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Abstract: In this paper, we combine ideas from multi-agent cooperative coverage control,
with problem formulations from the resource allocation field, to create a distributed convergent
approach to the ambulance positioning problem. Inspired by coverage control we use the graph
version of so-called Voronoi regions, making the solution distributed and reactive, thereby freeing
computational resources. The solution is distributed in the sense that each vehicle only needs
to know the positions of its neighbors, and the computations of each vehicle only depend on the
size of its Voronoi region/set. This implies that considering a problem of twice the size, using
twice the number of vehicles will leave the computational load per vehicle unchanged. The freed
resources are used to capture the allocation problem in more detail: maximizing an estimate of
the victim survival probability instead of more coarse measures of ambulance availability. Using
real city street map data from OpenStreetMap (OSM), we provide simulation results illustrating
the applicability of our approach. Finally, we prove that the proposed distributed algorithm is
convergent in the sense that it finds a local optimum in finite time.

1. INTRODUCTION AND RELATED WORK

In the near future, the distribution of emergency response
vehicles, such as ambulances, fire trucks, and police cars,
could be controlled in a turn-by-turn fashion which is
similar to the navigation applications available for most
smart phones today. The real time positions of the vehicles,
as well as the street maps, population densities, and
estimated incident likelihoods are all available, together
with the communication technology needed to support
such a system.

The problem addressed in this paper is that of reactively
distributing a set of ambulances in real time in an urban
area, such as the one in Fig. 1 (All map data are taken from
OSM 1 ). The objective of the distribution is to maximize
the survival chances of the next victim, assuming we have
data on how survivability varies with time-to-service and
the other city data mentioned above.

Efforts in operations research have already made signif-
icant contributions to emergency response resource allo-
cation. When the availability is prescribed by law 2 the
problem formulation is quite straightforward. Successful
implementations include the one reported by Repede and
Bernardo (1994), where the use of a probabilistic ambu-
lance location model led to an increase from 84% to 95%
in the number of calls covered in 10 minutes or less, and a

1 http://wiki.openstreetmap.org/
2 The United States Emergency Medical Services Act states that
95% of requests should be serviced within 10 minutes in urban
areas (Brotcorne et al., 2003), whereas in Montreal, Canada, the
required time is 7 minutes and it must hold for more than 90% of
the population (Gendreau et al., 2001).

decrease in the total response time by 36%. We will now
describe the related work in more detail.
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Fig. 1. OSM map of Södermalm Stockholm. All the map
figures through this paper have latitude as y axis unit
and longitude as x axis unit.

As mentioned above, this work lies in the intersection of
coverage control and resource allocation, and the most
important related work from both fields is summarized in
Table 1. Resource allocation research applied to ambulance
location problems dates back to the 1970s, with important
contributions by Toregas et al. (1971); Church and Velle
(1974); Gendreau et al. (1997); Daskin (1983); Ball and
Lin (1993). Extensive overviews are given by Brotcorne
et al. (2003); Pillac et al. (2012) and more recent contri-
butions include Erwig and Hagen (2000); Daskin (2008)
and Azizan et al. (2012). Most of the early approaches
are based on Mixed Integer Linear Programming (MILP)
formulations. Two fundamental models used in these op-
timization problems are the Location Set Covering Model
(LSCM) by Toregas et al. (1971) and Maximal Covering
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Table. 1. Problems investigated in related work.
Reference Objective Constraints Problem Space Reactive Distributed

LSCM (Toregas et al., 1971) Min no. of ambulances All d < r Set covering No No

MCLP (Church and Velle, 1974) Max coverage All d < r Set covering No No

DDSMt (Gendreau et al., 2001) Max double coverage < r1 All d < r2 Set covering X No

MCLPforStreetmaps
(Azizan et al., 2012)

Max coverage All d < r Graph (streetmap) No No

(Cortes et al., 2004) Min sum squared distance none Rn X X
(Breitenmoser et al., 2010) Min sum squared distance none Graph (3D tessellation) X X
(Erwig and Hagen, 2000) Find nearest hospital none Graph No No

This paper Max survival probability none Graph (street map) X X

Location Problem (MCLP) by Church and Velle (1974).
LSCM provides a lower bound on the number of ambu-
lances required to ensure the full coverage and therefore
makes itself suitable as a planning tool, while the objective
of MCLP is to make the best possible use of the avail-
able amount of ambulances. A reactive approach building
upon Tabu search was later presented by Gendreau et al.
(2001), where two different coverage radii were taken into
account. An outer r2 covers the basic demand, and an
inner r1 covers the advanced demand. The allocation was
then performed with the objective of maximizing the dou-
ble coverage within r1. All these approaches are rooted
in the set covering problems by Toregas et al. (1971)
and are inherently centralized. The idea of using detailed
street maps was proposed by Azizan et al. (2012), but
the problem formulation was still centralized and build-
ing upon MCLP. Probabilistic extensions to LSCM and
MCLP have been proposed by Daskin (1983); Ball and
Lin (1993). In the Maximum Expected Covering Location
Problem (MEXCLP) given by Daskin (1983) the MCLP
is extended by maximizing the sum of the probabilities of
being served of all the vertices. In the Rel-p method by
Ball and Lin (1993), LSCM is extended by incorporating
a linear constraint on the number of vehicles required to
achieve a given reliability level. A common drawback of
all approaches described above is the lack of decentralized
control, and the use of somewhat coarse notions of cov-
erage, based on different time limits, instead of estimates
from real data of how survivability depends on time-to-
service.

In control theory, a vast amount of work on coverage
control problems have grown from the seminal paper by
Cortes et al. (2004), where the sensor coverage problem
was solved using Voronoi partitions, and a distributed
reactive controller was proposed, moving each agent to-
wards the centroid of its own Voronoi region. This problem
was formulated in continuous space, Rn and the objective
minimized was the sum of squared distances from agents
to measured instances. A graph version of such Voronoi
partitions called Voronoi diagrams, had earlier been pro-
posed by Erwig and Hagen (2000), where it was noted that
such partitions were useful for finding the nearest hospital
in case of an emergency. When addressing the coverage
problem on surfaces embedded in 3D, Breitenmoser et al.
(2010) built upon the results of Cortes et al. (2004) using a
graph version of the Voronoi partitions where the objective
function was once again the sum of squared distances. Re-
cent efforts in multi-agent distributed optimization given
by Nedic and Ozdaglar (2009) solve constrained opti-
mization problems cooperatively by agents. However this

method is not applicable to optimization problems with a
large set of constraints, such as LSCM or MCLP.

The contribution of this paper is an approach that is
reactive, convergent and distributed, solving a localization
problem on a real street map graph, with an objective
function that actually captures survivability, instead of
more coarse notions of coverage. As shown in Table 1 this
has not been done before.

In practice, we suggest that initial ambulance positions
are first found using e.g., a MCLP method as described in
the references. Then, the proposed approach is applied to
refine these positions in a reactive and distributed fashion.

The outline of this paper is as follows. First, we formulate
the problem and review some notation on graphs and
Voronoi diagrams in Sec. 2. Then, we propose a solution
in Section 3. The solution is analyzed in Section 4, and
implementation details are given in Section 5. Finally, we
provide a set of simulation examples in Section 6 and
present the conclusions of the paper in Section 7.

2. PROBLEM FORMULATION

In this section we define the problem and review some
notation on graphs and Voronoi diagrams.

2.1 Definitions

Let the road network be given by graph, i.e., an ordered
pair G = (V,E) comprising a set V of vertices together
with a set E ⊂ V × V of edges, and let P be a set of
ambulances. We restrict the ambulance positions to the
vertices, therefore P ⊂ V . We denote the cardinality of
a set by |.|, e.g. the number of vertices is |V | and the
number of ambulances is |P |. At each vertex vi ∈ V we
have a population size of M(vi), and each edge ej ∈ E
has a distance d(ej). Let this distance be measured in
traversal time, i.e., d(ej) = lj/vj where lj is length and
vj is average speed. A path Pab of length l from vertex va
to vb is a sequence of vertices 〈v0, . . . , vn〉 with v0 = va,
vn = vb and (vi−1, vi) ∈ E for 1 < i ≤ n. We denote
d(va, vb) the shortest distance from va to vb. We reserve
k to denote the discrete time step. For instance, let the
positions of the ambulances at time step k be given by
p(k) = (p1(k), . . . , p|P |(k)), where pi(k) ∈ V .

2.2 Demand Distribution

We assume that the demand of ambulance services at a
given location is proportional to the instant population
size, and therefore time varying. For example, during
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weekends, the demand at a shopping mall is high and the
demand at an elementary school is low. Inspired by the
degree of dynamism described by Pillac et al. (2012), we
denote the time-varying demand probability mass of each
vertex vi as

ρ(vi) =
M(vi)∑|V |
j=1M(vj)

. (1)

Note that here, and in the rest of the paper we suppress
the explicit time dependence in the notation.

2.3 Voronoi Diagram

A Voronoi diagram partitions the vertices V of a graph into
a number of Voronoi sets Vi, given a set of pre-specified
vertices called Voronoi nodes {v̄i} = V̄ ⊂ V . Each set Vi
consists of all the vertices closer to a given Voronoi node v̄i
than any of the other Voronoi nodes. In this paper, we use
the ambulances’ positions pi as the Voronoi nodes v̄i = pi.
Thus, given a connected graph G = (V,E) and a set of
ambulances p, a Voronoi diagram is the partition

V = {V1, . . . , V|P |} (2)

of the vertices of the graph where for each vertex v ∈ Vi
we have

d(v, pi) ≤ d(v, pj) (3)

for j 6= i, j = 1, . . . , |P | and a Voronoi set Vi associated
with an ambulance pi is given by:

Vi(p) = {v : d(v, pi) ≤ d(v, pj), ∀j 6= i}. (4)

We call the ambulance j a neighbor to ambulance i, if
some node in another ambulance’s Voronoi set vj ∈ Vj
is connected by an edge in E to some node vi ∈ Vi. We
denote the set of neighboring ambulances to ambulance i
as Ni.

Remark 2.1. If d(v, pi) = d(v, pj) in (3), we can choose
either v ∈ Vi or v ∈ Vj as long as Vi ∩ Vj = φ and
V1 ∪ . . . ∪ V|P | = V . �

2.4 How to Compute a Voronoi Diagram

Given (3) and (4), computing a Voronoi diagram on a
graph can be done by first solving a shortest path problem
for all pairs of vertices, which can be done in polynomial
time using e.g. the Floyd-Warshall algorithm (Cormen
et al., 2001). We store the shortest distance between all
pairs of vertices in a distance matrix

DG =


0 d(v1, v2) · · · d(v1, v|V |)

d(v2, v1) 0 · · · d(v2, v|V |)
...

...
. . .

...
d(v|V |, v1) d(v|V |, v2) · · · 0

 , (5)

where the i-th row gives the shortest distances from vi to
all its connected vertices, and the j-th column gives the
shortest distances from all the connected vertices to vj .

Assume ambulance j knows its position pj on the graph
and the neighboring ambulances positions pi, for i ∈ Nj .
We construct a sub-distance matrix DVj

which contains
the shortest distances from pj and pi for i ∈ Nj to their
connected vertices:

DVj
=


d(pj , v1) d(pj , v2) · · · d(pj , v|V |)

...
...

. . .
...

d(pi, v1) d(pi, v2) · · · d(pi, v|V |)
...

...
. . .

...

 , (6)

where DVj contains |Nj |+ 1 rows. In each column of DVj ,
if DVj (pj , y) is the minimum element, then it means the
y-th vertex belongs to the Voronoi set Vj . More details are
given in Algorithm 1 in Section 5.

2.5 Maximizing Survival Probability

In this section, we will describe the problem considered in
detail, i.e. the problem of maximizing the expected survival
probability with respect to the ambulance positions.

As noted in Sec. 1, legislation sometimes requires a certain
ambulance coverage in terms of time-to-service for a given
percentage of the population. However, these numbers are
somewhat arbitrarily chosen, as can be seen from the
fact that the numbers differ between countries, as well
as between rural and urban areas. We propose to replace
such times and percentages by maximizing an estimate of
the average survivability. Assuming that either a medical
expert, or hospital data, can be used to create an estimate
on how average survivability varies with waiting time. Let
S : R+ → [0, 1) be that survivability. Clearly, S is non-
increasing; the sooner the ambulance arrives, the better.
Furthermore, in the light of data reported in (Brotcorne
et al., 2003; Gendreau et al., 2001) S is fairly large for
the first 7 to 10 minutes, and smaller, but not zero, at
30 minutes. For the sake of the simulations in Sec. 6, we
model the survivability with an affine function, but stress
the fact that in a real operational system, S(d) would be
given by data and/or medical experts.

Given S above, we are now ready to formulate the objec-
tive function of the ambulance positioning problem. The
average survivability for the whole population of the graph
is as follows

savg(p) =
∑
vi∈V

ρ(vi)S(min
j
d(vi, pj)), (7)

where d(vi, pj) is the shortest distance from vi to pj on the
graph G and ρ(vi) is the demand probability mass at vi.
Therefore our main problem is the following:

Problem 1. Centralized Ambulance Positioning

max
p1,...,p|P |

savg(p).

3. PROPOSED SOLUTION

Inspired by the continuous analysis of Cortes et al. (2004),
we let the following definition be a core part of our
proposed decentralized reactive ambulance control scheme.

Definition 1. Service center of a Voronoi set

V 0
j (Vj(p)) = argmaxpj∈Vj

∑
vi∈Vj

ρ(vi)S(d(vi, pj)). (8)

Thus the service center is the ambulance position that
would maximize the survival probability of Vj if the
Voronoi sets were fixed and did not depend on the am-
bulance positions.
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We now propose the following solution to Problem 1.

Solution 1. Apply the following three steps iteratively.

(a) Compute the Voronoi partitions according to (4).
(b) Compute the Service center according to (8).
(c) Move to the Service center: pj(k + 1) = V 0

j (k).

If a steady state is reached, we stop the iteration until ei-
ther demand, or the number or positions of the ambulances
change due to some outer influence. �

Remark 3.1. Note that the proposed solution above is
indeed distributed and reactive. To compute the Voronoi
set (a), an individual ambulance only needs to know
the positions of its neighbors, i.e. the vehicles that are
reasonable contenders to being closest to the considered
vertices, and to compute the Service center (b) it only
needs to know its own Voronoi set.

4. THEORETICAL ANALYSIS

In this section, we will show that the proposed solution is
convergent. In fact, we will even show that it will reach a
local optimum in a finite set of steps.

First, we need the following Lemma, stating that the
inner minimization of the objective function in (7) can
be removed by explicitly summing over the Voronoi sets.

Lemma 1. The average survivability for the whole popula-
tion of the graph savg(p) is equal to the sum of the average
survivability of the population of each Voronoi set:

savg(p) =
∑
j∈V̄

∑
vi∈Vj

ρ(vi)S(d(vi, pj)). (9)

Proof 1. Using property (4) of a Voronoi set Vj , we have
∀vi ∈ Vj , pj = argminpk

d(vi, pk) for k = 1, . . . , |P |.
Therefore we have

savg(p) =
∑
vi∈V

ρ(vi)S(min
j
d(vi, pj))

=
∑
j∈V̄

∑
vi∈Vj

ρ(vi)S(d(vi, pj)),

using the fact that Vi ∩ Vj = φ and V1 ∪ . . . ∪ V|P | = V . �

Now we define the following function

h(q,W ) =
∑
vi∈W

ρ(vi)S(d(vi, q)), (10)

which corresponds to the average survivability of the
population in W if they were attended to by a vehicle at
q. We are now ready to prove convergence of the proposed
approach.

Theorem 2. The algorithm in Solution 1 will converge to
a local optimum in a finite number of steps.

Proof 2. First we state the following set of inequalities.

savg(p(k)) =
∑
j∈V̄

∑
vi∈Vj

ρ(vi)S(d(vi, pj)) (11)

=
∑
j∈V̄

h(p(k), Vj(p(k))) (12)

≤
∑
j∈V̄

h(V 0
j (Vj(p(k))), Vj(p(k))) (13)

=
∑
j∈V̄

h(p(k + 1), Vj(p(k))) (14)

≤
∑
j∈V̄

h(p(k + 1), Vj(p(k + 1))) (15)

= savg(p(k + 1)). (16)

Above, (11) holds due to Lemma 1, (12) holds due to
the definition of h, (13) holds due to the definition of the
service center, (14) holds due to step (c) of the update law
(15) holds due to the fact that a new Voronoi partition can
only re-assign vertices to vehicles that are closer, and S is
non-increasing, and finally, (16) holds due to the definition
of h.

The fact that the sequence of improvements is finite can
be seen from the fact that the problem is discrete, and
bounded, which means that there is a smallest possible
improvement, which in turn implies that there cannot be
an infinite number of such improvements. Therefore, the
sequence savg(p(k)) will converge to a value corresponding
to either a unique local maximum, or a limit cycle of local
maxima positions with identical average survivability. In
both cases, no improvements can be achieved by moving
to new service centers. �

Remark 4.1. Note that we can only prove the convergence
to a local optimum. A case where this local optimum is
different from the global one can be found in Fig. 2. Sup-
pose there are two clusters of highly populated vertices,
and two ambulances. The optimal solution is to deploy
the two ambulances (dashed red circle) in the left cluster,
if the population of the vertices to the left is orders of
magnitude larger than the population of the vertices to
the right:

∑5
i=1 ρi �

∑9
i=6 ρi and the distance between

the two clusters, which is d(n1, n8) in this case, is large
compared to distances inside a cluster. However, if one
ambulance starts in the smaller, right cluster, then the
Voronoi sets will assign one cluster to each ambulance,
and they will both position themselves relative to their
cluster. Locally, there will be no incentive for the rightmost
ambulance to move towards the larger cluster, since all of
it will still be assigned to the leftmost ambulance.

X - Coordinate [km]

Y - Coordinate [km]
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Fig. 2. An example in which the proposed solution will
reach a local, not global, optimum.
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5. IMPLEMENTATION

The Voronoi diagram partition is based on the distance
matrix DG which contains the shortest distances between
any pair of vertices on the map. Applying the Floyd
Warshall algorithm (Cormen et al., 2001, p559) we obtain
DG by solving the all-pairs shortest-paths problem on the
Graph G in time O(|V |3). This gives us the pre-computed
shortest distances d(vi, vj) and the shortest paths p(vi, vj)
, for vi, vj ∈ V . In algorithm 1, we list the steps to obtain
a Voronoi set for any ambulance according to Sec. 2.4.

Algorithm 1. Distributed Voronoi set partition and maintenance
algorithm.
Goal: To partition or maintain a Voronoi set.
Requires:
(1) Pre-computed distance matrix DG.
Input:
(1) Ambulance position pj(k).
(2) Neighboring ambulances positions pi(k), for i ∈

Nj(k).
Output: Updated Voronoi set Vj(k).
if Vj(k) and Vi(k) for i = 1, . . . , |P | are all initialized.
then

Let Ṽ = Vj ∪i∈Nj(k) Vi.
Extract the rows in DG correspond to pj(k) and pi(k),
for i ∈ Ni(k), to initialize DVj (k).

Keep columns of DVj
correspond to every v ∈ Ṽ .

end
foreach column x of DVj

do
if d(pj , vx) = minDVj

(:, vx) then
vx ∈ Vj(k).

end
end

Remark 5.1. In Algorithm 1 and later in Algorithm 2, we
use ’:’ in the way as it is defined in MATLAB script. �

In order to look for the service center V 0
j , we define a

square survivability matrix. If we place the ambulance at
vj , the survivability of vi weighted by the population is

w(vi, vj) = ρ(vi)S(d(vi, vj)). (17)

We define the square survivability matrix WVj for the
Voronoi set Vj as

WVj
=


0 w(v1, v2) · · · w(v1, v|Vj |)

w(v2, v1) 0 · · · w(v2, v|Vj |)
...

...
. . .

...
w(v|Vj |, v1) w(v|Vj |, v2) · · · 0

 . (18)

Due to the definition (17), the service center V 0
j defined

by (8) is equivalent to the vertex with the maximum row
sum in WVj

.

We can evaluate every single square matrix WVi(k) in time
O(|Vi|3) similarly as we evaluateDG. Nevertheless we want
to avoid redundant use of the Floyd Warshall algorithm,
so we evaluate the survivability matrix for the entire graph
G as

WG =


0 w(v1, v2) · · · w(v1, v|V |)

w(v2, v1) 0 · · · w(v2, v|V |)
...

...
. . .

...
w(v|V |, v1) w(v|V |, v2) · · · 0

 (19)

and extract the required rows and columns from WG to
construct WVi

(k) as in Algorithm 1. We list the detailed
steps in Algorithm 2.

Algorithm 2. Voronoi set service center calculation.

Goal: Calculation of the service center V 0
j (k).

Requires: The weighted distance matrix WG.
Input: The Voronoi set Vj(k).
Output: The service center V 0

j (k).
if Vj(k) and Vi(k) for i = 1, . . . , |P | are all initialized.
then

Extract the rows of WG that correspond to ∀v ∈ Vj(k)
to initialize WVj

.
Keep the columns of WVj

that correspond to
∀v ∈ Vj(k) .
Let sum = WVj (1, :) and V 0

j (k) = 1.

end
foreach x= 2 : |WVj

| do
if

∑
WVj

(x, :) > sum then
Let sum =

∑
WVj

(x, :), V 0
j (k) = x.

end
end

Given the steps for Voronoi diagram partition and service
center calculation, we list the steps of the distributed
reactive positioning algorithm for a particular ambulance
in Algorithm 3. Notice that there is no stopping criterion,
as it is designed for a reactive behavior. So if at any time
any ambulance is dispatched, the other ambulances will
automatically re-allocate themselves.

Remark 5.2. Since the ambulance position is restricted to
be on a vertex of the graph G, we make the following com-
promise to achieve real time performance: if the ambulance
is on the way to its next position p(t) 6= p(k + 1), we use
its latest recorded position on the graph p(t) = p(k) and
update p(t) only when it reaches its goal V 0

j . �

6. EXAMPLE

In this section, we use the graph extracted from the
OSM map of Södermalm island (with a population of
around 100 000 people) located in central Stockholm.
Our plots include the Voronoi diagram of the graph, the
optimum ambulance positions given by Solution 1 and how
ambulances re-allocate themselves in the case that one
ambulance is dispatched.

6.1 OSM map and parsing

OSM is a widely used open-source map. The downloaded
OSM model is an Extensible Markup Language (XML)
file. We first need to extract only the “street” nodes based
on the tags (for instance where the tag is ’highway’ etc.)
and then remove the unconnected nodes such that the
graph is connected and the distances are finite. A further
simplification is to filter out the non-intersection nodes. In
Fig. 3, we overlap the extracted graph on the OSM map of
Södermalm. Each node is marked as a black dot and each
edge is marked with a black line. For this map we reduced
the number of nodes from 38084 to 3964.
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Algorithm 3. Distributed reactive ambulance allocation.

Goal: Determine the j-th ambulance’s next position
pj(k + 1) on the graph such that eventually it
reaches its optimum location V ∗j .

Requires:
(1) Algorithm 1 and 2.
(2) Pre-computed distance matrix DG.
(3) Pre-computed weighted distance matrix WG.
(4) Initialized Vj(0) and V 0

j (0) for j = 1, . . . , |P |.
Input: pi(k), for i ∈ Nj(k).
Output: pj(k + 1).
if pi(k) = pi(k − 1), for i ∈ Nj(k) then

if pj(k) = V 0
j (k) then

pj(k + 1) = pj(k).
else

Apply: pj(k + 1) = V 0
j (k).

end
else

Update Vj(k + 1) using algorithm 1.
if Vj(k + 1) 6= Vj(k). then

Calculate V 0
j (k + 1) using algorithm 2.

else
V 0
j (k + 1) = V 0

j (k).

end
if pj(k) = V 0

j (k) then
pj(k + 1) = pj(k).

else
Apply: pj(k + 1) = V 0

j (k).

end
end

6.2 Validation

We choose to use 4 ambulances and select their initial
positions randomly. For simplicity, we choose the allowed
speed vk to be 80km/h for all the edges and we use a affine
survival probability function S to calculate WG. Given the
graph shown in Fig. 3 and its distance matrix DG, we
applied algorithm 1 and got four Voronoi sets shown in
Fig. 4.

18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.1

59.305

59.31

59.315

59.32

Fig. 3. OSM Map of Södermalm overlapped by graph.

Different Voronoi sets are labeled by colors and the ambu-
lance position is annotated with a big dot inside a black
ellipse. Using algorithm 3, the four ambulances reached the
corresponding service centers V 0

j as shown in Fig. 5. Note
that due to the changes of the ambulances positions, the
Voronoi sets are re-partitioned. For instance there are a
few nodes in the upper right of Fig. 4 are initially covered

18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.1
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59.32

Fig. 4. Initial ambulance positions and the corresponding
Voronoi diagram

by the red ambulance and later they are covered by the
yellow ambulance in Fig. 5. We refer to this set of nodes
as set X.

18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.1
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Fig. 5. Stable ambulance positions and the corresponding
Voronoi sets.

Suppose we received a call of service by the red node
shown in Fig. 6, the corresponding ambulance (red one) is
dispatched. The remaining three ambulances then apply
algorithm 3 and move to the new optimum as shown in
Fig. 6. Note that now the nodes in set X are covered

18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.1
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Fig. 6. Ambulances re-allocation in case that one ambu-
lance dispatched

by the cyan ambulance in Fig. 6 rather than the yellow
ambulance.

The reason that the set is assigned in a somewhat un-
intuitive way, is that there is a sharp height difference in
this area of the island, making X accessible only by roads
that follow the waterline to the west.
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7. CONCLUSIONS

The proposed method provides a distributed reactive so-
lution to the ambulance positioning problem. Given the
pre-calculated shortest distance information, there is no
need of solving a general optimization problem in real
time for all ambulances. Instead, each ambulance is only
required to keep track of its neighbors, to compute its
Voronoi set, and then do an optimization based on this set,
which is of average size |V |/|P |. Thus, the computational
requirements for each ambulance are not changed as long
as increases in problem size, |V | are matched by more
vehicles |P |. It was also shown that the proposed method
will result in a convergence of the average survivability to
a local maximum.
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