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Abstract: In this paper we consider the problem of output control of nonlinear systems in the presence of 

structural disturbances caused by so called unmodelled dynamics. This paper develops results published 

in Bobtsov (2002). In Bobtsov (2002) conditions of efficiency of consecutive compensator were found 

for the case of output stabilization of linear parametrically uncertain plant under conditions of 

unmodelled asymptotically stable dynamics. We added disturbances as smooth nonlinear function 

meeting the conditions of sector restriction to the model and synthesized regulator for this case. 
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1. INTRODUCTION 

 

In this paper we consider the problem of output control of 

nonlinear systems in the presence of structural disturbances 

caused by so called parasite dynamics. A system with 

unmodelled dynamics can be written in the following form  
 

),(),( txgtxfx  ,   (1) 

zctxduГzz
T

  ),,( ,  (2) 

 

where 
n

Rx   is state vector of the model (1), n
Rtxf ),(  

and n
Rtxg ),(  are vector functions, ),( txu  is a scalar 

function, equation (2) describes unmodelled dynamics,   is 

a small constant parameter, 
m

Rz   is state vector of the 

model (2).  , d  and c  are constant matrix and vectors of 

corresponding dimensions. When   turns into zero the 

structure (dimension) of the system (1), (2) changes, this kind 

of perturbations is called singular, and the systems are called 

singularly perturbed (Fradkov et. al. (1999)) or slow-fast 

systems (Berglung and Gentz, (2006)). 

Typical singularly perturbed systems include direct-drive 

robots, flexible joint robots, flexible space structures, DC 

motors, flexible mechanical systems, tunnel diode circuits, 

airplane model, inverted pendulum and nonlinear time-

invariant RLC networks see for instance Kokotovich et al 

(1999), Naidu (2002). 

Nowadays there are many papers dedicated to problems of 

analysis and control of the systems in conditions of structural 

(singular) perturbations, see for instance Kokotovich et al, 

(1999), Naidu (2002), Sari and Lobri (2006), Gelig et. al. 

(1978), Wang and Sontag (2006a,b), (2007), (2008), Huang 

et. al. (2009), Mastellone et. al. (2007), Nguyen and Gajic 

(2010), (Fradkov and Andrievsky, 2004a,b), Fradkov (1987), 

Druzhinina et al. (1996), Gelig et. al. (1978). In the papers 

Wang and Sontag (2006a), (2006b), (2007), (2008) authors 

consider problems of stability of singularly perturbed 

monotonous systems. In the papers [Huang et. al., 2009, 

Mastellone et. al, 2007, Nguyen and Gajic, 2010) problems 

of control of linear singular perturbed systems are considered. 

In the papers (Fradkov and Andrievsky, 2004a,b) the task of 

control of nonlinear singularly perturbed systems is 

considered. These systems can be written in the following 

form 
 

),,,( 2111 tuxxfx  ,   (3) 

),,,( 2122 tuxxfx  ,   (4) 

 

where u  is the control action,  1 1

n
Rx is the vector of slow 

variables,  2 2

n
Rx  is the vector of fast variables, and 1f , 

2f  are the vector functions of appropriate dimensions. 

Despite active development of control of nonlinear singularly 

perturbed systems, problems of output control of nonlinear 

uncertain plants under conditions of influence of unmodelled 

dynamics are still open.  
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This paper is dedicated to analysis of efficiency of output 

control law (method of consecutive compensator) considered 

in Bobtsov and Nikolaev, (2005), under conditions of 

unmodelled asymptotically stable dynamics. We will 

consider a nonlinear plant  
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where n
R1  is state vector of the system (5); r

R2  is 

state vector of the system (6); Ry   is measured output; 

function Rv   is not measured; Ru   is control; A , F , 

b , c , d , q  and l  are matrixes and vectors of proper 

dimensions; we suppose, as in (Fradkov et. al., 1999)  that 

qlF   ; equation (6) defines asymptotically stable 

dynamics (i. e. matrix F  is Hurwitz) unmodelled for design 

of control law; number   determines response speed of the 

system; )( y  is a smooth nonlinear function meeting the 

conditions of sector restriction of the view yCy )( , 

where number 0C  is unknown. 

The purpose of this work is to find the conditions which 

ensure stability of a system with controller (consecutive 

compensator), published in Bobtsov and Nikolaev (2005). 
 

 

2. MAIN RESULT 
 

Let us rewrite system (5), (6) according to Bobtsov, (2002) in 

the input-output form 
 

)()()()()()( ypgtvpbtypa  ,  (7) 

)()()()( tupctvpd  ,   (8) 

 

where dtdp /  is differentiation operator; output variable 

)(tyy   is measured, but its derivatives are not measured; 

01...)( bsbsbsb
m

m  , )0()( dpc  , 

01

1

1 ...)( asasassa
n

n

n



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1

1 ...)( dsdsdsdsd
r

r

r

r 


 ,

01

1

1 ...)( gsgsgsgsg
e

e

e

e 


  are polynomials with 

unknown parameters; s  is complex variable; m 1 n ; 

transfer function 
)(

)(

sa

sb
 has relative degree of mn  ; 

polynomial )( sb  is Hurwitz and coefficient 0mb . 

Let us choose the following control law (Bobtsov and 

Nikolaev, 2005) 
 

1)()(  pku  ,   (9) 
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where number 0k  and polynomial )( p  of degree 1  

are selected for the transfer function 

)()()(

)()(
)(

sbsksa

sbs
sH






  to be strictly positively real, 

positive parameter   is used for compensation of 

nonlinearity )( y , number k , and coefficients ik  are 

counted for the system (10) to be asymptotically stable for 

zero input )(ty . 

As we proved in Bobtsov and Nikolaev, (2005), technically 

realizable algorithm (9), (10) ensures exponential stability of 

the system (5), (6) for the case 0  (i. e. in the absence of 

unmodelled dynamics). But for 0  analytical conditions 

of the control law (9), (10) applicability were not considered 

in the paper Bobtsov and Nikolaev, (2005). So we have to 

find restrictions on numbers   and   for which the system 

(5)–(10) is exponentially stable. Let us make some 

transformations. Substituting (9) into (8), we obtain 
 

 11
)(

)(
)()())()((

)(

)(
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     ))(()(ˆ)()( 1  ypkypk ,  (11) 

 

where 1
)(

)(
ˆ 

pd

pc
y   and yy ˆ

1  . 

Then for (7) we have 
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
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)( 1 y

pbpkpa

pg

pbpkpa

pbp
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





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y
pbpkpa

pbp

)()()(

)()(







 .  (12) 

 

Now let us rewrite SISO model (12) in the form of MIMO 

model 
 

byygbkAxx   )()( 1
 ,  (13) 

xcy
T

 ,   (14) 

 

where 
n

Rx   is state of (13); A , b  and c  are matrixes of 

transformation from SISO model into MIMO model, and by 

virtue of Yakubovitch-Kalman lemma we can find 

symmetrical positively definite matrix P  satisfying the two 

following matrix equations 
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1QPAPA
T

 ,  cPb  ,   (15) 

 

where T
QQ 11   is a positively definite matrix. 

Let us rewrite (10) and (11) in vector-matrix form 
 

)( 1 ydk  , 
T

h1 ,  (16) 

1 qFzz  , zly
T

ˆ ,   (17) 

 

where 1



 R  and r

Rz   are state vectors of the models 

(16) and (17); matrix 
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Hurwitz in virtue of calculation of parameters ik  of the 

model (10), 
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h ; F , q  and l  are matrixes of 

transformation from the SISO model to the MIMO one, and 

following Fradkov et. al. (1999) we suppose that qFl  . 

Let us consider deviation vectors 
 

zly 1 ,   (18) 

  hy2 .   (19) 

 

After differentiation of equations (18), (19), we obtain 
 




1

11

1  qFzyl   




)()( 2

1

1

1
 yqlyFyl   

2

1

1

1
 qFyl


  ,  (20) 

1

T

1
ˆ  lyy  ,  (21) 

 ))(( 122 ydkhyyh    

 yhdkyh )( 12   

    2 yh  ,   (22) 

2

T

12  hy  ,  (23) 

 

where hdk 1  and qFl  . 

So we have a system of differential equations 
 

   byygbkAxx   )()( 1
 , xcy

T
 , (24) 

   2

1

1

1

1  qFyl


  , 1

T

1  l ,             (25) 

22   yh  , 2

T

2  h .  (26) 

 

Positively definite matrixes 
T

RR   and 
T

NN   satisfy 

Lyapunov equations 
 

               2

T
QRFRF  , (27) 

3QNN
T

 ,  (28) 

 

where T
QQ 22   and T

QQ 33   are positively definite 

matrixes. 

Conditions of efficiency of the control law (9), (10) for 

stabilization of the system (5), (6), (24)–(26) are given by the 

following theorem. 

Theorem. Let the control law (9), (10) is used for stabilization 

of the system (1), (2). Let number k  ensures that the transfer 

function 
)()()(

)()(
)(

sbsksa

sbs
sH






  is strictly positively real. 

Let positive numbers  ,   and 10    meet the 

conditions 
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T
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1

T21
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21
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2TT

1 )( bRlc 0 ,       (29) 

xQx 1

T
 PxPbbx

TT
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 2T122T
)(4)(2 PgxСAxc   

0
T

 Qxx , 
  )( ,  (30) 

 

for all 0x  and 01  . 

Then for all  , meeting the inequality 
 

 23
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
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and for 02   the system (5)–(10) is exponentially stable. 

Proof of the theorem can be found in Appendix. 

Remark. Let us notice that conditions of the theorem are not 

conflicting. If we pass from inequalities for quadratic forms 

(29), (30) and (31) on to inequalities for eigenvalues of the 

corresponding matrixes and making some simple 

transformations, from (29) and (30) we obtain 
 

 
 12T12T

2min

1
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1



 lRlkkll

Q
 

2T2T212T2T
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2

4}{




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





, (33) 

 

and for (31) we have  
 

 


))()(1)((
}{

1 2T22T12

3min

bckhNh
Q




  

])(4)(4[)(
2T122T2T

gcCbcNhh


  . (34) 

 

Indeed, it is easy to see that if we multiply (32) and (33) by 

  and trend   to zero then the inequalities (32) and (33) are 

correct, and conditions of the theorem are not contradictory. 
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At the same time, analysis of condition (34) allows us to 

conclude that number   should be increased to ensure 

exponential stability of the system (5), (6). 

 

 

3. EXAMPLE 

 

The designed algorithms can be used for such singularly 

perturbed plants as pendulum systems, single-link robots, 

driven with DC motor. In these cases transients of the current 

circuit of the DC motor are considered as parasite 

(unmodelled) dynamics (Mastellone et. al. (2007), Fradkov 

and Andrievsky (2004), Li and Lin (2007), Tsai et. al. (2006), 

Cao and Hovakimyan (2007), Yang and Zhang (2009), Yu et. 

al. (2009)).  

Let us consider stabilization of unbalanced rotor to show 

efficiency of compensator under conditions of unmodelled 

dynamics (Andrievsky et al., 2001). We have the following 

equation of unbalanced rotor dynamics taking into account 

optimized current circuit of an electric drive 
 

IkmgkJ M  sin ,  (35) 

ukIIT eT  .   (36) 

 

where ,J  are inertia moment and eccentricity of rotor; m  

is debalance mass; k  is friction coefficient of bearing (as in 

(Andrievsky et al., 2001) we suppose that 0k );   is angle 

of debalance deflection from vertical axes; I  is current of 

rotor circuit; eM kk ,  are construction parameters of the drive; 

TT  is time constant of optimized current circuit; u  is control 

(voltage). 

Let us write system (31), (32) in the form of (1), (2) 
 

1211   ,   (37) 

vaa 23112112 sin   ,                 (38) 

11y ,    (39) 

    quF  2121  
 ,                  (40) 

11v ,    (41) 

 

where Jmga /21  , Jka M /23  , TT , ekq   and 

1F . 

As in (Andrievsky et al., 2001) we assume 3321 a  and 

17,023 a  and simulate system (37)–(38) for 2)0(11  , 

0)0(12  . Results of computer simulation for 0u  are 

presented in figure 1. 

Let us now choose control law in the view (9), (10) 
 

1)()(  pku  ,  (42) 

              )( 111   yk ,    (43) 

 

where by virtue of 2  degree of polynomial )( p  is 

equal to one ( 1)(  pp ). 

First let us simulate the system (37)–(43) for 0 , 1q , 

and 5k , 10 , 1000 (figure 2) (i. e. we do not take 

into account parasite dynamics). Figure 3 shows simulation 

results for 1,0  and 1q (here we take into account 

parasite dynamics).  

 

4. CONCLUSIONS 

 

In this paper we analyzed efficiency of control law (9), (10) 

for stabilization of the system (5), (6). Control method 

(consecutive compensator) published in (Bobtsov, 2002) was 

shown to be used successfully for stabilization of nonlinear 

parametrically and functionally uncertain plant under 

correctness of conditions (32), (33). Realization of the 

condition (32) was substantiated in the remark. It is worth to 

note that conditions (29), (30) or (32), (33) are difficult to 

check in practice, at least, under assumption of full 

parametrical uncertainty of the plant. But for some known 

region of parameter change these evaluations esquire 

practical sense. We also want to note that this result, like 

many others in science, may become auxiliary. For instance, 

this analysis can be used for design of control laws for 

parameter uncertain systems with inexactly given relative 

degree. Practical example of unbalanced rotor stabilization 

was considered to illustrate efficiency of consecutive 

compensator method under conditions of unmodelled 

dynamics. 
 

 
 

Fig. 1. Simulation results for 0u  

 

Simulation results (figure 3) show that account of 

unmodelled dynamics reduce quality of transients (response 

speed and oscillation increase), but the closed-loop system 

remains stable.  
 

 
Fig. 2. Simulation results for 0  
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Fig. 3. Simulation results for 1,0  
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Appendix A 
 

Proof of the theorem. Consider Lyapunov function of the 

following view 
 

      2
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Differentiation of (A.1) with respect to equations (24) – (26) 

allows us to write 
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where item ))()(( 1

TT
byygblkAxcy    was 

used instead of y . 

Let us substitute equations (15), (27) and (28) into (A.2) and 

take into account the following expressions 
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where yCy )( . 

Then for derivative of Lyapunov function (A.1) we obtain 
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where 0  is a number. 
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Let us choose   such a way that inequality  
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holds. Then for inequality (A.3) we obtain 
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Let the number 0  be such that  

 

12

T

1

1
 Q


 

 2

1

T21
)(  lk

2T

1 )( Rq 
 2T

1

1
)( Rl  


2

1

T2TT

1 ))(())((  lkbRlck
2

1

T
)(  l + 


 2TT

1

21
)(4 gRlcC 

2TT

1 )( bRlc  

          0
1

T

1   Q .            (A.7) 

 

Then inequality (A.6) takes the form 
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From (A.8) we conclude that system (24) – (26) is 

exponentially stable, and hence, system (5) – (10) is 

exponentially stable which was to be proved. 
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