

We use feedback linearization control

 =
1



"−1 − 2 − 3 − 4 + 1(1 − ) + 22

+3(−26347423 exp(
−1

00058231
) + 981)

#
(44)

where 1 = −125 2 = −75 3 = −15 The results are
shown in Fig.9.

Fig. 6. Hardware platform.
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Fig. 7. PID regulation

Fig. 8. PID regulation
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Fig. 9. Feedback linearization
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Fig. 10. Neural control-tracking
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Fig. 11. Neural control- control input

5.3 Neural Control

The PID control and nonlinear feedback linearization
cannot realize tracking. However, neural control can finish
this job. The neural controller is

 = (45)

where  =
³

3
1+exp(−1)

´³
1

1+exp(−2)
´³

2
1+exp(−3) − 01

´


The weight  is updated as

̇ =

µ
3

1 + exp(−1)
¶µ

1

1 + exp(−2)
¶

×
µ

2

1 + exp(−3) − 01
¶
1

The tracking results are shown in Fig.10. The blue line id
the reference signal. The green line is the real position of
the ball. Fig.11 shows the control input (current).

6. CONCLUSION

In this paper, we use Maglev system to show how to realize
the modeling and control. The modeling process includes
mechanical model, electrical model and sensor model. The
advanced controller design includes: PID control, linear
control, nonlinear feedback control, Lyapunov design, slid-
ing mode control, and neural control.

As a teaching aid, the Maglev system enables the imple-
mentation of many basic and advanced approaches to both
theoretical study and practical investigation of the nonlin-
ear, unstable system control. We hope that it would be of
wide interest in the control engineering community. More-
over, in order to support learning of automatic control,
a web-based laboratory will be established. The remote
user is able to control the magnetic levitation equipment
in stand alone graphical user interface.
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