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Abstract: An H∞ synthesis method for control of a flexible joint, with non-linear spring
characteristic, is proposed. The first step of the synthesis method is to extend the joint model
with an uncertainty description of the stiffness parameter. In the second step, a non-linear
optimisation problem, based on nominal performance and robust stability requirements, has
to be solved. Using the Lyapunov shaping paradigm and a change of variables, the non-linear
optimisation problem can be rewritten as a convex, yet conservative, lmi problem. The method
is motivated by the assumption that the joint operates in a specific stiffness region of the non-
linear spring most of the time, hence the performance requirements are only valid in that region.
However, the controller must stabilise the system in all stiffness regions. The method is validated
in simulations on a non-linear flexible joint model originating from an industrial robot.
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1. INTRODUCTION

The demand and the requirements for high precision con-
trol in electro mechanical systems have been increasing
over time. At the same time cost reduction and more
developed mechanical design criteria, with lower margins
in the design, reduces the size of the components in-
volved. One such example is the speed reducers used in
many electro mechanical systems where the size and cost
have become increasingly important. The harmonic drive,
sometimes referred to as “strain-wave gearing”, is a very
common example of a gear type that can deliver high gear
reduction ratio in a small device [Tuttle and Seering, 1996].
Characteristic to compact gear boxes, such as harmonic
drives, are that they have a relatively small backlash, a
highly non-linear friction behaviour, and in addition a very
non-linear stiffness [Tjahjowidodo et al., 2006]. One typical
application of electromechanical systems, where harmonic
drive gearboxes are used, is in industrial robots where the
motivation for the work presented in this paper also comes
from. In this paper the control design for the electrome-
chanical system, motor-gearbox joint, hereafter referred to
as the flexible joint system, is considered. In general, robots
are strongly coupled multivariate systems with non-linear
dynamics and in previous research on control of robots
linear spring stiffness has been considered, see e.g. Sage
et al. [1999] and the references therein. When the speed
reducers are of harmonic drive type, linear models are
however not sufficient for the control as will be shown in
the paper. Several non-linear models of the gearbox have
been presented in the literature, see Tuttle and Seering
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[1996], Tjahjowidodo et al. [2006], Ruderman and Bertram
[2012] among others.

What characterises the H∞-controller synthesis method
presented in this work is that it can facilitate in designing
a controller which gives performance in one region of pa-
rameter values, while for another region the performance
requirement is lower and only stability is sufficient. The
proposed method is motivated by the fact that the flexible
joint operates in specific regions most of the time. For
example, a joint which is affected by gravity operates most
of the time in the high stiffness region, hence it is more
important to have a controller with good performance
in the high stiffness region. However, the controller must
stabilise the system in all stiffness regions.

This paper is organised as follows. Section 2 presents
the problem and how it will be solved and the proposed
method is outlined in Section 3. In Section 4, the non-linear
joint model used to test the proposed method is presented.
The design of the controller and the results are given in
Sections 5 and 6. Finally, Section 7 concludes the paper.

2. PROBLEM FORMULATION

The problem is to design a linear H∞-controller that can
stabilise a non-linear flexible joint model, for example a
motor-harmonic drive-joint system, using only the primary
position, the motor position qm. There are a number of
non-linearities that characterise the gearbox in the flexible
joint. Here, the spring stiffness of the joint is considered
and it is described by the function τs(∆q), where ∆q =
qm − qa is the deflection between the motor position qm
and the secondary position, the arm position qa. The
non-linear spring is characterised by a low stiffness for
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Fig. 1. Closed-loop system from w to z, without and with
an uncertainty description in (a) and (b) respectively.

small deflections and a high stiffness for large deflections,
which is typical for compact gear boxes, such as harmonic
drive [Tuttle and Seering, 1996, Ruderman and Bertram,
2012]. Linearising the stiffness function would give a linear
expression k · (qm − qa), where the gain k depends on the
deflection qm − qa of the joint. The lowest and maximal
values of k are klow and khigh, respectively. The complete
model and an explicit expression for τs(∆q) are presented
in Section 4.

Control of non-linear systems using linear H∞-methods
is usually done by first linearising the model in several
operating points, e.g. gain scheduling techniques, or using
exact linearisation. Gain scheduling requires to know the
operating point of the spring and exact linearisation re-
quires the full state vector, hence only the motor position is
not enough to measure. A common solution is to introduce
an observer for estimating the state vector. However, it
is not certain that the estimated state vector is accurate
enough to use due to model errors and disturbances. The
estimation problem has been investigated in e.g. Axelsson
et al. [2012], Chen and Tomizuka [2013].

Instead, the problem considered in this paper is managed
using an uncertainty description of the stiffness parameter
k to obtain a controller over the whole interval for k. In
general, the interval has to be relative short in order to
obtain a controller using regular methods. The reason for
this is that the methods try to be both robustly stable
and have robust performance over the whole interval. The
uncertainty description of the linearised spring stiffness
can give a long interval of the parameter k that has to
be covered. Instead of having a controller that satisfies the
requirements of both robust stability and performance over
the whole interval, the aim is to find a controller that is
stable for all values of k but only satisfies the performance
requirements in the high stiffness region. The reason for
this is that in practice, the joint operates only in the
high stiffness region most of the time, e.g. an industrial
manipulator affected by the gravity force. In reality as low
as zero stiffness must be handled due to backlash, but that
is omitted here.

3. PROPOSED H∞ SYNTHESIS METHOD

This section presents the proposed H∞ synthesis method.
First, the uncertainty description is given. After that,
the requirement for nominal stability and performance
together with robust stability is discussed, and the final
optimisation problem is presented.

3.1 Uncertainty Description

Let k be modelled as an uncertainty according to

k(δ) = k + k̄δ, (1a)

k = αkhigh + βklow, (1b)

k̄ = αkhigh − βklow, (1c)

where α, β are scaling parameters such that β ≤ α. The
uncertain parameter δ is contained in δ = [−1 1] ⊂ R and
may change arbitrarily fast. For δ = ±1 it holds that the
stiffness parameter

k(δ) ∈
[
2βklow 2αkhigh

]
. (2)

Since the aim is to have a controller that has good
performance in the high stiffness region, but only stable
in the low stiffness region, it is desirably to have k close to
khigh and the lower bound of k(δ) not larger than klow.

The stiffness parameter enters only in the A-matrix of the
linearised system and assume that the part containing δ is
of rank one, then

A(δ) = A + LδR (3)

with A ∈ Rnx×nx , L ∈ Rnx,1 and R ∈ R1,nx . For the
forthcoming calculations, it is important to have L and R
as a column and row matrix, respectively. The augmented
system in Figure 1(b) can now be constructed according
to

P̄ =

 A L Bw Bu

R 0 0 0
Cz 0 Dzw Dzu

Cy 0 Dyw 0

 , (4)

with ∆ = δ.

3.2 Nominal Stability and Performance

Let P represent an lti system, see Figure 1(a),

ẋ = Ax + Bww + Buu, (5a)

z = Czx + Dzww + Dzuu, (5b)

y = Cyx + Dyww, (5c)

where x ∈ Rnx×1 is the state vector, w ∈ Rnw×1 is
the disturbance vector, u ∈ Rnu×1 is the control signal,
y ∈ Rny×1 is the measurement signal, and z ∈ Rnz×1 is the
output signal that reflects our specifications. The matrices
in (5) has dimensions corresponding to the vectors x, w,
u, y, and z. Note that it is the nominal system, i.e., δ = 0
that is used here. Let the controller K in Figure 1(a) be
given by

ẋK = AKxK + BKy, (6a)

u = CKxK + DKy. (6b)

Using the lower fractional transformation Fl(P,K) gives
the closed loop system from w to z according to

Fl(P,K) =

(
ACL BCL

CCL DCL

)
=

(
A + BuDKCy BuCK Bw + BuDKDyw

BKCy AK BKDyw

Cz + DzuDKCy DzuCK Dzw + DzuDKDyw

)
(7)

From Gahinet and Apkarian [1994] it holds that the H∞-
norm of Fl(P,K) is less than γ, i.e., ‖Fl(P,K)‖∞ < γ,
and the closed loop system is stable, i.e., ACL has all
eigenvalues in the left half plane, if and only if there exists
a positive definite matrix P such thatAT

CLP + PACL PBCL CT
CL

BT
CLP −γI DT

CL
CCL DCL −γI

 ≺ 0. (8)
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3.3 Robust Stability

To guarantee robust stability of the uncertain system for
arbitrarily fast changes in δ, quadratic stability is enforced
which is given by

∃P ∈ Snx :P � 0 and (9a)

A(δ)TP + PA(δ) ≺ 0, ∀δ ∈ δ. (9b)

From Scherer [2006], the robust lmi (9b) holds if and only
if there exist p, q ∈ R with p > 0 such that(

I 0
A L

)T(
0 P
P 0

)(
I 0
A L

)
+

(
0 I
R 0

)T(−p iq
−iq p

)(
0 I
R 0

)
≺ 0 (10)

Note that p, q ∈ R with p > 0 parametrize all multipliers
that satisfy (

δ
1

)T(−p iq
−iq p

)(
δ
1

)
≥ 0, ∀δ ∈ δ. (11)

Since the negative definiteness of a Hermitian matrix
implies that its real part is negative definite, q = 0 can be
enforced in (10) without loss of generality. It follows from
the fact that L and R are rank one matrices 1 . In addition,
p = 1 can be enforced since the lmi is homogeneous in
P and p. By elaborating the left-hand side of (10) gives
that (9) is equivalent to

∃P ∈ Snx : P � 0 and

(
ATP + PA + RTR PL

LTP −1

)
≺ 0.

(12)
The last lmi in (12) can be rewritten, similar to what is
given by (8), using the Schur complement, according toATP + PA PL RT

LTP −1 0
R 0 −1

 ≺ 0. (13)

The lmi in (12) can also be obtained using iqc-based
robust stability analysis with frequency independent mul-
tipliers [Megretski and Rantzer, 1997], which guarantees
stability for arbitrarily fast changes in δ.

3.4 Controller Synthesis

The controller is now obtained from the following optimi-
sation problem

Minimise
AK ,BK ,CK ,DK

γ (14a)

subject to P � 0 (14b)AT
CLP + PACL PBCL CT

CL

BT
CLP −γI DT

CL
CCL DCL −γI

 ≺ 0 (14c)

AT
CLP + PACL PLCL RT

CL

LT
CLP −1 0

RCL 0 −1

 ≺ 0 (14d)

where LCL and RCL are the matrices L and R augmented
with zeros in order for the dimensions to satisfy the closed-

loop state vector xCL =
(
xT xT

K

)T
.

The minimisation problem in (14) gives a conservative
solution because of the same Lyapunov matrix P is used
1 If rankL = rankR = r, than q should be a r × r skew symmetric
matrix and the involved computations are much more complex.

Jm Ja

u

wm

wa

τs(∆q)

d

fm

qm qa

Fig. 2. A two-mass flexible joint model, where Jm is the
motor and Ja the arm.

in both (8) and (13). For the approach not to be conser-
vative, different Lyapunov matrices should be used in (8)
and (13). However, this multi-objective controller design
is non-convex. To obtain a convex, yet conservative, ap-
proximation, the Lyapunov shaping paradigm, as intro-
duced by Scherer et al. [1997], is used. Moreover, the
minimisation problem in (14) is non-linear due to products
of P and the controller parameters AK , BK , CK , and
DK . However, a change of variables [Scherer et al., 1997]
makes the constraints linear and the resulting minimisa-
tion problem can be solved using lmi optimisation, e.g.
using Yalmip [Löfberg, 2004].

The optimisation problem (14) will be easier to solve the
smaller the perturbation is. It can therefore be useful to
introduce a scaling parameter 0 < κ ≤ 1 such that δ ∈
[−κ κ]. Decreasing δ to [−κ κ] is equivalent to preserving
δ = [−1 1] but rescaling L, according to L → κL. The
good thing is that it can still be possible to stabilise the
system for δ ∈ [−1 1] due to the conservatism of the
proposed method. Note that κ is a tuning parameter that
affect the solution to (14). A too large value can make
the problem impossible to solve whereas a too small value
gives a controller that is not able to stabilise the non-linear
system.

4. NON-LINEAR FLEXIBLE JOINT MODEL

The flexible joint model considered in this paper is of two-
mass model type, see Figure 2, where qm is the motor
position and qa the arm position. Here, both qm and qa are
described on the motor side of the gearbox. Input to the
system is the motor torque u, the motor disturbance wm
and the arm disturbance wa. The two masses are connected
by a spring-damper pair, where the first mass corresponds
to the motor and the second mass corresponds to the arm.
The spring-damper pair is modelled by a linear damper,
described by the parameter d, and the non-linear spring
is described by the function τs(∆q) which is a piecewise
affine function with five segments, i.e.,

τs(∆q) =

klow∆q, |∆q| ≤
Ψ

4

(klow +mk) ∆q − sign(∆q)
mkΨ

4
,

Ψ

4
< |∆q| ≤

Ψ

2

(klow + 2mk) ∆q − sign(∆q)
3mkΨ

4
,

Ψ

2
< |∆q| ≤

3Ψ

4

(klow + 3mk) ∆q − sign(∆q)
3mkΨ

2
,

3Ψ

4
< |∆q| ≤ Ψ

khigh∆q − sign(∆q)
5mkΨ

2
, Ψ < |∆q|

where mk = (khigh − klow)/4, and Ψ a model parameter
describing the transition to the high stiffness region. More-
over, the friction torque is assumed to be linear, described
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Table 1. Numerical values of the model param-
eters.

Ja Jm Ψ khigh klow d fm
0.042 0.005 220π/60/180 100 100/6 0.08 0.006

by the parameter fm, and the input torque u is limited
to ±20 Nm. The measurement of the system is the motor
position qm, and qa is the variable that is to be controlled.
The model is a simplification of the experimental results
achieved in, e.g. Tjahjowidodo et al. [2006], where the non-
linear torsional stiffness also shows hysteresis behaviour.

The dynamical model of the flexible joint is given by

Jaq̈a − τs(∆q)− d(q̇m − q̇a) = wa, (15a)

Jmq̈m + τs(∆q) + d(q̇m − q̇a) + fmq̇m = u+ wm, (15b)

where the model parameters are presented in Table 1.
Using a state vector x according to

x = (qa qm q̇a q̇m)
T
, (16)

gives the non-linear state space model

ẋ =


q̇a
q̇m

1

Ja
(τs(∆q) + d(q̇m − q̇a) + wa)

1

Jm
(u− τs(∆q)− d(q̇m − q̇a)− fmq̇m + wm)


(17)

Linearising the non-linear flexible joint model (17) gives a

linear state space model ˙̃x = Ãx̃ + B̃uu + B̃ww, where

w = (wa wm)
T

and

Ã =


0 0 1 0
0 0 0 1

− k

Ja

k

Ja
− d

Ja

d

Ja
k

Jm
− k

Jm

d

Jm
−d+ fm

Jm

 , (18a)

B̃u =


0
0
0
1

Jm

 , B̃w =


0 0
0 0
1

Ja
0

0
1

Jm

 (18b)

C̃ = (0 1 0 0) . (18c)

Here, k is the stiffness parameter given by (1b). The
uncertainty description (1) gives

Ã(δ) = Ã + L̃δR̃, (19a)

L̃ =

(
0 0

k̄

Ja
− k̄

Jm

)T

, (19b)

R̃ = (−1 1 0 0) . (19c)

The notation ˜ indicates that the weighting functions in
the system P (s) is not included here. Section 5 presents
the weighting functions and how they are included in the
state space model to give the system P (s) in (5).

5. CONTROLLER DESIGN

A common design method is to construct the system P
in (5) by augmenting the original system y = G(s)u
with the weights Wu(s), WS(s), and WT (s), such that the
system z = Fl(P,K)w, depicted in Figure 1(a), can be
written as

Fl(P,K) =

(
Wu(s)Gwu(s)
−WT (s)T (s)
WS(s)S(s)

)
, (20)

where S(s) = (I+G(s)K(s))−1 is the sensitivity function,
T (s) = I−S(s) is the complementary sensitivity function,
and Gwu(s) = −K(s)(I + G(s)K(s))−1 is the transfer
function from w to u. The H∞-controller is obtained by
minimising the H∞-norm of the system Fl(P,K), i.e.,
minimise γ such that ‖Fl(P,K)‖∞ < γ. Using (20) gives

|Wu(iω)Gwu(iω)| < γ, ∀ω, (21a)

|WT (iω)T (iω)| < γ, ∀ω, (21b)

|WS(iω)S(iω)| < γ, ∀ω. (21c)

The transfer functions Gwu(s), S(s), and T (s) can now
be shaped to satisfy the requirements by choosing the
weights Wu(s), WS(s), and WT (s). In general this is a
quite difficult task. See e.g. Skogestad and Postletwaite
[2005], Zhou et al. [1996] for details.

The mixed-H∞ controller design [mixedHinfsyn, 2013,
Zavari et al., 2012] is a modification of the standard H∞
design method. Instead of choosing the weights in (20)
such that the norm of all weighted transfer functions sat-
isfies (21), the modified method divides the problem into
design constraints and design objectives. The controller
can now be found as the solution to

Minimise
K(s)

γ (22a)

subject to ‖WPS‖ < γ (22b)

‖MSS‖ < 1 (22c)

‖WuGwu‖ < 1 (22d)

‖WTT‖ < 1 (22e)

where γ not necessarily has to be close to 1. The lmi in (8)
can be modified to fit into the optimisation problem (22),
see Zavari et al. [2012].

The weight MS should limit the peak of S and is therefore
chosen to be a constant. The peak of Gwu is also important
to reduce in order to keep the control signal bounded,
especially for high frequencies. A constant value of Wu is
therefore also chosen. Finally, the weight WT is also chosen
to be a constant for simplicity.

The system from w to the output includes an integrator,
hence it is necessary to have at least two integrators in the
open loop GK in order to attenuate piecewise constant
disturbances. The system G has one integrator hence at
least one integrator must be included in the controller.
Including an integrator in the controller is the same as
letting |S(iω)| → 0, for ω → 0. Forcing S to 0 is the same
as letting WP approach ∞ when ω → 0. However, it is
not possible to force pure integrators in the design since
the generalised plant P (s) is not possible to stabilise with
marginally stable weights. Instead the pole is placed in the
left half plane close to the origin. Zeros must be included
in the design as well to get a proper inverse. The following
weights have been proven to work

Wu = 10−50/20, WT = 10−8/20, (23a)

MS = 10−8/20, WP =
(s+ 50)(s+ 15)(s+ 5)

500(s+ 0.2)(s+ 0.001)2
. (23b)

The constant weights in the form 10−λ/20 can be inter-
pret as a maximum value, for the corresponding transfer
function, of λ dB.
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Fig. 3. Controller gains |K| and |K̂|.
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Fig. 4. Structured singular values for robust stability using
the controllers K and K̂.

The augmented system P is obtained using the command
augw(G,[Wp;MS],WU,WT) in Matlab, where G is the

system described by Ã, B̃u, and C̃ in (18). The uncertainty
description of k(δ) in (1) is used with α = 0.9167, and
β = 0.5, i.e., the nominal value is k = khigh, k̄ = 83.33,
and k(δ) ∈ [16.67 183.33]. The scaling parameter is chosen
as κ = 0.75. Finally, the uncertainty model is updated
according to

L =
(
0 L̃T

)T
, R =

(
0 R̃

)
(24)

where 0 is a zero matrix with suitable dimensions.

6. RESULTS

The optimisation problem in (14) is solved using Yalmip
[Löfberg, 2004] and a controller K of order nK = 6 is

obtained. A controller K̂, with the same weights as for
the robust stabilising controller K, using the optimisation
problem in (14) without the lmi (14d) is derived to show
the importance of the extra lmi for robust stability and
also what is lost in terms of performance. The controller
gains |K| and |K̂| are shown in Figure 3, and they have
a constant gain before 10−3 rad/s due to the pole at s =

−0.001. The major difference is the notch for K̂ around
100 rad/s and the high gain for K for high frequencies.

The robust stability can be analysed using the structured
singular value (ssv). The system is robustly stable if the
ssv for the closed loop system from w∆ to z∆ with respect
to the uncertainty ∆ is less than one for all frequencies. A
thorough description of the ssv can be found in Skogestad
and Postletwaite [2005]. Figure 4 shows the ssv for the

closed loop system using K and K̂ and it can be seen that
the ssv using K is less than one (0 dB) for all frequencies

whereas the ssv using K̂ has a peak of approximately
15 dB. As a result K̂ cannot stabilise the system for all
perturbations, as expected.

The step responses for the controller K̂ using the linearised
system in k = khigh and the controller K using the
linearised systems in k = khigh and k = klow are shown

0 0.5 1 1.5 2 2.5 3 3.5
0

0.25

0.5

0.75

1

1.25

Time [s]

K, khigh

K, klow

K̂, khigh

Fig. 5. Step response of the controllers K and K̂ using
system linearised in klow and khigh. The first 0.15 s
are magnified to show the initial transients.

10−2 10−1 100 101 102 103
−20

−15

−10

−5

0

2

Frequency [rad/s]

[d
B
]

Robust stability

Nominal performance

Robust performance

Fig. 6. Structured singular values for robust stability,
nominal performance, and robust performance for the
controller K.

in Figure 5. It can be seen that K̂ is better than K for the
linearised system in the high stiffness region. It means that
in order to get a controller that is robustly stable for k(δ),
the performance has been impaired. It can also be seen
that the performance for K is better in the high stiffness
region than in the low stiffness region, since the nominal
value k = khigh.

The ssv can also be used for analysing nominal perfor-
mance and robust performance, see Skogestad and Postlet-
waite [2005]. The requirement is that the ssv should be
less than one for different systems with respect to some
perturbations. Figure 6 shows the ssv for robust stability,
nominal performance, and robust performance using K. It
can be seen that the requirements for robust stability and
nominal performance are satisfied. However, the require-
ment for robust performance is not satisfied. The reason is
that the optimisation problem (14) does not take robust
performance into account.

Finally, simulation of the non-linear model using K is
performed to show that the controller can handle dynamic
changes in the stiffness parameter and not only stabilising
the system for fixed values of the parameter. The non-
linear model is simulated in Simulink using the disturbance
signal in Figure 7(a), which is composed by steps and
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(a) Disturbance signal w(t) composed by steps and chirps.
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(b) Arm angle qa(t) expressed on the arm side of the gearbox.
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m
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(c) Motor torque τ(t).

Fig. 7. Disturbance signal for the simulation experiment
and the obtained arm angle and motor torque.

chirp signals. Figure 7(b) and 7(c) show the arm angle
qa(t) on the arm side of the gearbox and the motor
torque τ(t). From 0 s up to 25 s the system operates in
the region 0 < |∆q| < Ψ most of the time except for short
periods of time when the step disturbances occur. The arm
disturbance after 25 s keeps the system in the high stiffness
region except for a few seconds in connection with the step
disturbances.

The stationary error for qa(t) at the end is due to the fact
that the controller only uses qm(t) and the constant wa(t)
is not observable in qm(t) hence qa(t) cannot be controlled
to zero. The primary position qm(t) does not have any
stationary error.

7. CONCLUSIONS

A method to synthesise and design H∞-controllers for
flexible joints, with non-linear spring characteristics, is
presented. The non-linear model is linearised in a spe-
cific operating point, where the performance requirements
should be full filled. Moreover, an uncertainty description
of the stiffness parameter is utilised to get robust stability
for the non-linear system in all operating points. The
resulting non-linear and non-convex optimisation problem
can be rewritten as a convex, yet conservative, lmi prob-
lem using the Lyapunov shaping paradigm and a change
of variables, and efficient solutions can be obtained using
standard solvers.

Using the proposed synthesis method an H∞-controller is
computed for a specific model, where good performance
can be achieved for high stiffness values while stability
is achieved in the complete range of the stiffness pa-
rameter. A controller derived with the same performance
requirement but without the additional stability constraint

is included for comparison. By analysing the structured
singular values for robust stability for the two controllers
it becomes clear that the controller without the extra
stability constraint will not be stable for the parameter
variations introduced by the non-linear stiffness parame-
ter.

In the synthesis method it is assumed that the parameter
δ changes arbitrarily fast, which is a conservative assump-
tion for real systems. It would therefore be a good idea to
have a limited change in δ in the future development of the
method. Moreover, the use of a common Lyapunov matrix
P must be relaxed to reduce the conservatism further.
Here, the path following method from Hassibi et al. [1999],
Ostertag [2008] can be further investigated.
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