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Abstract: Active heave compensation (AHC) systems require an accurate estimate of the
vertical vessel motion in order to decouple the offshore crane’s lift operation from the motion
of the vessel. In this work, the heave motion is estimated based on measurements from an
inertial measurement unit (IMU) using an adaptive heave filter whose parameters are adapted
online. A standard double integrating heave filter introduces large phase errors resulting in
large estimation errors for real-time applications. This work presents three modifications of
a standard heave filter in order to reduce those phase errors. The error composition of each
proposed filter is analyzed. The results are used to derive error functions which are minimized
in order to obtain the optimal filter parameters. Furthermore, sea state characteristics, such as
the mean heave height and the dominant heave frequency are determined online and utilized for
parameter adaptation. The real-time estimation accuracy improves significantly when applying
the phase correction algorithms to the filters. This is evaluated using measurement results from
the Liebherr AHC test bench.

Keywords: Inertial measurement units; Position estimation; Adaptive filter; Error analysis;
Parameter optimization, Noise, Marine systems.

1. INTRODUCTION

Many technical marine applications are based on the
knowledge of the vertical motion of the vessel. Safe aircraft
landing on vessels (Marconi et al. [2002]) or hydrographic
seabed mapping (Work et al. [1998]), where the quality
of seabed maps is improved by heave compensation, are
only two examples for such marine applications. Another
important offshore application is subsea lifting, where
heavy loads need to be transferred safely from a vessel to
the seabed by an offshore crane which is attached to the
vessel. Such lifting operations are necessary for underwater
installations like pipelines or conveying systems for oil
and gas. Active heave compensation (AHC) systems are
supposed to compensate for the vertical vessel motion
and thus enable safe crane handling even under harsh
sea conditions. However, the AHC system performance
strongly depends on the estimation accuracy of the vertical
motion.

Due to wave excitation, a vessel moves in six degrees of
freedom which can be captured by an inertial measure-
ment unit (IMU). The three accelerometers measure the
translational accelerations and the three gyroscopes the
rotational angular rates. Since the horizontal motion is
usually controlled with dynamic positioning systems, the
three dominating directions of a vessel are pitch, roll and
heave. In order to obtain position and attitude of a vessel,
the accelerometer signals need to be integrated twice and
the gyroscope signals once. Due to sensor errors, such as
noise and bias, pure integration would result in an infinite

drift in position and attitude. Many approaches have been
proposed in the literature in order to eliminate this drift.
An often used approach is sensor fusion of an IMU and a
GPS as presented by Fossen and Perez [2009]. However,
this approach strongly depends on the availability of GPS
signals. Additionally, GPS performs worst in the vertical
direction which is a significant disadvantage for this appli-
cation.

If not the height (absolute vertical position) but the heave
(relative vertical position) is of importance, a standalone
IMU is sufficient. The motion is then determined with
respect to the current sea level. Thus, tidal changes,
for example, cannot be identified with the approaches
presented in the following. However, this is not necessary
for AHC purposes anyway. Küchler et al. [2011b] propose
an observer, implemented as extended Kalman filter, for
estimating the heave position with a standalone IMU.
The heave motion is approximated by the sum of several
overlaying sine waves. Thus, the position can be estimated
without any drift. Some approaches make use of a specific
hydrodynamic model of the vessel for heave estimation
as it is done by Triantafyllou et al. [1983]. Since AHC
crane systems are supposed to be independent of the vessel
they are attached to, such methods cannot be used for
AHC systems. A widely-used approach is the application
of a bandpass filter. This filter is a combination of a
highpass filter to remove low-frequency components and
a double integrator. Such a filter for position estimation is
proposed by Godhavn [1998]. He derives an error function
which represents the expected mean heave error. The
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Fig. 1. Rotation of the IMU.

optimal cutoff frequency of the highpass filter is adjusted
adaptively to ensure optimal performance. Yang et al.
[2009] present a similar approach, evaluating the effect of
parameter tuning for heave speed estimation only. Both
articles show that the main error for real-time applications
results from the phase errors induced by the highpass filter.
However, none of the mentioned work focuses on reducing
these errors by changing the filter structure, for example.

One of the main contributions of this work is the intro-
duction of several approaches to decrease the phase errors.
In addition, all filter parameters are adapted in real-time
and optimized according to the derived error functions.
As a result, the performance can be improved substan-
tially. The paper is organized as follows. In Section 2, the
general concept of heave estimation for AHC systems is
described. Subsequently, the underlying error model for
the accelerometers is derived before the utilized standard
heave filter is presented. Section 3 introduces three differ-
ent approaches to reduce the filter-induced phase errors by
changing the filter structure. Furthermore, error functions
for each case are derived in order to determine the optimal
filter parameters. The parameters are constantly adapted
according to the current sea state which is estimated on-
line. The proposed methods are evaluated and compared in
Section 4 using measurement results from a realistic AHC
test bench. Concluding remarks are given at the end.

2. HEAVE ESTIMATION

In the following, heave is estimated from the measurements
of one IMU. For AHC systems, this IMU needs to be
attached to the crane. Thus, it measures accelerations and
angular velocities in a local crane-fixed frame which is
called the b-frame. Since the heave motion needs to be
calculated in a global earth-fixed frame (n-frame), the
measurements of the IMU need to be transformed. In
Fig. 1, the main rotational directions of the IMU with
respect to the n-frame are illustrated. Due to the roll
and pitch motions, the IMU is rotated by φ about the
x-axis and by θ about the y-axis. Not considering these
rotations would lead to errors, since the z-axis of the IMU
does not point exactly in the direction of gravity or in
the direction of the z-axis of the n-frame, respectively.
Thus, before the double integration of the z-component
can be performed, the accelerometer signals need to be
transformed to the n-frame using the rotation matrix Cn

b .
The overall signal flow for heave estimation is illustrated
in Fig. 2. By using the measured accelerations ab and the
angular velocities ω

b in the local b-frame, the attitude
of the IMU, respectively the vessel, can be estimated in
terms of the Euler-angles φ, θ, ψ. The yaw angle ψ cannot
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Fig. 2. Block diagram for overall heave estimation.

be calculated exactly without external aid (see Rehbinder
and Hu [2004]) such as a magnetometer. However, ψ has
no influence on the direction of the vertical axis. Thus, it is
sufficient to guarantee that ψ cannot grow infinitely. The
z-component of the accelerations can now be used for the
actual heave estimation part in order to obtain the heave
position. Since the scope of the paper is the actual heave
estimation, attitude estimation and the transformation are
not considered. For the experimental results, realistic ship
motions with superimposed pitch and roll are used. For
this reason, an attitude estimation is necessary which is
done by a similar approach as presented in Küchler et al.
[2011a] and in Kim and Golnaraghi [2004].

2.1 Error Model

In the following, all signals are given in the n-frame,
the superscript n is thus omitted for better readability.
The measured signal az contains not only the actual
acceleration p̈z but also several error sources which can
be described by the error model

az = (1 + ǫ)p̈z + (1 + ǫ)g + b+ n+m, (1)

where g is the gravitational constant, ǫ is a scale error, b is
a bias, n is measurement noise and m is an error caused by
the misalignment between the z-axis of the accelerometer
and the gravity vector. The scale error can be compensated
during calibration of the sensor. The misalignment can be
neglected since the transformation from the b-frame to
the n-frame already compensates for it. As a result, the
simplified error model is

az = p̈z + g + b+ n. (2)

If the signal az is integrated twice without compensation
for the error sources, the estimated position and velocity
would grow infinitely. Thus, the heave filter needs to fulfill
the following requirements:

• Double Integration
• Elimination of the bias b+ g
• Suppression of the measurement noise n
• Small filter-induced estimation errors
• Reasonable settling time.

2.2 Standard Heave Filter

A straight-forward way to obtain a double integrating filter
which removes the constant or slowly time varying bias
is a combination of a linear highpass filter and a double
integrator. In the following, the standard heave filter as
defined by Godhavn [1998] is

H(s) =
p̂

az
(s) =

s2

(s2 + 2ζωcs+ ω2
c )

2
, (3)

with s being the Laplace variable, ζ the damping co-
efficient and ωc the cutoff frequency of the filter. The
position estimate is denoted by p̂. The damping coefficient
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Fig. 3. Bode plot of the transfer functions Hint(s), H1(s)
and H2(s).

ζ = 1/
√
2 is chosen in order to obtain the combination of

two second order Butterworth filters as highpass filter.

Figure 3 shows the Bode plots of the filters H1(s) and
H2(s) with the cutoff frequencies ωc,1 = 0.05 rad/s and
ωc,2 = 0.1 rad/s and a double integrator Hint(s). The
typical bandwidth of wave motion is between 0.05Hz and
0.2Hz. At these frequencies, the filters almost act as double
integrators, considering the magnitude response. Thus, the
gain errors are very low. Lower frequencies are highly
attenuated. The optimal phase for double integration of
-180 ◦ is only reached for frequencies larger than approxi-
mately 0.15Hz. The phase error for lower frequencies leads
to a significant error for position estimation. As can be
seen in Fig. 3, the errors for phase and magnitude increase
with the cutoff frequency. Choosing ωc very small in order
to reduce these errors cannot be done for two reasons:
First, the settling time increases with decreasing cutoff
frequency. The time constant of the filter is T = 2

√
2π/ωc,

since the step response after a step input ∆b, e.g. bias, is
given by

p̂ = ∆b
t

2ωn
e−ωnt

(

cos(ωnt) + sin(ωnt)
)

−∆b
1

2ω2
n

e−ωnt sin(ωnt), (4)

with ωn = ωc/
√
2. Second, the estimation error induced

by measurement noise increases with decreasing cutoff
frequency. As a result, the choice of ωc needs to be a
trade-off between reducing the noise-induced errors and
the filter-induced errors.

2.3 Error Analysis

The overall heave error can be written as

p̃ = p− p̂ =
(
1− s2H(s)

)
p−H(s)(g + b+ n). (5)

Assuming that heave motion can be approximated by
wave spectra such as the JONSWAP and the Pierson-
Moskowitch spectrum (Chakrabarti [2008]), every wave
has one dominant frequency at the point of maximal
spectral density function. Thus, for the following error
analysis the wave is assumed to be a sinusoid

p = Ap sin(ωpt), (6)

with amplitude Ap and dominant frequency ωp. The rela-
tive magnitude error for the filter (3) is then given by

e = ||1− s2H(s)|| s=iωp

=

√

ω8
c + 8ω6

pω
2
c

ω4
p + ω4

c

→ 2
√
2
ωc

ωp
, for ωp ≫ ωc. (7)

As can be seen in Fig. 3, the largest portion of this error
is due to the phase error.

In addition to the deterministic errors, particularly the
stochastic errors provoked by the sensor noise are relevant.
Assuming that the sensor noise n is white Gaussian noise
with variance σ2

n and spectral density

Snn(ω) = σ2
n, (8)

the variance of the noise induced error is given by

σ2
p̃n

=
1

2π

∫ ∞

ω=−∞

Sp̃p̃(ω)dω

=
1

2πi

∫ i∞

s=−i∞

H(s)H(−s)Snn(s)ds. (9)

The variance can be determined analytically using a
Phillips-Integral (see Maybeck [1982]) as

σ2
p̃n

=
σ2
n

27/2ω3
c

. (10)

2.4 Optimization and Adaptive Tuning

In order to obtain the best filter performance, the optimal
cutoff frequency ωc, which minimizes the total error re-
sulting from stochastic and deterministic errors, needs to
be determined. Thus, the variance of the total estimation
error is used as error function which can be approximated
by

σ2
p̃ = E[p̃2(t)] = E[(e p(t))2] + σ2

p̃n

≤ 8A2
p

(
ωc

ωp

)2

+
σ2
n

27/2ω3
c

= J. (11)

The minimum of this function can be calculated analyti-
cally as

ωc,opt =
1

23/2

(
3σ2

nω
2
p

A2
p

)1/5

. (12)

It can be assumed that the sensor noise is constant during
operation. However, the sea state and thus the dominant
wave frequency and amplitude can change significantly.
Therefore, the optimal cutoff frequency changes depending
on ωp and Ap. For this reason, both parameters are
determined in real-time by frequency analysis. Using a
real-time fast Fourier transform (FFT), the dominant wave
frequency can be determined. The mean wave hight Ap can
generally be expressed as

Ap = lim
T→∞

√

2

T

∫ T

0

p(t)2dt. (13)

Considering p(t) = −a(t)/ω2
p, the mean wave height can be

approximated using n buffered values aj of the acceleration
signal az from

Ap =

√
√
√
√

2

N

N∑

j=0

a2j
ω4
p

. (14)
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The general signal flow of the proposed adaptive algo-
rithms is illustrated in Fig. 4. The FFT of the acceleration
signal az is used to obtain the dominant frequency ωp.
The peak detection block also handles special cases such
as calm sea or situations where the frequency spectrum
contains two or more dominant frequencies. Using different
error functions, which are derived in the next section, the
optimal filter cutoff frequency ωc,opt and the optimal phase
correction filter parameters xpc are calculated. Then, the
discrete heave filter with real-time adapted parameters
estimates the position by using the acceleration measure-
ments az. It has to be stated that the resulting filter is
nonlinear due to changes in parameters. However, the sea
state changes slowly and thus the parameter changes are
much slower than the dynamic behavior of the actual heave
motion. This is farther ensured by a strong lowpass filter-
ing of the determined parameters. The robustness of the
implemented algorithms has been confirmed by extensive
tests.

3. PHASE CORRECTION ALGORITHMS

As shown in the last section, the largest drawback of a
double integrating highpass filter is the phase error which
results in large estimation errors. This section presents
three different approaches reducing this error in order to
improve the real-time estimation performance. Minimizing
error functions leads to optimal parameters for the cutoff
frequency and optimal values for the phase correction filter
parameters.

3.1 Lead-Lag Element

One way to influence the phase response without changing
the magnitude response is an allpass filter. The aim is to
completely eliminate the overall real-time estimation error
for one specific frequency. However, an allpass filter cannot
completely eliminate the total error since it only affects
the phase. Thus, a lead-lag element Hφ,ll with two design
parameters v and w is added in series to the standard
heave filter. The resulting filter is given by

Hll =
s2

(s2 + 2ζωcs+ ω2
c )

2

vs+ vw

s+ vw
︸ ︷︷ ︸

Hφ,ll

. (15)

The lead-lag element is supposed to almost act as an
allpass filter while it slightly influences the magnitude
in order to completely eliminate the error. The real-time
estimation error of this filter is

ell = ||1− s2Hll(s)||
s=iωp

=
||α(ωp) + β(ωp)i||

(ω4
p + ω4

c )
√

ω2
p + (vw)2

(16)

with

α(ωp) = 2
√
2ωcω

4
p − (2

√
2ω3

c + 4ω2
cvw)ω

2
p + vwω4

c , (17)

β(ωp) = (1− v)ω5
p − (2

√
2ωcvw + 4ω2

c )ω
3
p

+ (2
√
2ω3

cvw + ω4
c )ωp. (18)

The real time error disappears if α(ωp) = β(ωp) = 0. This
is the case for

v =
ω6
c + 2ω2

cω
4
p

ω4
p(ω

2
c − 4ω2

p)
− 1, (19)

w = 2
√
2 ω6

p

ω2
c − ω2

p

ω7
c + ω3

cω
4
p + 4ωcω6

p

. (20)

The Bode plots of the standard heave filter H(s), the
lead-lag heave filter Hll and the later presented heave
filters with a cutoff frequency of ωc = 0.08 rad/s are
shown in Fig. 5. For the calculation of the phase correction
parameters v and w a wave period of ωp = 0.63 rad/s, i.e.
fp = 0.1Hz, is used. As expected, the magnitude response
is almost the same as for the standard heave filter H(s).
The phase is lowered to match -180 ◦ at 0.1Hz. Unfortu-
nately, the phase error increases in particular for frequen-
cies larger than the estimated dominant wave frequency.
Nevertheless, the overall phase error for the typical band-
width of heave frequencies is reduced significantly. Since
the magnitude response remains almost unchanged, the
earlier defined error function J can be utilized. In fact, the
filter-induced error at frequency ωp equals zero. However,
there is an error for larger and smaller frequencies which
can be assumed to be proportional to the original error.
Thus, an error scale factor R is introduced, that describes
the real-time error improvement by phase correction. As a
result, the error function is given by

Jll = 8R2A2
p

(
ωc

ωp

)2

+
σ2
n

27/2ω3
c

(21)

which leads to the optimal cutoff frequency being

ωc,opt,ll =
1

23/2

(
3σ2

nω
2
p

R2A2
p

)1/5

. (22)

3.2 Zero Displacement

By simply changing the phase response of the filter, the
real-time error can only be eliminated at the dominant
heave frequency. At adjacent frequencies (especially larger
frequencies), the error is even larger than using the stan-
dard heave filter. Another possibility to influence the phase
response in a positive way is to displace one of the zeros
of the filter. The resulting filter can be written as

Hzd =
s(s+ a)

(s2 + 2ζωcs+ ω2
c )

2
, (23)

where the parameter a needs to be chosen such that the
real-time heave error, which is

ezd(a) =

√

ω8
c + 8ω2

cω
6
p + a2ω6

p + 4
√
2ωcω4

pa(ω
2
c − ω2

p)

ω4
c + ω4

p

,

(24)

becomes minimal. The optimal parameter aopt can be
determined analytically as

aopt = 2
√
2 ωc

(ω6
p − ω2

cω
4
p

ω6
p

)

,

→ 2
√
2 ωc, for ωp ≫ ωc. (25)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10122



Thus, the minimal real-time heave error is given by

ezd(aopt) =
ω2
c

√

ω4
c + 16ω4

p

ω4
c + ω4

p

,

→ 4
(ωc

ωp

)2

, for ωp ≫ ωc. (26)

Using (9) and a Phillips-Integral yields the noise-induced
error of filter Hzd(s), i.e.

σ2
p̃n,zd =

9

16

√
2
σ2
n

ω3
c

, (27)

which is approximately nine times higher than the noise
induced error of the standard filter. By minimizing the
error function

Jzd = 16A2
p

(ωc

ωp

)4

+
9

16

√
2
σ2
n

ω3
c

, (28)

the optimal cutoff frequency

ωc,opt,zd =
(27/1024

√
2 σ2

nω
4
p

A2
p

)1/7

(29)

can be obtained.

Figure 5 shows the Bode plot of filter Hzd(s). The phase
error is almost completely removed for typical heave fre-
quencies. However, the magnitude response has larger er-
rors. Furthermore, the zero displacement filter attenuates
low frequency components less than the standard filter.

3.3 Pole-Zero Placement

Another possibility to lower the phase within the required
frequency band is to add an additional pole and zero to the
transfer function. However, the magnitude is influenced
as well with this approach. For this reason, the proposed
heave filter has an additional parameter K in order to
influence the magnitude response. The transfer function
of the filter is given by

Hpz(s) =
s2

(s2 + 2ζωcs+ ω2
c )

2
K

s− z

s− p
, (30)

with the pole s1 = p and the zero n1 = z. The optimal
parameters p, z,K and ωc are obtained by constrained
minimization of the error function

Jpz = A2
p

(
Q1epz(ωp) +Q2epz(ωp,2) +Q3epz(ωp,3)

)

+ (Q1 +Q2 +Q3) σ
2
p̃n,pz(z, p,K, ωc), (31)

where σ2
p̃n,pz

denotes the noise induced error depending
on the filter parameters. The proposed error function does
not only contain the error at one specific frequency ωp

but penalizes the errors at two adjacent frequencies ωp,2

and ωp,3 as well. With the parameters Q1, Q2 and Q3, the
different errors can be weighted. As a result, the estimation
error can be minimized within a realistic frequency band
for heave motion instead of one dominant frequency only.
The adjacent frequencies are chosen to be proportional to
the dominant frequency with ωp,2 < ωp and ωp,3 > ωp.
Additionally, constraints need to be considered in order to
obtain a stable filter with acceptable settling time. It has to
be mentioned that the constrained optimization does not
necessarily have to be executed in real-time. The optimal
parameters depending on ωp, Ap and σ2

n can be calculated
offline and stored in lookup tables.
The Bode plot of filter (30) with a fixed cutoff frequency
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Fig. 6. Liebherr AHC test bench.

of ωc = 0.08 rad/s is shown in Fig. 5. Filter Hpz(s)
removes the phase error almost completely. Similar to
the zero displacement approach, the magnitude response
errors increase. However, especially the low frequency
components are attenuated better. For this reason, the
noise-induced error is reduced by approximately 25% on
average in comparison to filter Hzd(s).

4. EXPERIMENTAL RESULTS

Figure 6 shows the test bench used to compare the pro-
posed heave filters during an experiment. The body in the
middle of Fig. 6, called Tripod, can be moved by three
ropes (R1, R2 and R3) that are actuated by hydraulic
winches. This allows for imitation of the three dominant
motions of a vessel, namely, heave, pitch and roll. The
accelerations and angular velocities are measured by an
IMU which is attached to the tip of the Tripod. In order
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to compensate for its motion and to keep the load at a
fixed position, the winch located on the Tripod can be
used. As this contribution only focuses on heave estima-
tion, the compensation winch is not actuated during the
experiment. Furthermore, as mentioned earlier, to obtain
the vertical acceleration required for position estimation,
the measurements need to be transformed to the n-frame
(see Fig. 2). This is done using a similar algorithm as pre-
sented in Küchler et al. [2011a] and in Kim and Golnaraghi
[2004]. Therefore, only the transformed acceleration az is
considered in the following. The performance of the heave
filters can be evaluated using rope length R3, which is
measured by an incremental encoder, as a reference.

For the presented experiment, the Tripod is excited by a
simulated vessel motion for heave, pitch and roll. Thereby,
the motion sequence is obtained from a 6 DOF simulation
of a vessel using the Marine Systems Simulator (MSS
[2013]). The vessel was excited by a JONSWAP spectrum
with a significant wave height of 6m and a dominant
frequency of 0.63 rad/s. The top plot of Fig. 7 shows the
reference position pref of the Tripod’s tip measured by the
incremental encoder during the experiment. It is displayed
using a normalized plot, where the measured signal is
divided by the maximum value during the experiment. The
plot below depicts the vertical acceleration az measured
by the IMU and transformed to the n-frame. It clearly
illustrates that the acceleration signal is composed of the
heave acceleration, the earth’s gravity, some sensor noise
and a small sensor bias. Both plots only show a section
of the experiment. During the experiment, the position of
the Tripod was estimated online by the four previously
presented adaptive heave filters. The noise variance σ2

n
is chosen according to the data sheet of the IMU. The
same value is used for all algorithms. For all filters, the
mean wave height and the dominant wave frequency are
calculated online. The filter parameters are calculated
and adapted in real-time utilizing the error functions
derived in Sec. 3. This naturally leads to different average
cutoff frequencies for each filter. For example, optimal
performance of the lead-lag filter in comparison to the zero
displacement filter is reached at a significantly lower cutoff
frequency. This is due to the significantly smaller influence
from sensor noise of the lead-lag filter.

Table 1. Error numbers for the different heave
filters. The values are given as percentages of
the error when using the standard heave filter.

Error H(s) Hll(s) Hzd(s) Hpz(s)

RMS [%] 100 55.6 59.6 43.4
MAX [%] 100 59.1 66.4 49.7

Figure 8 only depicts a small time range of the experiment
in order to be able to visualize the differences in position
estimation. This range is shaded gray in Fig. 7. Yet, this
small section is representative for the overall experiment.
At the top left, the result using the standard heave filter
is presented. As expected, the estimated position has a
significant positive phase error. For the other three cases,
phase correction is applied. As can be seen at the top
right, the lead-lag filter can reduce the error significantly.
However, the phase of the heave motion is not perfectly
matched. Since the phase is simply corrected at one specific
frequency, large phase errors can occur especially when
high frequencies are present. At the bottom left, the
result using the zero displacement filter is shown. The
phase error, especially in the reverse points, is almost
zero which confirms the design of this filter. However,
large amplitude errors occur which are due to the lower
attenuation of sensor noise and filter-induced amplitude
errors. The optimized filter using pole-zero placement
yields the best result. The estimated position is in very
good accordance with its reference regarding phase and
amplitude.

To confirm the observations that were made from Fig. 8,
error numbers for the complete experiment are calculated
and displayed in Tab. 1. The calculation of the error
numbers starts after the filter’s settling time. For a better
comparability, the error numbers are given as percentages
of the error when using the standard heave filter. Thus,
the error numbers of the standard heave filter are set
to 100%. Two types of errors are considered, the root
mean square error and the maximal error of the deviation
between reference and estimated position. Table 1 clearly
shows that the heave estimation errors can be reduced
by more than 50% using the pole-zero placement filter.
The insertion of a lead-lag element as well as the zero
displacement method improve the performance of the
heave filter by approximately 40%. Note that the relative
performance of the heave filters is strongly dependent on
the quality of the acceleration measurements. For example,
the lead-lag heave filter attenuates sensor noise much
better than the zero displacement filter. Thus, the lead-lag
filter is preferable in the case of high sensor noise. However,
if the sensor noise is very low, the zero displacement and
the pole-zero placement filter have advantages since they
introduce a very small filter-induced error. Yet, it can be
stated that the proposed phase correction methods, in
general, significantly improve the performance of double
integrating heave filters. Thus, the presented algorithms
contribute to the aim of improving position estimation for
AHC systems.

5. CONCLUSION

This paper has presented different approaches for estimat-
ing the heave motion of a vessel using measurements of
an IMU. Since standard double integrating heave filters
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Fig. 8. Normalized reference positions pref (black, solid) and estimated positions p̂ (red, dashed) for the four different
adaptive heave filters H(s), Hll(s), Hzd(s) and Hpz(s).

show large phase errors for real-time applications, three
phase corrections methods for reducing these errors were
proposed. An error analysis for each filter was performed
in order to derive error functions which are minimized
to obtain the optimal parameters for each filter. Further-
more, sea state characteristics were calculated online and
also used for determining the optimal parameters. Using
measurement results from the Liebherr AHC test bench,
the proposed methods were validated and compared. The
results showed that the performance of position estimation
can be improved significantly by applying phase correc-
tion. The pole-zero placement approach yields the best
results reducing the error by approximately 60%. Since
the performance of AHC systems is strongly dependent on
the performance of position estimation, this contribution
can obviously help to improve the overall performance of
AHC systems. In the future, the presented methods will be
incorporated into a complete AHC framework which will
be tested at the Liebherr AHC test bench as well.
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