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Abstract: For a given network topology of linking dynamical systems, determining the least or the
most important link(s) or edge(s) in the network in terms of a sensitivity or robustness measure is a
complex combinatorial optimization problem. The purpose of solving this problem is to modify the
given network topology, in the hope of using a less number of costly communication links while keeping
or improving the network’s performance. In this paper, this so-called network topology optimization
(NTO) problem is approached via finding the least or the most sensitive edge(s) by analytically obtaining
the sensitivity of each edge or numerically solving LMIs (linear matrix inequalities). Vehicle formation
control simulations are given to support the merit of the proposed approach.
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1. PROBLEM STATEMENT AND INTRODUCTION

Consider a network (graph) G of n dynamical systems (nodes)
connected via communication links (edges), 1 and assume that
the network dynamics is described by a typical state model:

ẋ = Ax+Bu; y = Cx, (1.1)

where x and u are the vector with entries of xi and ui (i =
1, 2, · · · , n) representing the state and control input of individ-
ual node, respectively; and A = [aij ], B = [bij ] and C = [cij ]
are constant matrices with appropriate dimension and have a
structure associated with the network topology which defines
who-talks-to-whom between the nodes. Suppose a signal v is
injected through one of the nodes. According to the signal’s
characteristics, v can be a reference input r that must be tracked
by all the nodes on the graph; or the signal can be an unwanted
disturbance w that must be rejected by the nodes. 2 . For the
sake of reducing the inter-communication cost, one is now
interested in modifying the graph, so that a smaller number of
edges is used to track or reject the signal. In this regard, when
v = r, it is desired to remove an edge(s) so that the network
dynamics (transfer function from r to y; Gry) is affected as little
as possible. In contrast, when v = w, it is desired to remove an
edge(s) so that the network dynamics keeps or gains robustness
as much as possible, i.e. the H∞-norm of Gwy , ‖Gwy‖∞, is
minimized.

The aforementioned so-called network topology optimization
(NTO) problem is basically a combinatorial optimization prob-
lem. For a certain measure which correctly reflects the network
dynamics, the NTO problem boils down to determining which
edge(s) removal affects the measure the most/least, which cer-

1 Network and graph, dynamical system and node, and communication link

and edge shall be used interchangeably in this paper.
2 See (2.2) for an example of injecting r into the system, and (2.8) for injecting

w into the system

tainly has a combinatorial nature. The most relevant works to
the present NTO problem are found in Kim (2010); Zelazo
and Mesbahi (2011). In Kim (2010), a bisection algorithm
is proposed to determine the edge(s) affecting the network’s
algebraic connectivity λ2(G) the most/least. This bisection al-
gorithm quickly computes λ2(G) after each edge removal by
solving the so-called secular equation. The measure of λ2(G),
however, represents how well static nodes are connected, rather
than how sensitive or robust dynamic nodes are with respect
to disturbances. Thus, this bisection algorithm is not directly
applicable to NTO of present interest. In Zelazo and Mesbahi
(2011), a network topology design (NTD) problem for relative
sensing networks is discussed. Note that NTD is concerned
with designing a complete network in order to meet a given
performance requirement, whereas NTO of present interest is
concerned with selecting (and then removing) an edge(s) while
minimizing the original network’s performance degradation.
NTD may be formulated as a computationally challenging
mixed-integer semi-definite program, and requires a relaxation
technique (e.g. ignoring the integer constraint on decision vari-
ables as tried in Zelazo and Mesbahi (2011)) to be solved for
large network cases.

Some other relevant works are also available in the recent liter-
ature. In Kim et al (2010); Zelazo and Allgöwer (2012), the
network topology is optimized in terms of formation rigidity.
In Klaus (2011), a probabilistic search technique is proposed
to find a network topology which minimizes the expected time
to detect a target. In Okuyama and Tsumura (2011), a given
network topology is modified to minimize the network’s diam-
eter by adding a path. In the course of minimization, a so-called
tree network system is used to approximate the network dynam-
ics. In Shafi et al (2012), several conditions that characterize
Laplacian spectral bounds are studied and used for a network
topology design. As already mentioned, all these relevant works
(except Zelazo and Mesbahi (2011)) try to design a network
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topology using graph-theoretical measures which do not fully
accommodate the network dynamics. In this work, however, the
modification of a given network topology (not a complex design
of the entire network like Zelazo and Mesbahi (2011)) is tried
to explicitly incorporate the network dynamics into the edge
removal which leads to keeping or improving the network’s
dynamical performance.

The rest of paper is organized as follows. In §2, two kinds of
NTO are presented: one is for v = r; and the other is for
v = w. For the first kind, an edge-removal scheme is developed
in such a way that the network dynamics (transfer function from
r to y) Gry changes as little as possible, or the peak sensitivity
norm ‖S‖∞ is minimized. For the second kind, another edge-
removal scheme is developed in such a way that the network
dynamics keeps or gains robustness as much as possible, or the
H∞-norm of the network dynamics (transfer function from w
to y) ‖Gwy‖∞ is minimized. Concluding remarks follow in §3.

2. NETWORK TOPOLOGY OPTIMIZATION (NTO)

2.1 For reference tracking: v = r

One of the main control objectives for networked systems is to
let all the dynamical systems in the network track a reference
signal. For example, a group of flying vehicles may need to be
controlled to chase a single target together or to maintain a fixed
pattern of formation. Suppose a reference signal r is injected
through some of the nodes, and the following form of control
input in (1.1)

u = K1x+K2r (2.2)

is applied to accomplish a control objective, where K1 and
K2 are constant matrices with appropriate dimension. After
combining (1.1) and (2.2), one can obtain the transfer function
Gry from r to y: Gry = C(sI − (A + BK1))

−1BK2, where
A+BK1 is assumed to be Hurwitz.

In order to see the effect of edge removal (no communication
between two dynamical systems) on the r-to-y relation, the
sensitivity function S = [Sij ] is defined as Sij = ∂Gry/∂eij
for some edge weight eij . Suppose each entry, say aij , of the
state and control matrices, is a differentiable function of eij .
Then, one can easily arrive at the following result after some
straightforward calculus.

Theorem 1. For given i, j

Sij =
∂C

∂eij
(sI − (A+BK1))

−1BK2

+C(sI − (A+BK1))
−1

(
∂B

∂eij
K2 +B

∂K2

∂eij

)

+C(sI − (A+BK1))
−1

(
∂A

∂eij
+

∂B

∂eij
K1 +B

∂K1

∂eij

)

×(sI − (A+BK1))
−1BK2, (2.3)

where ∂M/∂eij (M = [mij ] = A,B,C,K1 or K2) is an all-
zero matrix except ∂mij/∂eij at (i, j) position. If aij = eij
and all the other matrices are insensitive to eij , (2.3) reduces to

Sij = C(sI − (A+BK1))
−1Eij ×

(sI − (A+BK1))
−1BK2, (2.4)

where Eij is an all-zero matrix except an ‘1’ at (i, j) position.

5

1 2

3 4

Fig. 1. Example of network topology

To illustrate the use of Theorem 1, consider a consensus net-
work whose topology is given in Fig. 1. Assume that

A = −LG =








−4 1 1 1 1
1 −3 0 1 1
1 0 −1 0 0
1 1 0 −2 0
1 1 0 0 −2








(see Godsil and Royle (2001) for how to construct the Lapla-
cian matrix LG for a graph G), B = [1, 0, 0, 0, 0]T , C =
[0, 0, 0, 0, 1], K1 = −C and K2 = 1, r = 1, and the initial
value of x = [1, 2, 3, 4, 5]T . Note that the given data yield that
all the nodes have the reference value of 1 at steady state. Then,
(2.4) becomes

Sij = −C(sI − (A−BC))−1

︸ ︷︷ ︸

c̄

Fij (sI − (A−BC))−1B
︸ ︷︷ ︸

b̄

= −(c̄i − c̄j)(b̄i − b̄j), (2.5)

where Fij is an all-zero matrix except an ‘1’ at (i, i) and (j, j)
positions, and a ‘-1’ at (i, j) and (j, i) positions (due to the
structure of LG), and b̄ and c̄ are the vectors with entries of
b̄i and c̄i, respectively. Noting that A − BC is Hurwitz for
all possible connected graphs obtained after removing an edge,
‖Sij‖∞ based on (2.5) can be calculated and shown in Fig. 2-
(a). As seen in the figure, e24 yields the smallest ‖Sij‖∞ among

feasible edges. 3 Fig. 2-(b) demonstrates that the removal of
e24 does not affect the reference tracking performance much,
whereas the removal of e15 yielding a large value of ‖S15‖∞
does affect the transient behaviour much.

More results on the proposed scheme, e.g. performance test on
random graphs, shall be included in a journal version of this
paper.

2.2 For disturbance rejection: v = w

When an unwanted signal w comes into the network, edge
removal can be done in such a way that ‖Gwy‖∞ is minimized
to reject w (again, this edge removal must not lead to an
unstable or disconnected network). For this purpose, instead
of checking the value of ‖Gwy‖∞ after each edge removal,
the following theorem on LMI (linear matrix inequality) can
be utilized to devise a computationally tractable edge-removal
rule.

Theorem 2. Let γ > 0, and Gwy is a stable transfer function
from w to y, where ẋ = Ax + Bw and y = Cx. Then,
‖Gwy‖∞ < γ if and only if





XA+ATX XB CT

BTX −γI 0

C 0 −γI



 < 0 (2.6)

with a positive definite matrix X > 0, an identity matrix I , and
a zero matrix 0 with appropriate dimension.

3 For instance, e34 is not feasible, as it does not exist in the graph.
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Fig. 2. ‖S‖∞ and reference tracking performance after edge removal

Proof. See the proof of Corollary 12.3 in Zhou and Doyle
(1998).

Based on Theorem 2, one obvious solution strategy is to find an
edge(s) such that the edge removal yields the smallest γ along
with a feasible X . As choosing such an edge can be a time-
consuming combinatorial problem, just a small change in the
edge weight is considered instead as in §2.1.

Considering the effect of small changes δeij ’s in eij’s on A,
B and C, e.g. ∆A =

∑

i,j(∂A/∂eij)δeij , the best edge(s)

may be found by solving the following optimization problem P
which employs a modified version of (2.6) for δeij’s and ∆X
with sufficiently small |δeij | and ‖∆X‖: minimize β subject to
X +∆X > 0 and

M = [M11,M12,M13;M21,M22,M23;M31,M32,M33] > 0,

where

M11 = (X +∆X)A+X∆A+ (A+∆A)TX +AT∆X ;

M12 = (X +∆X)B +X∆B; M13 = (C +∆C)T ;

M21 = BT (X +∆X) + ∆BTX ; M22 = −βI; M23 = 0;

M31 = C +∆C; M32 = 0; M33 = −βI. (2.7)

After performing this optimization to obtain δeij’s, ∆X and β,
the best edge can be found by identifying the largest entry of
δeij’s.

To illustrate the use of P , consider the 2-dimensional vehicle
formation control problem in Lafferrire et al (2005). Each
vehicle is assumed to have the following dynamics: ẋi =
Avehxi+Bvehui, i = 1, 2, . . . , n, xi ∈ R

4, where the entries
of xi represent the 2-dimensional position and the velocity of
vehicle i, ui represents the control inputs, and Aveh = I2 ⊗
[0, 1; a21, a22], Bveh = I2 ⊗ [0; 1]. Here, I2 is a 2-by-2 identity
matrix, and ⊗ denotes the Kronecker product. Then, using a
decentralized static feedback control law u = FL(x − h),

where u and x are vectors of ui’s and xi’s, the n-vehicle
dynamics can be represented as follows: ẋ = Ax+BFL(x−h)
or ẋ = (A + BFL)x − BFLh. Here, A = In ⊗ Aveh,
B = In ⊗ Bveh, L = LG ⊗ I4 and h is a constant vector
associated with a desired formation (see Lafferrire et al (2005)
for details). In Lafferrire et al (2005), it is shown that a21 = 0
and F = In ⊗ Fveh with Fveh = In ⊗ [−f1, −f2] with
sufficiently large positive constants f1 and f2, can guarantee
achieving any formation h for any connected graph.

The n-vehicle dynamics is now perturbed by a disturbance
w ∈ R with a constant Bw, and the output y is defined as
the vector of each vehicle’s relative position with respect to the
centre of n vehicles’ positions, i.e.

ẋ = (A+BFL)x−BFLh+Bww; y = Cx (2.8)

with C = −LK ⊗ [1/n, 0, 0, 0; 0, 0, 1/n, 0], where LK denotes
the Laplacian matrix corresponding to the complete graph K
on n nodes. Note that L is the only matrix dependent on
edge weights eij ’s, and a small change in this matrix’s entry
is denoted by δlij . For a properly chosen F , A + BFL has
stable eigenvalues with negative real parts and two unstable
eigenvalues with non-negative real parts. In fact, these unstable
eigenvalues are those of Aveh and do not contribute to achiev-
ing a desired formation. 4 Also, they may yield an unstable
transfer function Gwy , and so must be removed in order to
use Theorem 2. For this purpose, a non-square P matrix can
be introduced (see Kim and Mesbahi (2006) for how to con-
struct such a P matrix) such that x = Pz, PTP = I , and
eigenvalues of PT (A + BFL)P are the same as the stable
eigenvalues of A + BFL. Then, (2.8) becomes ż = PT (A +
BFL)Pz − PTBFLh+ PTBww = Āz − PTBFLh+ B̄w
and y = CPz = C̄z.

4 Due to these unstable eigenvalues, vehicles do not normally reach a steady

state but move together in a certain direction after a desired formation is

achieved. The speed of convergence to a desired formation is determined by

the stable eigenvalue with the smallest real part in magnitude.
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(marked as ’x’) converge to a desired pentagon formation (marked as ’o’) via an intermediate formation (marked as ’square’);
(b) deviation from desired formation: removal of e25 yields better transient performance than removal of e12 does (in terms
of

∫∞

0
‖y − Ch‖2 dt).

Since Ā is now Hurwitz and the only matrix dependent on
eij’s, (2.7) can be used with Ā, ∆A, B̄ and C̄ in place of A,
∆A, B and C, respectively, and ∆B = ∆C = 0. Note that
∆A = PTBF∆LP = PTBF (∆LG ⊗ I4)P . For Aveh =
[0, 1; 0, 0.1], Bw = [1, 0, · · · , 0]T , F = [−1/2,−1/2] and
LG corresponding to the graph in Fig. 1, the magnitudes of
entries of ∆LG , |δlij |, are shown in Fig. 3-(a) after solving P
(along with move limits on ∆LG and ∆X) via SeDuMi (Sturm
(1999)) and YALMIP (Löfberg (2004)). The figure indicates
that e25, contributes to the minimization of β the most. In
order to check if the selected edge indeed yields the best
performance, ‖Gwy‖∞ is calculated by minimizing γ subject to

(2.6) after each edge removal and the result is shown in Fig. 3-
(b). The figure shows that e13 yields the smallest ‖Gwy‖∞.
However, this edge is not a feasible one as it renders the graph
disconnected. Clearly, the second best edge or the best feasible
edge matches to the one found by solving P . Fig. 4 shows how
different edge removals affect the performance when a random
signal (w(t) ∈ [−0.1, 0.1] for each t) is injected into the first
vehicle’s position. The figure demonstrates that the removal of
the best e25 lets the vehicles converge to a desired pentagon
formation (marked as ‘o’ in Fig. 4-(a)) from an initial line
formation (marked as ‘x’ in Fig. 4-(a)), with a less deviation
from the desired formation than when e12 is removed (see Fig.
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4-(b)). Here, the deviation is defined as d(t) = ‖y(t)−Ch‖2, 5

where h = hp ⊗ hv = [0, 0, 1, 0, 0, 1, 1, 1, 1/2, 2]T ⊗ [1, 0]T

defines the desired formation. 6 In order to see the quantitative
effect of w on d, the comparison of d12 (d(t) with no w and
removal of e12), dw

12
(d(t) with w and removal of e12), d25 and

dw25 is performed. As expected, ‖d25 − dw25‖2 = 0.00984 ≤
‖d12 − dw12‖2 = 0.0108 implies that the removal of e25
attenuates the disturbance effect better than the removal of e12
does.

3. CONCLUDING REMARKS

In this paper, a complex combinatorial NTO (network topology
optimization) problem was posed and solved. Unlike similar
problems in the literature, this NTO problem is considered
using sensitivity and robustness measures to accommodate the
network dynamics. Two kinds of the NTO problem were iden-
tified: one is for keeping the network dynamics the same as
much as possible after removing a communication link(s); and
the other is for gaining the network’s robustness as much as
possible after removing a communication link(s). The first kind
was approached by analytically obtaining the sensitivity of the
closed-loop transfer function Gry with respect to each edge,
then the edge(s) which yields the least sensitivity in terms of
peak norm was removed. The second kind was approached by
numerically solving LMIs which help to identify the edge(s)
yielding the largest decrease in the H∞-norm of Gwy . This
proposed scheme was tested on random graphs (not shown in
this paper), and the obtained solutions were close (within 1% in
terms of ‖Gwy‖∞) to the optimal ones with high probability.

A possible extension of the present work is modifying the
proposed scheme to account for the multiple-edge removal
case. This extension shall also be included in a journal version
of this paper.
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