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Abstract: In standard linear fractional representation (LFR)-based linear parameter-varying
(LPV) modeling the size of the (diagonal) scheduling block depends on the number of scheduling
parameters and their repetitions, which in turn influences both the complexity of synthesis
conditions and the computational load during online implementation of LPV controllers. A
modeling framework motivated by, but not limited to, mechanical systems is proposed, where the
size of the scheduling block depends on the system’s physical degrees-of-freedom. The scheduling
block then turns out block-diagonal and can be parameterized in an affine or rational manner.
This parameterization yields less complex LFRs when considering the example of a three degrees-
of-freedom robotic manipulator, for which then full-block multipliers are tractable and also
necessary in synthesis. Synthesis and both simulation and experimental implementation results
indicate that the novel rational LPV controller provides improved performance at both reduced
implementation and synthesis complexity as compared to an affine LPV controller.

1. INTRODUCTION

Linear parameter-varying (LPV) (Rugh and Shamma,
2000) systems are linear systems which depend on time-
varying parameters referred to as scheduling parameters.
They are capable of representing many nonlinear and time-
varying systems via the notion of quasi-LPV systems in
which the scheduling parameters are functions of states,
inputs and/or outputs. Linear matrix inequality (LMI)-
based linear time-invariant (LTI) control techniques have
been extended to such systems. Linear fractional transfor-
mation (LFT)-based synthesis techniques employing the
full-block S-procedure (Scherer, 2000) provide means to
trade conservatism against synthesis complexity via struc-
tural constraints on multipliers. LFT-based techniques al-
low for a rational parameter dependence, which can reduce
or avoid overbounding the parameter range Kwiatkowski
and Werner (2008). Furthermore, the LFT framework
in conjunction with full-block multipliers allows for non-
diagonal scheduling blocks, a potential already stated
back in Scherer (2000), but—to the best of the authors’
knowledge—overlooked since. In LFT LPV synthesis, even
if the least amount of conservatism is desired, only the
number of LMI constraints on the multipliers grows ex-
ponentially with the number of scheduling parameters.
Hence, the smaller the multiplier (and consequently the
plant’s scheduling function), the more LMI constraints
are tractable. In addition, parameter-dependent inertia
in mechanical systems increases the number of param-
eter repetitions in standard LFT representations using
diagonal scheduling blocks due to the involved rational
dependency.

In this paper, we propose an explicit modeling frame-
work for systems resembling differential equations com-
mon in mechanical systems. The inversion of the iner-
tia matrix is considered via the LFT framework, which
results in a block-diagonal scheduling block. The size of

the scheduling block depends on the physical degrees of
freedom and is therefore independent from the LPV pa-
rameterization. For illustration, a three degrees-of-freedom
robotic manipulator is considered, for which full-block
multiplier-based synthesis is now tractable. Furthermore,
the proposed modeling approach yields less complex ra-
tional models with diagonal scheduling blocks than what
has been achieved previously despite employing available
LFR reduction tools from Matlab. Even when using the
well-known D/G-scalings with these latter models, the
new modeling approach yields a controller that is com-
putationally less expensive during online implementation.
Additionally, a two-stage approach to the application of
the full-block S-procedure can trade LMI constraints ver-
sus decision variables and promises the ability to tackle
problems of even higher scheduling complexity, as well as
selecting parameterizations of the scheduling block other
than affine ones for reduced overbounding.

In Section 2, notation is given and LFT-based LPV con-
troller synthesis is reviewed. In Section 3.1, the novel mod-
eling approach is presented. Extensions to the evaluation
of multiplier conditions are discussed in Section 3.2. The
ideas are applied to a 3-DOF robotic manipulator and
discussed in Section 4. Conclusions are drawn in Section 5.

2. PRELIMINARIES

Notation: An upper LFT is denoted by ∆ ⋆
[

M11 M12

M21 M22

]

=

M22 +M21∆(I −M11∆)−1M12, whereas the lower LFT is

given by
[

M11 M12

M21 M22

]

⋆∆ = M11 +M12∆(I −M22∆)−1M21.

The symmetric completion of a matrix is denoted by •.
Time dependence is regularly dropped, e.g. θ = θ(t).
The nullspace of some matrix M is denoted ker(M).
For a (real-rational proper) transfer matrix G : jR →

Cz×w, define G∗(s) = G⊤(−s). Therefore, G =
[

A B

C D

]
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and −G∗ =

[

−A⊤
−C⊤

−B⊤
−D⊤

]

. Let Gss = (A,B,C,D) collect

the state space model matrices. For compact notation, we
follow Scherer (2012) and define

L (X,Π, Gss) :=

[

I 0
A B
C D

]⊤[

0 X 0
X 0 0
0 0 M

][

I 0
A B
C D

]

. (1)

2.1 LPV Model Representations

Consider a plant with rational parameter-dependence

P δ =







A B∆ Bp Bu

C∆ D∆∆ D∆p D∆u

Cp Dp∆ Dpp Dpu

Cy Dy∆ Dyp Dyu






=





P δ
hq P δ

hw P δ
hu

P δ
zq P δ

zw P δ
zu

P δ
yq P δ

yw P δ
yu



 , (2)

Pδ = ∆
(

δ(t)
)

⋆ P δ, ∆ ∈ R
n∆×n∆ . (3)

The respective channels indicated by subscripts q, h, w,
z, u, y are illustrated in Fig. 1(a). The vector δ(t) =
[δ1(t) δ2(t) . . . δnδ

(t)] collects all scheduling parameters,
whose values are confined by a compact set δ. Assume that
the LFR is well-posed, i.e., (I −D∆∆∆) is invertible for all
δ ∈ δ. We explicitly do not assume ∆

(

δ(t)
)

to have diago-
nal structure. Furthermore, we consider scheduling param-
eters possibly nonlinear functions of measurable scheduling
signals ρ, that range in some compact set ρ. These might,
for example in robotics, comprise joint angles and their
derivatives, whereas the scheduling parameters are func-
tions involving sine and cosine terms. We let the mapping
fρ→δ : Rnρ → Rnδ , ρ(t) 7→ fρ→δ

(

ρ(t)
)

:= δ(t), denote the
nonlinear function with which the LFT parameters δ ∈ δ
can be computed from the measurable signals ρ. State
space matrices of the plant are related to the LFR by

SP (δ) =

[

A (δ) Bp(δ) Bu(δ)
Cp(δ) Dpp(δ) Dpu(δ)
Cy(δ) Dyp(δ) Dyu(δ)

]

=

[

A Bp Bu

Cp Dpp Dpu

Cy Dyp Dyu

]

+ . . .

[

B∆

Dp∆

Dy∆

]

∆(I −D∆∆∆)−1[C∆ D∆p D∆u].

2.2 Gain-Scheduled LFT LPV Controller Synthesis

A standard LFT LPV gain-scheduling synthesis result
(Scherer, 2000) provides a condition for the existence of
a gain-scheduled controller.

Theorem 1. There exists a controller Kδ, such that the
closed-loop system Pδ⋆Kδ is internally stable and achieves
an L2-gain of γ > 0 ∀δ ∈ δ, if there exist X = X⊤ > 0,
Y = Y ⊤ > 0 and M = M⊤, N = N⊤ that satisfy

V ⊤

X L



X, diag(M,Γ) ,





P δ
hq P δ

hw

I 0

P δ
zq P δ

zw

0 I





ss



VX < 0, (4)

V ⊤

Y L



Y, diag
(

N,Γ−1
)

,





I 0

−P δ∗
hq −P δ∗

zq

0 I

−P δ∗
hw −P δ∗

zw





ss



VY > 0, (5)

[

•
]⊤

M

[

I
∆

]

> 0,
[

•
]⊤

N

[

−∆⊤

I

]

< 0, ∀δ ∈ δ (6)
[

X I
I Y

]

> 0, (7)

where VX = ker [Cy Dy∆ Dyp] , VY = ker [B⊤
u D⊤

∆u D⊤
pu] ,

Table 1. Cost of matrix operations.

Operation Sizes α(A)

Multipl. A = BC B ∈ Rn×m, C ∈ Rm×p n(2m−1)p

Scaling A =
n

diag
i=1

(

bi

)

C bi ∈ R, C ∈ Rn×m nm

Addition A = B + C B ∈ Rn×m, C ∈ Rn×m nm

Inversion∗ A = B−1 B ∈ Rn×n, 2
3
n3

∗Gauss elimination provides an upper bound for the cost.

and Γ = diag(1/γI, −γI). The multipliers M and N are
related to the LPV scheduling channels. The condition
∆ = ∆⊤ and the following coupling conditions (Kose and
Scherer, 2006) allow to simply copy the scheduling block
of the plant to the controller: ∆K = ∆.

[

M11 I
I N11

]

> 0,
[

M22 I
I N22

]

< 0, (8)

where the multipliers M and N are of the form

[

M11 M12

M⊤
12 M22

]

, where
M11 > 0,M22 < 0,
M12 = −M⊤

12,
Mij∆ = ∆Mij , i, j ∈ {1, 2} .

(9)

If further M11 = −M22, N11 = −N22 and all parameters
are only allowed to vary in intervals [−1, 1], we recover
the so-called D/G-scalings. The construction of extended
certificates Xcl and a multiplier Mcl, necessary to solve for
the controller variables via LMI methods, follows along
the lines of Kose and Scherer (2006); Scherer (2000). The
parameter-dependent state space model matrices of the
rationally scheduled controller are then computed by

SKδ

(δ) =

[

A K(δ) BK(δ)

C K(δ) DK(δ)

]

=

[

AK BK
y

CK
u DK

uy

]

+ . . .

[

BK
∆

DK
u∆

]

∆K(I −DK
∆∆∆

K)−1[CK
∆ DK

∆y].

When using full-block multipliers, i.e. without the mul-
tiplier constraints (8), (9) and only the multi-convexity
constraints M11 > 0, M22 < 0, N11 > 0, N22 < 0,
the controller’s scheduling block ∆K(∆) can be explicitly

written as an LFT in
[

0∆⊤

∆ 0

]

and is computed from

V = −M−1
cl,22, W = −VMcl,12, U = Mcl,11 +M⊤

cl,12W,

∆K(∆) = −W22 + [W21 V21]
[

U11 •
W11 +∆ V11

]−1 [
U12

W12

]

. (10)

with conformable partitions Vij ,Wij , Uij , i, j = 1, 2, as
detailed in Scherer (2000).

Implementation Complexity vs. Scheduling Order: As-
suming that each basic arithmetic operation requires a
single time unit yields an estimated computational burden
incurred by the matrix operations given in Tab. 1. The no-
tation α(A) denotes the number of arithmetic operations
to calculate a matrix A, where the actual computational
steps can be inferred from context. For the synthesis of
full dynamic order controllers, Tab. 1 yields the following
estimated complexities of computing the state space model

matrices SKδ

and SKθ

of LFR and affine LPV controllers,
Kδ and Kθ, respectively. With nx, nu and ny as the signal
dimensions for the generalized plant state, physical in- and
output vector, respectively, we have
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α
(

SKδ
)

62n∆(nx + nu)(nx + ny)+α
(

Ψ
)

+ . . . (11)

. . .+n∆(nx + nu) ∈ O(n3
∆), (12)

with α (Ψ)6n∆
(

2/3n
2
∆+2n∆+1

)

, Ψ=∆K(I−DK
∆∆∆

K)−1.

Computing the controller’s scheduling function resulting
from full-block multipliers approximately costs

α
(

∆K(∆)
)

6n∆

(

52/3n
2
∆ − 1

)

∈ O(n3
∆). (13)

3. MAIN RESULTS

3.1 Low Complexity LFRs

Consider the nonlinear differential equation

M(q, t)q̈ + k(q̇, q, t) = u. (14)

No input nonlinearity is assumed for simplicity. This
can often be achieved by considering transformed inputs
u = T (q̇, q, t)ũ. Models of many physical systems from
different disciplines can be represented in this way by
using first principles modeling approaches. Motivated by
mechanical structures, we refer to q ∈ Rnq as the (angular
or translational) position vector and M(q) as the inertia
matrix. The input is denoted u ∈ Rnu . In mechanical
models the nonlinear vector k(q̇, q, t) contains stiffness and
damping terms, as well as, e.g. gyroscopic effects. In the
following, dependence on time of the matrices—as already
done with the signals—will be dropped for brevity.

It is often possible to rewrite (14) equivalently as

M(q)q̈ +D(q̇, q)q̇ +K(q)q = u. (15)

For simplicity, we assume that nu = nq. Note, that
rewriting k(q̇, q) = D(q̇, q)q̇ +K(q)q is not unique. The
question of how to choose the matrix-vector products
D(q̇, q)q andK(q)q is closely related to the non-uniqueness
of LPV representations. In essence, the question of which
degree-of-freedom is to be pulled into the vector or a
matrix entry determines which coupling effects are linearly
visible, i.e. if the parameter-dependent matrices are frozen
in some operating point. On the other hand, the choice
influences the complexity of the LPV parameterization
of the matrices used later on and can therefore lead
to a trade-off between model/synthesis complexity and
achievable control performance.

Suppose that for the inertia, damping, stiffness and input
matrices one can find LFRs

M(q) = MΥ(q) ⋆

[

0 WM

VM M0

]

, K(q) = KΥ(q) ⋆

[

0 WK

VK K0

]

D(q̇, q) = DΥ(q̇, q) ⋆

[

0 WD

VD D0

]

.

Note that the representations are affine and contain
constant shifts, such that M0 is invertible and MΥ(q),
DΥ(q̇, q) and KΥ(q) all contain a zero matrix over the
set of admissible trajectories. The matrices WQ and VQ

can be chosen, such that only the parameter-dependent
part of the respective matrices is contained in QΥ, for
all Q ∈ {M,D,K}. LFRs with diagonal blocks QΥ, for
all Q ∈ {M,D,K}, can be constructed with available
standard tools from MATLAB. However, using the physi-
cal insight from (15) one can easily construct full blocks,
whose dimensions can often turn out smaller than the
diagonal ones.

Remark 1. The proofs shown in Scherer (2000) depend on
the LFT scheduling block containing the origin. Therefore,
in an LPV parameterization of, e.g., MΥ(q), it might be
necessary to enhance the admissible LPV parameter range
or to even define new parameters, such that this is possible.

Omitting parameter-dependency for brevity, a general

LPV state space model with ρ =
[

q⊤ q̇⊤
]⊤

reads as

Gρ :

[

q̇
q̈

y

]

=

[

0 I 0
−M−1K −M−1D M−1

I 0 0

][

q
q̇

u

]

. (16)

Now, from simple inversion of an LFT (Zhou et al., 1996)
we have

−(M0+VMMΥWM )−1 = MΥ ⋆

[

−WMM−1
0 VM −WMM−1

0

−M−1
0 VM −M−1

0

]

.

Thus from

[

0 I 0

−M−1K −M−1D M−1

I 0 0

]

=

[

I 0 0

0 −M−1 0

0 0 I

][

0 I 0

K D −I

I 0 0

]

,

and the respective LFRs

[

I 0 0
0 −M−1 0

0 0 I

]

= MΥ ⋆







−WMM−1
0 VM 0 −WMM−1

0 0

0 I 0 0

−M−1
0 VM 0 −M−1

0 0

0 0 0 I






, (17)

[

0 I 0
K D −I

I 0 0

]

=
[

KΥ

DΥ

]

⋆











0 0 WK 0 0
0 0 0 WD 0

0 0 0 I 0
VK VD K0 D0 −I

0 0 I 0 0











, (18)

we obtain the physical model representation in structured
LFT form (21). In consequence, we may obtain the LPV
representation of the generalized plant

P υ =







A BΥ Bp Bu

CΥ DΥΥ DΥp DΥu

Cp DpΥ Dpp Dpu

Cy DyΥ Dyp Dyu






=





P υ
hq P υ

hw P υ
hu

P υ
zq P υ

zw P υ
zu

P υ
yq P υ

yw P υ
yu



 , (19)

Pυ = Υ ⋆ P υ, Υ ∈ R
nΥ×nΥ . (20)

Note that the proposed representation maintains general-
ity for the cases if any of the matrices MΥ,KΥ or DΥ is
parameter-independent by simply considering zero dimen-
sions. We therefore choose to present the general form and
leave the special cases to the interested reader and our ex-
ample. In addition, an identity output gain and parameter-
independent performance channel (DΥp = 0, DpΥ = 0) are
assumed for simplicity. Extensions, however, are straight-
forward. Consequently, we arrive at an LFR, whose size of
the scheduling block Υ is smaller or equal than 3nq × 3nq.
If conventional techniques result in a smaller size block,
they should be used. In fact, the representation pro-
posed above can also be used to obtain a mixed block-
diagonal/diagonal Υ, e.g. by affinely parameterizing K(q)
and using a diagonal KΥ. This can be useful if the number
of affine parameters in KΥ and/or DΥ is exceptionally
high. Then for these, a diagonal block in conjunction with
D/G-scalings can avoid an evaluation of the multiplier
conditions on the vertices of a convex hull, which might
be prohibitive.

Rational and Affine Parameterization: The scheduling
block Υ can be written as an LFT in terms of both
parameters δ or υ, which provide a rational or affine
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Gυ=

[

AG BG
Υ

BG
u

CG
Υ

DG
ΥΥ

DG
Υu

CG
y DG

yΥ DG
yu

]

=











0 I 0 0 0 0

−M−1

0
K0 −M−1

0
D0 −M−1

0
VM −M−1

0
VK −M−1

0
VD M−1

0

−WMM−1

0
K0 −WMM−1

0
D0 −WMM−1

0
VM −WMM−1

0
VK −WMM−1

0
VD WMM−1

0

WK 0 0 0 0 0

0 WD 0 0 0 0

I 0 0 0 0 0











,

Gυ = Υ ⋆ Gυ

Υ =

[

MΥ

KΥ

DΥ

]

(21)

parameterization of Υ with diagonal blocks ∆(δ) and

Υ̂(υ), respectively.

Υ(δ)=∆⋆

[

W δ
11 W δ

12

W δ
21 W δ

22

]

= ∆⋆ W δ, ∆=
nδ

diag
i=1

(

δiIrδ
i

)

, (22)

Υ(υ)=Υ̂⋆

[

W υ
11 W υ

12

W υ
21 W υ

22

]

= Υ⋆W υ, Υ̂=
nυ

diag
i=1

(

υiIrυ
i

)

. (23)

This is illustrated in Figs. 1(b) and 1(c).

Υ(υ)

P υ

yu

w z

qυ hυ

(a) Rational block-
diagonal LFR.

Υ(δ)

W δ

∆(δ)

P υ

P δ

yu

w z

qυ hυ

(b) Rational parame-
terization.

Υ(υ)

W υ

Υ̂(υ)

P υ

P̂ υ

yu

w z

qυ hυ

(c) Affine parameteri-
zation

Fig. 1. LPV plant in open loop with rational or affine LFT
parameterizations of Υ with diagonal LFT blocks.

3.2 Two-Stage Full-Block S-Procedure

The use of full-block multipliers in conjunction with an
affinely parameterized scheduling block requires to solve
multiplier conditions on a possibly large number of ver-
tices. Furthermore, it may be possible to find a rational pa-
rameter set with tighter bounds—i.e. with less overbound-
ing (Kwiatkowski and Werner, 2008)—on the admissible
trajectories via the map f δ→υ. Evaluating (6) on the ver-
tices of the convex hull spanned by the admissible param-
eter range in terms of δ is resulting in a non-convex region
in terms of θ in general. However, a further application
of the full-block S-procedure on (6) introduces secondary
multipliers and therefore further decision variables, but in
turn allows to evaluate the primary multiplier condition
convexly on the tighter parameter set. Note that this does
not compromise the small size of the primary multiplier,
which decides the size of the controller’s scheduling block.

Proposition 1. With the LFT parameterization (22) and
Theorem 1 applied to Pυ from (20), the conditions

[

•
]⊤

M

[

I
Υ

]

> 0,
[

•
]⊤

N

[

−Υ⊤

I

]

< 0, ∀υ ∈ υ (24)

(analogous to (6)) are equivalent to

[

•
•

]⊤
[

R 0

0 M

]







W δ
11 W δ

12
I 0

0 I
W δ

21 W δ
22







> 0,
[

•
]⊤

R

[

I
∆

]

< 0, ∀δ ∈ δ (25)

[

•
•

]⊤
[

S 0

0 N

]







W δ⊤
11 W δ⊤

21
I 0

−W δ⊤
12 −W δ⊤

22
0 I







< 0,
[

•
]⊤
S

[

I
∆⊤

]

> 0, ∀δ ∈ δ. (26)

Proof 1. The proof follows by straightforward application
of the full-block S-procedure on (24).

Remark 2. Proposition 1 can be similarly formulated
based on the parameterization Υ = Υ̂ ⋆ W υ.

No additional synthesis complexity is introduced in the
controller construction problem, as the new multipliers R
and S are not required for the construction of the extended
multiplier Mcl and in the LMI-based controller variable
construction step.

4. APPLICATION TO A 3-DOF ROBOT

4.1 Modeling

Three degrees-of-freedom of an industrial manipulator of
type Thermo CRS A465 are considered including the first,
second and third joints as shown in Fig. 2(a). The joint
limits are listed in Tab. 3(a).

q1

q2

q3

q̃3

x
y

z

(a) q1=0, q2=0, q3=−π
2
rad

Kυ

Pυ

Gυ
WS

WKS

Vrr
zS

zKS

u

y

e

−

(b) Generalized plant.

Fig. 2. Robot schematics and generalized plant.

Table 2. Signal ranges.

Angle Range [◦] Angular Velocity Range [◦ s−1]

q1 [−180, . . . , 180] q̇1 [−100, . . . , 100]
q2 [−90, . . . , 90] q̇2 [−80, . . . , 80]
q3 [−45, . . . , 135] q̇3 [−125, . . . , 125]

Table 3. Scheduling signals and parameters.

(a) Scheduling signals.

Signal Value

ρ1 q2
ρ2 q3
ρ3 q̇1
ρ4 q̇2
ρ5 q̇3

(b) LFT scheduling parameters.

Param. Value Param. Value

δ1 sin(ρ1) δ6 sinc(ρ2)
δ2 sin(ρ2) δ7 ρ3
δ3 cos(ρ1) δ8 ρ4
δ4 cos(ρ2) δ9 ρ5
δ5 sinc(ρ1)

From the nonlinear differential equations (27) (Hoffmann
et al., 2013), an LPV model is derived based on the
novel proposed modeling scheme. Scheduling signals ρ are
defined in Tab. 3(a) and the parameter sets δ and υ are
given in Tab. 3(b) and (28)–(30). The non-uniqueness of
factoring D(q, q̇)q̇ is limited to the first row of D(q, q̇).
Here, products q̇1q̇i, i = 2, 3 provide the option of
choosing, e.g., the (1,2) and (1,3) entries of D(q, q̇) as zero
and gather all terms in the (1,1) entry. While this would
allow to define only 9 parameters υ, the coupling from
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Abbreviations:

si := sin(qi)

ci := cos(qi)

,

[

b3s2s3 + b6c
2

2
+ b7c

2

3
+ b5 0 0

0 1/2b3 (c2c3 + s2s3) + b13
1/2b3 (c2c3 + s2s3) + b14

0 1/2b3 (c2c3 + s2s3) + b17 b16

][

q̈1
q̈2
q̈3

]

+

+

[

b1 b2 q̇1s2c2 + b3 q̇1c2s3 b3 q̇1s2c3 + b4q̇1s3c3
2b11 q̇1s2c2 + 2b12 q̇1s3c3 −

1/2b3 q̇1 (s2c3 + c2s3)
1/2b3 q̇2 (c2s3 − s2c3) + b10

1/2b3 q̇3 (s2c3 − c2s3)

2b12 q̇1s3c3 −
1/2b3 q̇1s2c3

1/2b3q̇2 (c2s3 − s2c3) − b15 b15

][

q̇1
q̇2
q̇3

]

+

[

0 0 0

0 b8s2/q2 b9s3/q3
0 0 b9s3/q3

][

q1
q2
q3

]

=

[

τ1
τ2
τ3

]

(27)

M(υ) =

[

υ1 0 0
0 1/2b3υ2 1/2b3υ2
0 1/2b3υ2 0

]

+

[

b5 0 0
0 b13 b14
0 b17 b16

]

, MΥ(υ) = M(υ) −M0, M0 =

[

0.068 0 0

0 0.199 0.060

0 0.091 0.103

]

,
υ1 = b3δ1δ2 + b6δ23 + b7δ24
υ2 = δ3δ4 + δ1δ2

(28)

D(υ) =





0 b2υ3 + b3υ4 b3υ5 + b4υ6
2(b11υ3 + b12υ6) 1/2b3υ7 1/2b3υ8−1/2b3(υ4 + υ5)

0 1/2b3υ7 0



+

[

b1 0 0
0 b10 0
0 −b15 b15

]

,

DΥ(υ) = D(υ) −D0,

D0 =

[

0.470 0 0

0 0.773 0

0 −0.723 0.721

]

,

υ3 = δ7δ1δ3 υ5 = δ7δ1δ4
υ4 = δ7δ2δ3 υ6 = δ7δ2δ4
υ7 = δ8(δ3δ2 − δ1δ2)
υ8 = δ9(δ1δ4 − δ3δ2)

(29)

K(υ) =

[

0 0 0
0 b8υ9 b9υ10
0 b8υ9 0

]

, KΥ(υ) = WK(K(υ) −K0)VK , K0 =

[

0 0 0

0 −0.004 0.007

0 0 0.007

]

, WK =
[

02×1 I2
]

, VK = W⊤
K ,

υ9 = δ5
υ10 = δ6

(30)

the second and third link to the first would be rendered
invisible in each frozen parameter system.

By calculating the elementwise maxima Q(υ) and min-
ima Q(υ) over a grid covering υ, the matrices Q0 and

Qrng are derived via Q0 = (Q + Q)/2 and Qrng =

(Q − Q), for Q ∈ {M,D,K}, respectively. With Υrng =

diag(Mrng, Drng,Krng) the model is normalized by

Gυ = Υ−1
rngΥ ⋆





A BΥΥrng Bu

CΥ DΥΥΥrng DΥu

Cy DyΥΥrng Dyu



 .

Comparison with Previous Modeling Approaches: As ap-
parent from (28)–(30), the model’s scheduling block Υ is of
the size 8× 8. When diagonal affine and rational parame-
terizations of Υ are considered according to (23) and (22),

the sizes obtained are Υ̂(υ) ∈ R15×15 and ∆(δ) ∈ R37×37.
In comparison, the models derived from parameterizations
detailed in Hoffmann et al. (2013) yield diagonal schedul-
ing blocks Θ(θ) ∈ R16×16 and ∆(δ) ∈ R186×186, for an
affine LPV model and a rational LPV model, respectively.
The affine LPV parameters are denoted θ and are rational
functions of the parameters δ defined in Tab. 3(b). In
Hoffmann et al. (2013) the block ∆(δ) is derived by substi-
tuting the rational functions of θ in terms of δ. Eventually,
standard LFT reduction techniques of the Matlab Robust
Control Toolbox are applied. This shows the attractiveness
of the proposed approach for low scheduling order rational
LPV models.

4.2 Controller Synthesis

Synthesis is performed in three categories, i.e. using 1) a
single multiplier stage with full-block multipliers (FBM),
2) two multiplier stages with FBMs in the first and D/G-
scalings in the second (FBM+D/G) and 3) a single D/G-
multiplier stage. The latter approach would lead to di-
agonal multipliers for the block-diagonal scheduling block
Υ and is therefore not presented, since it results in ex-
cessive conservatism. The two-stage multiplier approach
is performed both with respect to the affine parame-
terization Υ(υ) and the rational parameterization Υ(δ).
Consequently, the second multiplier is then constrained
with respect to the diagonal blocks Υ̂(υ) and ∆(δ) after

Table 4. Shaping filter design.

Channel i ωS,i MS,i ωKS,i cKS,i MKS,i Mr,i ωr,i

1 4 1.2 · 10−4 5 · 101 103 2 · 104 5 5
2 4 1.2 · 10−4 5 · 101 103 2 · 104 10 10
3 4 1.2 · 10−4 5 · 101 103 2 · 104 5 5

normalization, respectively, cf. Fig. 1(c) and 1(b). A fourth
category considers the affine LPV model with 16 LPV
parameters (denoted by θ) as detailed in Hoffmann et al.
(2013). For all approaches, synthesis is performed with
respect to the generalized plant configuration shown in
Fig. 2(b) and the choice of shaping filters:

WS,i=
ω2

S,i
/MS,i

(s+ωS,i)
2
, WKS,i=

c2
KS,i

/MKS,i(s+ωKS,i)
2

(s+cKS,iωKS,i)
2

, Vr,i=
Mr ,i

s+ωr,i
,

WS =
3

diag
i=1

(

WS,i

)

, WKS =
3

diag
i=1

(

WKS,i

)

, Vr=
3

diag
i=1

(

Vr,i

)

.

The filter parameters are given in Tab. 4.

Tab. 5 shows the results for the respective approaches in
terms of the decision variables and required solver time 1

for (i) the existence condition (Theorem 1) and (ii) the
LMI-based controller construction (Scherer, 2000). The
root mean square tracking error (RMSE) with respect
to each joint space is reported as well. Intractability is
indicated by (—), while the reason is apparent in the
number of decision variables and the amount of vertices,
required to constrain the multiplier conditions (6) over the
convex hull. Due to the amount of parameters nυ = 10
and nδ = 9, 1,024 and 512 vertices have to be considered,
respectively. Due to the small-size scheduling block Υ,
full-block multipliers result in few decision variables and
synthesis can be performed in a reasonable amount of
time and without severe numerical difficulties, as opposed
to full-block multipliers w.r.t. Υ̂ and ∆. Consequently,
method 1) with Υ achieves the third best performance,
which is bested only when using the additional information
of the underlying rational dependence on δ to reduce
overbounding. Interestingly, the two-stage approach 2)
with Υ(δ) shows the best performance, while also being
solved very efficiently in only about half a minute. Using
D/G-scalings directly on ∆(δ) indicates a worse induced
L2-gain γ but, expectedly, similar performance.

1 IntelR© CoreTM i7-2660, 3.4 GHz, 8 GB RAM, 64-Bit Windows 7
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Table 5. Synthesis results, complexity and
tracking performance in simulation.

LMI Vars. CPU [s] RMSE

Method γ (i) (ii) (i) (ii) q1 q2 q3

1) FBM

Υ(υ) 7.98 735 (1,122) 542.3 (15.5) 0.052 0.034 0.082

Υ̂(υ) — 1,393 (1,640) — (—) — — —
∆(δ) — 6,013 (3,906) — (—) — — —

2)
FBM+
D/G

Υ(υ) 8.24 785 (1,122) 6.8 (12.9) 0.068 0.069 0.091
Υ(δ) 4.86 1,217 (1,122) 16.0 (14.7) 0.057 0.040 0.030

3) D/G
Υ̂(υ) 9.41 513 (1,640) 5.2 (94.4) 0.045 0.061 0.140
∆(δ) 7.63 945 (3,906) 15.2 (436.3) 0.045 0.038 0.108

4) D/G Θ(θ) 7.38 495 (1,466) 7.8 (46.6) 0.043 0.056 0.121

Table 6. Experimental performance and imple-
mentation complexity.

RMSE No. of Arith. Ops.

Method q1 q2 q3 Sched. Matrices Total

1) FBM Υ(υ) 0.052 0.038 0.063 8,811 11,037 19,848

2)
FBM+
D/G

Υ(υ) 0.068 0.060 0.075
8,811 11,037 19,848

Υ(δ) 0.050 0.054 0.047

3) D/G
Υ̂(υ) 0.049 0.061 0.138 — 22,515 22,515
∆(δ) 0.046 0.040 0.102 — 853,836 853,836

4) D/G Θ(θ) 0.048 0.059 0.119 — 20,736 20,736

The online implementation complexity is governed by both
the size of scheduling blocks and whether or not D/G-
scalings allow the controller to be scheduled by a mere copy
of it. The additional effort to compute ΥK(Υ) according
to (10) does therefore have to be taken into account against
the increased effort in computing the state space controller
matrices induced by a larger controller scheduling block.
Tab. 6 indicates that controllers derived by methods 1) and
2) using the proposed compact scheduling block Υ actually
require less arithmetic operations as opposed to method
3). However, as the number of arithmetic operations are
only estimates, method 3) with a parameterization via the

diagonal scheduling block Υ̂ actually ranges in the same
order, while the rational dependency via ∆ is clearly more
costly. In conclusion a two-stage multiplier approach with
the parameter set δ in the second multiplier stage yields
both the best performance, as well as the least amount
of online computational complexity. The implementation
cost of the affine approach presented in Hoffmann et al.
(2013) is derived from the arithmetic operations necessary
to weight and sum up the affine controller matrices.

All performances are already very good in terms of the
RMSE as indicated in Tab. 6 and close-up zooms on a
standard multi-sine trajectory used in Hoffmann et al.
(2013) are shown in Fig. 3. The trajectories show that
the approaches utilizing full-block multipliers (solid lines)
may outperform the controllers synthesized with onlyD/G
scalings (dashed lines) in terms of the RMS error, but
not necessarily absolutely everywhere along the trajectory.
This suggests that it is still possible to further improve
tracking performance, possibly by parameter-dependent
Lyapunov functions. Using the structured block-diagonal
LFT-based modeling approach in conjunction with a
two-stage full-block S-procedure presented in this paper,
the use of parameter-dependent Lyapunov functions for
plants with a high amount of parameter variation appears
tractable and is subject to future research.

6.94 6.96

96.5

97

97.5

5.64 5.68
-25.55

-25.50

7.8 7.82
-63.5

-63

-62.5

q1 [◦] q2 [◦] q3 [◦]

t [s] t [s] t [s]

Fig. 3. Experiments; Ref. ( ), 1) FBM Υ(υ) ( ),

2) FBM+D/G Υ(υ) ( ), 2) FBM+D/G Υ(δ) ( ),

3) D/G Υ̂(υ) ( ), 3) D/G ∆̂(δ) ( )

5. CONCLUSIONS

A compact LFT LPV model representation derived by
structural insight is proposed, motivated by—but not
exclusive to—mechanical model structures. The repre-
sentation yields block-diagonal LFT scheduling blocks,
whose sizes depend on the degrees-of-freedom of the plant.
Furthermore, the introduction of a secondary multiplier
stage is proposed to evaluate multiplier conditions based
on the underlying rational parameter-dependency of the
scheduling block. The second multiplier can be used with
D/G-scalings to prevent exponential growth in the LMI
conditions, while maintaining a low implementation com-
plexity. When applied to the nonlinear model of a 3-
DOF robotic manipulator, full-block multipliers in the
first stage improves performance while maintaining the
lowest estimated implementation complexity of the com-
pared controllers. The results are illustrated by real-time
experiments.
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