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Abstract: A new motion planning algorithm for the so-called Dubins Travelling Salesperson
Problem is derived, and compared via simulations with a number of existing algorithms from
the literature. In its general form, the new algorithm is dubbed “k-step look-ahead algorithm”
and stems naturally from the formulation of the Dubins Travelling Salesperson Problem as a
minimum-time control problem. When the minimum turning radius of the Dubins vehicle is
comparable to the average intercity distance, the simulations yield a comparison favourable to
the new algorithm. The examples in the paper are confined to small instances of the Dubins
Travelling Salesperson Problem, however the main idea behind the k-step look-ahead algorithm
can be combined with different optimisation methods, if larger instances of the DTSP are to be
considered.

1. INTRODUCTION

The Dubins Travelling Salesperson Problem (DTSP) is
a useful abstraction for the study of problems related
to motion planning of uninhabited vehicles [Yang and
Kapila, 2002; McGee and Hedrick, 2006; Rathinam et al.,
2007; Savla et al., 2008; Tang and Özgüner, 2005; Edi-
son and Shima, 2011; Cons et al., 2013]. As in the case
of the classic Euclidean Travelling Salesperson Problem
(ETSP) in R2 [Papadimitriou and Steiglitz, 1998; Cormen
et al., 2001], the sought after solution is a tour of mini-
mum length that passes through every city (target) once,
however, in the case of the DTSP, the tour is required
to be a C1 curve of bounded curvature. The additional
requirement on the regularity and the curvature of the
tour has a fundamental implication on the very nature of
the problem. Specifically, the ETSP belongs to the realm
of combinatorial optimisation, whereas the DTSP does
not. A precise formulation of the DTSP is given below,
however the crux of the matter is that, in the case of
the DTSP, even if the order of the targets is given and
fixed, the length of the tour depends on the heading of the
Dubins vehicle when it passes through each target (in other
words, the slope of the tour at each target). Therefore, the
solution space for the DTSP has the cardinality of the
continuum. 1 A possible remedy is to discretise the inter-
val [0, 2π) for each target, however this approach has at
least two shortcomings that are intimately related. First,
the minimum-time function for the Dubins dynamics is
discontinuous and, hence, a fine partition of the afore-
mentioned interval is necessary if an optimal trajectory

? This work was supported by the U.S. Air Force Office of Scientific
Research, Air Force Material Command, under grant FA8655-12-1-
2116.
1 Although the solution space consists of closed, planar curves, to
each n-tuple (θ1, . . . , θn) ∈ Sn of headings, where n is the number of
targets, corresponds a finite number of tours of the same minimum
length.

is to be approximated; second, an algorithm that checks
a large number of orientations for each target is bound
to be impractical even for small instances (i.e., number of
targets) of the DTSP.

Among the contributions of the present work is the system-
atic reduction of the DTSP to a problem of combinatorial
optimisation by means of a receding horizon principle that
is suitably adjusted to the Dubins dynamics and leads to
feasible tours (for the DTSP) that can be much shorter
than those obtained by other methods. For example, our
simulations demonstrate substantial improvement over al-
gorithms that rely on a solution to the ETSP to find a
feasible tour for the DTSP [Savla et al., 2008; Ma and
Castañón, 2006]. When the horizon equals the number of
targets, our algorithm—the k-step look-ahead algorithm
(k-step LAA)—returns a solution to the DTSP which is
globally optimal. Although the computation of globally
optimal solutions is impractical even for small instances of
the DTSP, it has the potential of shedding some light on
the structure of solutions to the DTSP which, until now,
has been tackled only with heuristics. Both the ETSP and
the DTSP are NP-hard problems [Papadimitriou, 1977;
Le Ny et al., 2012], however an intuitive understanding of
optimal solutions to the DTSP will lead to better motion
planning algorithms and seems to be currently lacking.

Ultimately, every algorithm for DTSP relies on a mech-
anism for assigning headings to the targets and, in this
sense, on a discretisation scheme. Once such an assignment
has been made, several existing algorithms—specifically,
algorithms for the Asymmetric Travelling Salesperson
Problem (ATSP)—can be directly applied to find a feasible
tour for the DTSP. For the purpose of illustration and
comparison, the k-step LAA was combined with a best-
first search method to generate the simulations presented
in this paper. Partly because of this specific choice of
implementation, the applicability of the overall algorithm
is limited to small instances of the DTSP and leaves open
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for further investigation the fusion of the k-step LAA with
different optimisation algorithms or approximation algo-
rithms for the ATSP. That said, there are application areas
where a small number of targets does not represent an
unrealistic scenario. Lastly, some computational aspects
of the process of discretising the DTSP are analysed in Le
Ny et al. [2012].

2. PROBLEM STATEMENT

Consider the control-affine system

γ′(t) = f(γ(t)) + u(t)g(γ(t)) (Σ)

on M = R2 × S1, where f, g are the real analytic vector
fields (i.e., elements of ΓωTM) with coordinate representa-
tions X(x, y, θ) = (cos θ, sin θ, 0) and Y (x, y, θ) = (0, 0, 1),
in the chart on TM induced by the chart (U, φ) = (R2 ×
S1\{(−1, 0)}, (x, y, v, w) 7→ (x, y, θ = atan(w/v))) on M . 2

The admissible controls are the locally integrable maps
u : R ⊃ I 3 t 7→ u(t) ∈ [−1/ρ, 1/ρ] ⊂ R, where ρ is
a fixed, positive, real number and, given a control u, γ
denotes the corresponding locally absolutely continuous
trajectory of Σ. The projection on R2 of a trajectory γ
will be called the path that corresponds to γ. An opti-
mal path is the projection of an optimal trajectory. A
trajectory γ : R ⊃ [a, b] → M of (Σ) is said to be closed
if γ(a) = γ(b) and the path that corresponds to a closed
trajectory will be called a tour. If I is an interval in R, we
denote by C0(I;M) the continuous curves in M defined
on I and by C∞

pw(I;M) the curves γ for which there exists
a finite set Sγ ⊂ I such that γ is C∞ on I \ Sγ .

The control system (Σ) can be viewed as the kinematic
model of a point that moves with constant, unit speed,
along a planar curve whose curvature is bounded by 1/ρ.
We shall abide by the common convention of referring
to (Σ) as the “Dubins vehicle” and to the following
minimum-time control problem as the Dubins Travelling
Salesperson Problem (DTSP).

DTSP: Let n be a positive integer. Given a point p ∈ M
and n submanifolds (targets) of the form Ni = {(xi, yi)}×
S1 ⊂M , where (xi, yi) ∈ R2 and i ∈ {1, . . . , n}, minimise
the time T > 0 over the set Γcl

Σ(p,N1, . . . , Nn) of closed
trajectories γ ∈ C0 ∩ C∞

pw([0, T ];M) of (Σ) that satisfy
γ(0) = γ(T ) = p and Imγ ∩ Ni 6= ∅, for every i ∈
{1, . . . , n}.
To avoid trivial complications with the statements and
the notation that follow, we always assume that the
targets are distinct from each other and that the initial
condition p does not lie in any target. Moreover, unless
mathematical consistency warrants otherwise, we refer to
a target {(x, y)}×S1 simply as a point (x, y) in the plane. A
tour corresponding to a trajectory γ ∈ Γcl

Σ(p,N1, . . . , Nn)
will be called an admissible tour. It should be noted
that an initial state for the Dubins vehicle, that is, a given
position and a given orientation, is assumed to be given.
It is, of course, possible to consider the initial heading
of the Dubins vehicle as an independent variable of the
optimisation problem as in Savla et al. [2008], for example.
This minor discrepancy leads to minor only modifica- tions

2 To cover the entire state space M , a second chart can be chosen
in an obvious manner.

for any given algorithm to be applicable to either one
formulation of the DTSP.

3. EXISTENCE OF SOLUTIONS AND LACK OF
UNIQUENESS

Before embarking on the pursuit of an algorithm for the
DTSP, it is necessary to consider the question of existence
of a solution. To this end, we now recall the classification,
by Dubins [1957], of the time-optimal trajectories of the
control system (Σ) between any two given states. Dubins’s
result underlies much of the analysis of the DTSP not only
in the present work, but also in a large part of the literature
on problems that use the Dubins vehicle as a model.

Let Cφ denote a circular arc of φ radians and of radius ρ in
the plane, and Sd a straight-line segment of length d in the
plane. A C1 concatenation of such arcs and straight-line
segments is denoted by juxtaposition of the corresponding
symbols. For example, CαSdCβ denotes a C1 curve that
consists of an arc of α radians, followed by a straight-
line segment of length d, followed by an arc of β radians.
Consider, now, the Dubins Problem (DP) which is the
following minimum-time problem.

DP: Given two points p, q ∈M , minimise the time T > 0
over the set of trajectories γ ∈ C0 ∩C∞

pw([0, T ];M) of (Σ)
such that γ(0) = p and γ(T ) = q.

The following theorem is proven in Dubins [1957]; Bois-
sonnat et al. [1991]; Sussmann and Tang [1991].

Theorem 1. (Dubins). A solution to the Dubins Problem
exists and an optimal path has to be either of the form
CαCβCδ or of the form CαSdCβ , where 0 ≤ α, δ < 2π,
π < β < 2π, and d ≥ 0.

A path that corresponds to a solution to the DP is called a
Dubins path. It follows directly from Theorem 1 that the
set Γcl

Σ(p,N1, . . . , Nn) in which we are seeking a solution
to the DTSP is nonempty: given any permutation σ ∈ Sk
and any n-tuple (p1, . . . , pn) ∈ Nσ(1) × · · · × Nσ(n), we
can connect with a minimum-time trajectory every pair of
points (pi, pi+1), i ∈ {0, . . . , n}, where, for convenience, we
set p0 = pn+1 = p.

A trajectory γ ∈ Γcl
Σ(p,N1, . . . , Nn) merely satisfies the

constraints of the DTSP and is not necessarily optimal.
However, continuity of the solution map 3 [Aubin, 1991,
Theorem 3.5.1] associated with the control system (Σ)
implies that an optimal solution exists [Doyen and Quin-
campoix, 1997, Proposition 2.3, Theorem 3.1]. In other

words, the minimum time T̃ for the DTSP is achieved
by some admissible trajectory γ̃ ∈ Γcl

Σ(p,N1, . . . , Nn). Let
us now turn to the question regarding the uniqueness of
solutions.

Since solutions to the DP are not unique, solutions to the
DTSP are not unique, a fortiori. For example, the two
tours shown in Figure 1 for an instance of the DTSP
with a single target are of the same minimum length (and,
therefore, correspond to the same minimum-time).

3 Recall that the solution map associated with a differential inclusion
ẋ(t) ∈ F (x(t)), for a.e. t ∈ [0, T ], x(t0) = x0, is, by definition, the
set-valued map that assigns to x0 the, possibly empty, set of solutions
to ẋ ∈ F (x) with initial condition x0.
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Fig. 1. Solutions to the DTSP are not unique, in general.
In this (trivial) instance of the DTSP, the initial
condition (green) is (0, 0, π/2), there is one target
(red) at (0, 1), and the minimum turning radius is
ρ = 1. Both tours—one shown with a solid line and
the other with a dashed line—are of minimum length
(which is approximately 7.5 < 2 + 2π).

The formulation of the DTSP as a minimum-time control
problem hints at possible algorithms for the computation
of feasible solutions. The description of such an algorithm
is the content of the next section.

4. AN ALGORITHM FOR THE DTSP

A direct discretisation of the DTSP, that is, partitioning
the unit circle S1 for each one of the targets and consid-
ering all possible tours for each combination of headings
leads to a computationally intractable problem even for
a DTSP with a few targets. One of the reasons why
this approach is computationally prohibitive is that the
minimum-time function for (Σ) is discontinuous and a fine
partition of S1 is necessary for optimal tours to be approx-
imated (numerical experiments with one or two targets
and increasingly finer partitions show that there are cases
where several hundreds of points in S1 are necessary for
the length of a tour to practically stop decreasing). This
difficulty motivates the main idea behind the k-step LAA
that consists, roughly, of (i) solving a finite number of
smaller problems with k < n targets, (ii) of keeping only
part of the solution for that smaller problem, and (iii) of
iterating this procedure. We call the problem of finding
a minimum-time trajectory of (Σ) through k targets the
“k-step look-ahead Dubins problem” (k-step LADP). A
precise formulation is as follows.

k-step LADP: Let k be a positive integer. Given a point
p ∈ M and k distinct submanifolds (targets) of the form
Ni = {(xi, yi)} × S1 ⊂ M , where (xi, yi) ∈ R2 and
i ∈ {1, . . . , k}, minimise the time T > 0 over the set
of trajectories γ ∈ C0 ∩ C∞

pw([0, T ];M) of (Σ) such that
γ(0) = p, γ(T ) ∈ Nk, and Imγ ∩ Ni 6= ∅, for every
i ∈ {1, . . . , k − 1}.
A few comments about the k-step LADP are in order. Let
γ̃ denote a solution to the k-step LADP and ti denote the

first time instant when γ̃(ti) ∈ Ni, where i = 1, . . . , k and
tk = T .

First, it should be noted that the restriction γ̃|[tk−1,tk], that
is, the part of the optimal trajectory between the last two
targets can be computed much more efficiently if, instead
of Theorem 1, we use the following result of Boissonnat
and Bui [1994].

Lemma 2. A path that corresponds to a solution to the
1-step LADP is either of the form CαCβ or of the form
CαSd, where 0 ≤ α < 2π, π < β < 2π, and d ≥ 0.

In our terminology, Lemma 2 classifies the solutions to
the 1-step LADP and waives the need to check all possible
headings at the final target when an optimal solution to
the k-step LADP is computed numerically.

Second, given an instance of the DTSP with n targets,
a solution to the k-step LADP with k = n + 1 and the
final condition γ(T ) = p substituted for the condition
γ(T ) ∈ Nk is a globally optimal solution to the DTSP.

Third, the philosophy—and the main advantage—behind
the k-step LADP is that, even if k is kept small (e.g., 1
or 2) relative to n (the number of targets in the DTSP),
satisfactory admissible tours can still be obtained by itera-
tively solving a, perhaps large, number of computationally
tractable problems.

The focal point of the present paper is the “k-step look-
ahead algorithm” (k-step LAA) that relies heavily on
the k-step LADP, hence the name. Instead of a formal
algorithmic description that would obscure the essential
ideas, the k-step LAA is now described by means of a
representative example that is simple enough to keep the
presentation clear.

Suppose we are seeking an admissible tour to an instance
of the DTSP with four targets and we intend to apply the
2-step LAA. In other words, we set n = 4 and k = 2.
The first step is to construct a rooted tree whose root R
represents the initial condition p ∈ M × S1 of the Dubins
vehicle and induces an orientation on the tree away from
the root. The children of the root represent, temporarily,
the four possible targets. This is shown in Figure 2. We say
“temporarily” because this is a step-by-step description
of the 2-step LAA and it is important to realise that,
eventually, every node of the tree will represent a state of
the Dubins vehicle: a target with a heading assigned to it.
Consequently, different nodes may correspond to different
headings at the same “physical” target.

R

A B C D

Fig. 2. The root R represents the initial condition of
the Dubins vehicle and the four children represent,
temporarily, the four targets.

Next, we assign headings to each one of the targets. To
this end, each child of R is replicated as many times as
the number of possible subsequent targets. For example,
after visiting target A, there are three options: to visit
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either target B or C or D. This process leads to the tree
in Figure 3 and it is a consequence of setting k = 2
because, now, each node XY , where X,Y ∈ {A,B,C,D}
and X 6= Y , can be used to represent the target X with
the heading assigned to it by solving the 2-step LADP with
initial condition p, first target X, and second target Y (In
the general case, i.e., when n and k are not necessarily
equal to 4 and 2, respectively, R would have n!/(n − k)!
children).

R

AB AC AD BA BC BD CA CB CD DA DB DC

Fig. 3. Each node is duplicated as many times as the
number of possible subsequent targets. The labels on
the nodes represent the order in which the targets are
visited.

In the notation of the previous sections, if γ̃ is a solution to
such a 2-step LADP, τ ∈]0, T̃ [ is the time when γ̃(τ) ∈ X,
and (x, y, θ) are local coordinates, then the child XY is
assigned the heading θ(τ). The length of the Dubins path
that corresponds to γ̃|[0,τ ] is assigned as weight to the
edge that connects p to XY . This assignment of headings
allows us to view the node XY as the state of the Dubins
vehicle that consists of the position of the target X and the
heading θ(τ). Because the heading at a target X depends
on the target Y that is visited next, the grandchildren of
the root p are not arbitrary. Rather, a child of a node
XY has to be of the form XY Z, where {X,Y, Z} ⊂
{A,B,C,D}. Figure 4 illustrates this idea which is a design
choice: we could allow the children of the node XY to
be of the form XWZ with W not necessarily equal to Y ,
however such a choice would vitiate the anticipative nature
of the algorithm. It would lead, however, to a larger tree
and more candidate admissible tours for the DTSP.

R

AB AC AD DA DB DC

ABC ABD ACB ACD ADB ADC DAB DAC DBA DBC DCA DCB

ABCD ABDC ACBD ACDB ADBC ADCB DABC DACB DBAC DBCA DCAB DCBA

ABCDR ABDCR ACBDR ACDBR ADBCR ADCBR DABCR DACBR DBACR DBCAR DCABR DCBAR

R

…

…

…

…

Fig. 4. The rooted tree constructed in the course of the
2-step LAA as applied to an instance of the DTSP
with four targets. The edges and the node shown with
dashed lines are included for clarity and they are not
formally part of the tree.

Having assigned a heading to every child XY of p, we
can proceed in the same manner and compute the weights
between the children and the grandchildren of p. The
weight of the edge between two nodes XY and XY Z
is computed by solving the 2-step LADP with initial

condition XY (recall that nodes represent states), first
target Y and second target Z. By repeating this procedure,
the tree in Figure 4 is constructed. To conform with the
definition of a rooted tree, the dashed part in Figure 4
should not be considered as being formally part of the
tree; it is included as a visual aid to the description of
the algorithm. Towards the lower end of the tree an off-
by-one issue has to be resolved, but this can be done in
a straightforward manner. Specifically, the heading of a
node (state) of the form XY ZWR has to be computed by
solving a 2-step LAA with the final condition γ(T ) = p
substituted for the condition γ(T ) ∈ Nk since the last
target is always the initial condition p. In the general case,
it is also necessary to reduce the look-ahead horizon k
towards the final stages of the construction of the tree,
simply because k will exceed the number of targets that
are left to be considered. Once the tree in Figure 4 has been
constructed, the final step is to find a shortest path (in the
tree) from the root to the (fictitious) terminal node. For
concreteness, we assume that Dijkstra’s algorithm is used
to this end. Dijkstra’s algorithm was actually incorporated
in the implementations of the 1-step and 2-step LAA that
were used for the simulations in Section 5.

A number of straightforward observations regarding the
k-step LAA are summarised in the following proposition.

Proposition 3. Given a DTSP with n targets, the k-step
LAA returns an admissible tour of length at most

ETSP(n) + (n+ 1)κπρ,

where κ is a constant and ETSP(n) denotes the length of
the solution to the corresponding ETSP.

Proof. The k-step LAA constructs a finite rooted tree
and assigns a non-negative weight to every edge and
a heading to every target. Therefore, the fact that the
k-step LAA terminates with an admissible DTSP tour
is a direct consequence of the correctness of Dijkstra’s
algorithm [Cormen et al., 2001, Thm 24.6].

An instance of the DTSP can also be viewed as an instance
of the ETSP and a solution σETSP to the latter (i.e., a
permutation of the targets) corresponds to a path, not
necessarily a shortest one, from R to the terminal node.
Because Dijkstra’s algorithm returns a shortest path from
R to the terminal node, the length Lkρ(n) of any admissible
DTSP tour through n targets found by the k-step LAA
algorithm is bounded above by the length Lkρ,ETSP(n) of
the DTSP tour that visits the targets following the order
σETSP. To quantify this bound, we observe that every
admissible DTSP tour returned by the k-step LAA is a
concatenation of Dubins paths. A Dubins path between
two targets is of length at most d + κπρ, where d is
the Euclidean distance between the targets and κ ∈
[2.657, 2.658] is a constant [Savla et al., 2008, Thm 3.4],
and, therefore,

Lkρ(n) ≤ Lkρ,ETSP(n) ≤ ETSP(n) + (n+ 1)κπρ, (1)

where ETSP(n) denotes the length of the Euclidean trav-
elling salesperson tour for the same set of targets.

Remark. The bound(1) is not sharp, unless ρ → 0,
and the reason is that its derivation does not take into
consideration essential features of the k-step LAA such as
the ordering of the targets independently of the solution
to the ETSP and the use of a receding horizon principle.
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The simulations in Section 5, especially Figure 5, provide
quantitative evidence that, on the average, the left-hand
side of (1) can be significantly smaller than the right-hand
side.

5. SIMULATIONS

The k-step LAA can also be used simply as a receding
horizon algorithm on a sequence of n targets (Ni)

n
i=1 that

have been ordered by some other method, e.g., by applying
an algorithm for the ETSP. This version of the k-step LAA
will be called “k-step ETSP-LAA”. Specifically, suppose
that the targets have been reindexed so that Ni is the i-th
target. Starting from the initial condition p, a solution γ̃ is
found to the k-step LADP that corresponds to the first k
targets. Then, only the part γ̃|[0,t1] that connects p to N1

is kept and the point γ̃(t1) is considered as a new initial
condition from which the k-step LADP for the targets N2

to Nk+1 can be solved. This procedure is repeated until
an admissible tour is constructed with the horizon k being
reduced as necessary when less than k targets are left.

In what follows, the following five algorithms are compared
by means of Monte Carlo simulations and the results are
shown in Figures 5 to 7.

(1) 1-step ETSP-LAA: The targets are ordered by
applying an algorithm for the ETSP and the horizon
is set to k = 1.

(2) 2-step ETSP-LAA: The targets are ordered by
applying an algorithm for the ETSP and the horizon
is set to k = 2.

(3) 1-step LAA: The k-step LAA of Section 4 for k = 1.
(4) 2-step LAA: The k-step LAA of Section 4 for k = 2.
(5) AA: (alternating algorithm) This is the algorithm

described in Savla et al. [2008].

Remark. In Ma and Castañón [2006], algorithms (1) and
(2), above, are called “two-point algorithm” and “look-
ahead algorithm”, respectively.

For each number of targets shown in the x-axes of Fig-
ures 5, 6, and 7, 100 instances of the DTSP were randomly
generated so that the initial condition and the targets were
contained in [−2.5, 2.5]2 × [0, 2π) ⊂ R3 and [−2.5, 2.5]2 ⊂
R2, respectively, with uniform distribution. Next, each
algorithm was applied to all randomly generated DTSPs
and the length of each tour was normalised by the length
of the solution to the ETSP for the same set of targets.
The y-axes correspond to the average of these normalised
lengths (hence, the length of the solution to the ETSP is
always equal to 1). The three figures correspond to three
different minimum-turning radii. As expected, when the
minimum-turning radius is small (i.e., ρ = 0.1) relative to
the distance between the targets, the difference between
the output of the five different algorithms is negligible. In
all cases, however, the 2-step LAA yields the best results.
Lastly, to get a sense of what the actual tours returned
by the algorithms look like, an example with six targets is
shown in Figure 8.

6. EXTENSIONS

Several improvements are conceivable that would allow
the solution of larger instances of the DTSP using the
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Fig. 5. Comparison of five algorithms via Monte Carlo
simulations. For each number of targets shown in
the x-axis, the five algorithms were applied to a
common set of 100 randomly generated instances of
the DTSP. The initial condition of the Dubins vehicle
and the positions of the targets were generated with
uniform distribution in [−2.5, 2.5]2 × [0, 2π) ⊂ R3

and [−2.5, 2.5]2 ⊂ R2, respectively, and the minimum
turning radius ρ was set equal to 1. The y-axis
corresponds to the average normalised length of the
DTSP tours.
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Fig. 6. Same as Figure 5, but with ρ = 10.

ideas presented in this paper. For example, the k-step LAA
can be combined with existing solvers for the Asymmetric
Travelling Salesperson Problem (ATSP). The idea is to
use the k-step LAA to generate an adjacency matrix
(or list) that is subsequently provided as input to an
ATSP solver. A time-consuming part of the k-step LAA
is the solution of the k-step LADPs that are necessary in
order to assign headings to the targets or, equivalently,
in order to assign weights to the edges of the tree of the
previous section. A detailed analysis of the information
provided by the Maximum Principle can further reduce the
number of candidate solutions to the k-step LADP and,
hence, accelerate the algorithm. Work in this direction is
currently in progress.
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Fig. 8. One instance of the DTSP solved by five different
algorithms. The setup is the same as in Figure 5.
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