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Abstract: We address the problem of adaptive output-feedback stabilization of general first-
order hyperbolic partial integro-differential equations (PIDE). Such systems are also referred to
as PDEs with non-local (in space) terms. We apply control at one boundary, take measurements
on the other boundary, and allow the system’s functional coefficients to be unknown. To deal
with the absence of both full-state measurement and parameter knowledge, we introduce a pre-
transformation (which happens to be based on backstepping) of the system into an observer
canonical form. In that form, the problem of adaptive observer design becomes tractable. Both
the parameter estimator and the control law employ only the input and output signals (and their
histories over one unit of time). Prior to presenting the adaptive design, we present the non-
adaptive/baseline controller, which is novel in its own right and facilitates the understanding of
the more complex, adaptive system. The parameter estimator is of the gradient type, based on
a parametric model in the form of an integral equation relating delayed values of the input and
output. For the closed-loop system we establish boundedness of all signals, pointwise in space
and time, and convergence of the PDE state to zero pointwise in space. We illustrate our result
with a simulation.

1. INTRODUCTION

Much attention has been dedicated in recent years to
hyperbolic PDEs and to their stabilization (Coron et al.
[2007], Coron et al. [2008], Bastin and Coron [2011]). In
this paper, we focus on the stabilization of a general first-
order hyperbolic PIDE, where the state is controlled at one
boundary (input), and measured at the other (output).
Our work’s novelty is in how little knowledge we require
to stabilize the system: the state is measured at only one
boundary, and we allow the system’s functional coefficients
to be unknown. The key to our result is our introduction
of an “observer canonical form” for this class of systems,
which enables the design of an adaptive observer for
stabilization of the system.

Despite a growing number of publications on the topic
of boundary control of hyperbolic PDEs, stabilization
by adaptive output feedback has never been attempted.
The backstepping method, introduced in Smyshlyaev and
Krstic [2004] for parabolic systems, has seen use in in-
creasingly complex systems of coupled hyperbolic PDEs
(Vazquez et al. [2012],Meglio et al. [2012], and Meglio
et al. [2013], Coron et al. [2013]), as well as in Krstic
and Smyshlyaev [2008] and Krstic [2009] for the hyperbolic
PIDE that we tackle here.

We provide in this paper two novel contributions: a new
output-feedback controller to face the absence of full-state
measurement and, more importantly, the output-feedback
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controller’s adaptive version for the case of unknown
parameters.

The key new ingredient in our approach lies in the use
of backstepping to transform the system into an ob-
server canonical form, analogous to the transform used
in Smyshlyaev and Krstic [2010] to transform parabolic
PIDEs into a parabolic observer canonical form. Unlike the
original plant in which a product of unknown coefficients
and unmeasured state appears, our pre-transformation
leads to a system structure in which only one infinite-
dimension parameter is unknown but is multiplied by the
measured output, making simultaneous state and param-
eter estimation feasible.

For parameter estimation we use a gradient-based update
law similar to those employed in Smyshlyaev and Krstic
[2007], which differ from Lyapunov-based update laws
developed in Krstic and Smyshlyaev [2005], and then in
Krstic and Bresch-Pietri [2009], Bresch-Pietri and Krstic
[2009], Bresch-Pietri and Krstic [2010] and Bresch-Pietri
et al. [2012] to estimate delays or unknown parameters.
This gradient update law is obtained via a parametric
model in the form of an integral equation relating delayed
values of the input and output. The use of projection
enables to keep the estimated parameter within an a-priori
bound, which we assume known.

As for the problem of state estimation, it was already
addressed in Vazquez et al. [2011] for a 2 x 2 hyperbolic
linear system, through the design of a collocated boundary
observer. In our paper, however, we present an explicit
state observer employing the delayed values of both the
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input and the output over one unit of time, which enables
us to design an output-feedback controller. Associated
with the parameter estimation, and using the certainty
equivalence principle, we get an adaptive output-feedback
controller which achieves pointwise-in-space convergence
of the PDE state to zero. All signals are established to be
bounded pointwise in space and time.

Integral equations play prominent roles in our develop-
ment. One of the plant’s representations, the parametric
model for the parameter estimator design, the control law,
and the control gain kernel are all governed by integral
equations. The relation between hyperbolic PDE systems
and integral delay equations was recently thoroughly stud-
ied in Karafyllis and Krstic [To appear].

Outline. After introducing our system in Section 2, we
transform it to the observer canonical form in Section 3.
Once this step is accomplished, we start by presenting the
non-adaptive controller in Section 4 in order to facilitate
the understanding of the more complex, adaptive design,
which follows in Section 5 with the statement of the main
stability theorem. Section 6 then consists of its proof. We
finally end our paper with an illustration of our result
through a simulation in Section 7.

Notations. For any functions f and g defined on [0, 1], we
use the convolution notation

f ∗ g(x) =

∫ x

0

f(x− y)g(y)dy =

∫ x

0

f(y)g(x− y)dy

where x ∈ [0, 1] and for any function f defined on [0, 1]×
[0,∞), we denote the L2-norm as

‖f‖(t) =

√∫ 1

0

f(x, t)2dx.

2. GENERAL FIRST-ORDER HYPERBOLIC PIDE

We consider the following class of first-order hyperbolic
PIDE:

ūt(x, t) = ūx(x, t) + λ(x)ū(x, t) + ḡ(x)ū(0, t)

+

∫ x

0

f̄(x, y)ū(y, t)dy (1)

ū(1, t) =U(t) (2)

Y (t) = ū(0, t) , (3)

where λ, ḡ and f̄ are unknown, continuous functions. The
goal is to regulate ū(x, t) to zero for all x ∈ [0, 1] using the
measurement of only Y (t) = ū(0, t) and using boundary
control U(t).

PIDEs in the form (1) arise in chemical process systems,
as a result of coupling of transport dynamics with faster
thermal dynamics.

We first remove the reaction term in λū by introducing
the scaled state

u(x, t) = exp

(∫ x

0

λ(ξ)dξ

)
ū(x, t) (4)

which is governed by

ut(x, t) = ux(x, t) + g(x)u(0, t) +

∫ x

0

f(x, y)u(y, t)dy (5)

u(1, t) = ρ U(t) (6)

Y (t) = u(0, t) , (7)

where

g(x) = exp

(∫ x

0

λ(ξ)dξ

)
ḡ(x) (8)

f(x, y) = exp

(∫ x

y

λ(ξ)dξ

)
f̄(x, y) (9)

ρ= exp

(∫ 1

0

λ(ξ)dξ

)
(10)

Hypothesis 1. ρ is known and, without loss of generality,
we set it to ρ = 1 (by absorbing any non-unity ρ into U).

Hypothesis 2. Constants Mg and Mf are known such that,
for all 0 ≤ y ≤ x ≤ 1, |g(x)| ≤Mg and |f(x, y)| ≤Mf .

3. OBSERVER CANONICAL FORM

The key challenge for feedback design for the plant (5)–
(6) is that the term

∫ x
0
f(x, y)u(y, t)dy is a product of the

unmeasured state u(x, t) and of the unknown parameter
f(x, y). We overcome this challenge by transforming the
system into a form in which an unknown parameter
multiplies only the measured output Y (t) = u(0, t).

We introduce the backstepping pre-transformation

v(x, t) = u(x, t)−
∫ x

0

q(x, y)u(y, t)dy (11)

where q is the solution to the PDE

qy(x, y) + qx(x, y) =

∫ x

y

q(x, s)f(s, y)ds− f(x, y) (12)

q(1, y) = 0 (13)

and which maps the system (5)–(6) into

vt(x, t) = vx(x, t) + θ(x)v(0, t) (14)

v(1, t) =U(t) , (15)

where
Y (t) = v(0, t) = u(0, t) = ū(0, t) (16)

is measured and

θ(x) = q(x, 0) + g(x)−
∫ x

0

q(x, y)g(y)dy . (17)

We refer to the form (14), (15), (16) as the observer canon-
ical form due to its analogy with the eponymous form for
finite-dimensional systems. The transformation (11) is not
a part of design but of analysis only. The kernel q(x, y)
is unknown and so is the new system parameter θ(x).
Unlike the term

∫ x
0
f(x, y)u(y, t)dy in (5)–(6), which is a

product of two unknown quantities, the term θ(x)v(0, t) =
θ(x)Y (t) in (14) has only θ(x) as an unknown. This is the
key feature with which the observer canonical form (14),
(15), (16) enables us to perform adaptive output-feedback
design.

In the following theorem, proved in Section 6.1, we show
that the PDE (12)-(13) is well posed and thus that the
pre-transformation (11) is invertible.
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Theorem 3. The PDE (12)-(13) has a unique C1([0, 1] ×
[0, 1]) solution with the bound

|q(x, y)| ≤Mf (1− x) eMf (x−y)(1−x), (18)

where Mf is a bound for the function f on [0, 1]× [0, 1].

4. NON-ADAPTIVE OUTPUT-FEEDBACK
CONTROL DESIGN

Our non-adaptive controller is given by

U(t) =

∫ t

t−1
κ(t− τ)U(τ)dτ

+

∫ t

t−1

(∫ 1

t−τ
κ(µ)θ(1− µ+ t− τ)dµ

)
Y (τ)dτ,

(19)

where κ is solution of the Volterra equation

κ(x) = −θ(x) +

∫ x

0

κ(y)θ(x− y)dy . (20)

Theorem 4. For the system consisting of the plant (5)-(6)
and the controller (19)-(20), there exist Mo ≥ 1 and δ > 0
such that the following holds:

Ω(t)≤Moe−δtΩ(0) , ∀t ≥ 0 , (21)

Ω(t) ,
∫ 1

0

u2(x, t)dx+

∫ t

t−1

(
U2(τ) + Y 2(τ)

)
dτ . (22)

5. ADAPTIVE DESIGN

We apply the certainty equivalence principle and use an
adaptive version of controller (19), namely, we replace θ

and κ by their estimate θ̂ and κ̂, obtaining the control law

U(t) =

∫ t

t−1
κ̂(t− τ, t)U(τ)dτ

+

∫ t

t−1

(∫ 1

t−τ
κ̂(µ, t)θ̂(1− µ+ t− τ, t)dµ

)
Y (τ)dτ,

(23)

where θ̂ is generated by an estimator (to be designed) and

κ̂ is obtained from θ̂ by real-time solution of the Volterra
equation

κ̂(x, t) = −θ̂(x, t) +

∫ x

0

κ̂(y, t)θ̂(x− y, t)dy . (24)

For the design of a parameter estimator for θ(x), we need
a parametric model. The observer canonical form (14),
(15), (16) serves as our parametric model, however, we
use the following alternative representation of the observer
canonical form to motivate our choice of the estimator:

Y (t) = U(t− 1) +

∫ t

t−1
θ(t− τ)Y (τ)dτ + ε(t), (25)

where the function ε is arbitrary for t ∈ [0, 1] and ε(t) = 0
for t > 1.

Our parameter update law will need to employ projection

to keep the estimate θ̂(x, t) within an a priori known

bounded interval for each x ∈ [0, 1]. We make an assump-
tion in Hypothesis 2, which enables us to determine an a
priori bound on the true θ(x).

Reminding the reader that we have assumed (without loss
of generality) that ρ = 1, from the expression (17) for θ,
we get that, for all x ∈ [0, 1],

|θ(x)| ≤Mf (1− x)eMfx(1−x)(1 +Mg) +Mg

≤Mf e
Mf (1 +Mg) +Mg ,M , (26)

which is a bound that we shall employ to limit the estimate

θ̂(x) using projection.

Now, guided by the parametric model (25), we introduce
the update law

θ̂t(x, t) =
γ(x)

1 +
∫ t
t−1 Y

2(τ)dτ
Proj

(
Y (t− x)ê(0, t), θ̂(x, t)

)
,

(27)
where γ is a strictly positive-valued adaptation gain func-
tion, Y (t− x) is the “regressor”,

ê(0, t) = Y (t)− U(t− 1)−
∫ t

t−1
θ̂(t− τ, t)Y (τ)dτ (28)

is the “estimation error,” and the projection is given by

Proj(a, b) =

{
0, if |b| = M and ab > 0
a, otherwise.

(29)

The gain γ must be adapted depending on the desired
convergence speed of θ. Our main theorem is stated next.

Theorem 5. Consider the plant (5)-(6) under Hypotheses
1 and 2 with the controller (23)-(24) and the update

law (27)-(28). Then, for any initial conditions θ̂(·, 0) ∈
C1(0, 1), the solution (u, θ̂) and the control U are bounded
for all x ∈ [0, 1], t ≥ 0 and

lim
t→∞

u(x, t) = 0, ∀x ∈ [0, 1] (30)

lim
t→∞

U(t) = 0. (31)

6. PROOF OF THEOREM 5

6.1 Well-posedness of the transformation into the observer
canonical form

The PDE (12)-(13) is defined on the triangular domain:
τ = {(x, y), 0 ≤ y ≤ x ≤ 1}. The change of variables x̃ =

1 − y, ỹ = 1 − x, f̃(x̃, ỹ) = f(x, y), q̃(x̃, ỹ) = q(x, y) leads
us to a new PDE, defined on τ :

q̃ỹ(x̃, ỹ) + q̃x̃(x̃, ỹ) =−
∫ x̃

ỹ

q̃(x̃, s)f̃(s, ỹ)ds+ f̃(x̃, ỹ)(32)

q̃(x̃, 0) = 0. (33)

The function q̃(x̃, ỹ) satisfies the integral equation

q̃(x̃, ỹ) = F0(x̃, ỹ) + F [q̃](x̃, ỹ), (34)

where

F0(x̃, ỹ) =

∫ ỹ

0

f̃(x̃− ỹ + ξ, ξ)dξ (35)

F [q̃](x̃, ỹ) =−
∫ ỹ

0

∫ x̃−ỹ

0

q̃(x̃− ỹ + η, ξ + η)f̃(ξ + η, η)dξdη.

(36)
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We solve this equation by the method of successive ap-
proximations. We define the sequence

q̃0(x̃, ỹ) = F0(x̃, ỹ) (37)

q̃n+1(x̃, ỹ) = F0(x̃, ỹ) + F [q̃n](x̃, ỹ) (38)

and the differences ∆q̃n = q̃n+1 − q̃n. Then, we get

∆q̃n+1(x̃, ỹ) = F [∆q̃n](x̃, ỹ). (39)

By induction, we prove that, for all integers n,

|∆q̃n(x̃, ỹ)| ≤
Mn+1
f (x̃− ỹ)n

n!
ỹn+1. (40)

Therefore, the series

q̃(x̃, ỹ) = lim
n→∞

q̃n(x̃, ỹ) = F0(x̃, ỹ) +

∞∑
n=0

∆q̃n(x̃, ỹ). (41)

uniformly converges in τ to solution of (34) with the
bound |q̃(x̃, ỹ)| ≤Mf ỹ e

Mf (x̃−ỹ)ỹ. Thus, we also have that
q̃ ∈ C1(τ) since q̃n ∈ C1(τ) according to (35) and (36).
The bound (18) on q is easily deduced.

If we suppose q̃1 and q̃2 are two solutions and we consider
their difference δq̃ = q̃1 − q̃2, then we get

δq̃(x̃, ỹ) = F [δq̃](x̃, ỹ) (42)

and for all integer n,

|δq̃(x̃, ỹ)| ≤
Mn+1
f (x̃− ỹ)n

n!
ỹn+1 (43)

Thus, δq̃ = 0 and q̃1 = q̃2. Hence, we establish uniqueness
of the solution.

6.2 Nonadaptive Observer

We represent the delayed input and output signals with
the transport PDEs

φt(x, t) = φx(x, t), φ(x, 0) = φ0(x), x ∈ [0, 1] (44)

φ(1, t) = Y (t) (45)

and

ψt(x, t) = ψx(x, t), ψ(x, 0) = ψ0(x), x ∈ [0, 1] (46)

ψ(1, t) =U(t) . (47)

where φ0, ψ0 are arbitrary initial conditions verifying
φ0(1) = Y (0) and ψ0(1) = U(0). We can define for x ∈
[0, 1], Y (x− 1) = φ0(x) and U(x− 1) = ψ0(x). Then, the
explicit solutions to the PDE filters, for x ∈ [0, 1], t ≥ 0,
are given by

φ(x, t) = Y (t+ x− 1) (48)

ψ(x, t) =U(t+ x− 1) . (49)

The non-adaptive observer error

e(x, t) = v(x, t)−ψ(x, t)−
∫ 1

x

θ(ξ)φ(1− (ξ − x), t)dξ (50)

satisfies the autonomous PDE

et(x, t) = ex(x, t) (51)

e(1, t) = 0 . (52)

Therefore, for t ≥ 1, e(x, t) = 0 and we get the non-
adaptive observer:

v(x, t) = ψ(x, t) +

∫ 1

x

θ(ξ)φ(1− (ξ − x), t)dξ, t ≥ 1.

(53)

6.3 Properties of the Update Law

Our update law for the estimate θ̂(x, t) is based on the
parametric model

e(0, t) = v(0, t)− ψ(0, t)−
∫ 1

0

θ(ξ)φ(1− ξ, t)dξ. (54)

The estimation error (28) is alternatively written as

ê(0, t) = v(0, t)− ψ(0, t)−
∫ 1

0

θ̂(ξ, t)φ(1− ξ, t)dξ (55)

and the parameter estimation error θ̃(x, t) = θ(x)− θ̂(x, t)
satisfies

ê(0, t) = e(0, t) +

∫ 1

0

θ̃(ξ, t)φ(1− ξ, t)dξ. (56)

With the filters, we rewrite the update law as

θ̂t(x) =
γ(x)

1 + ‖φ‖2
Proj(ê(0)φ(1− x), θ̂(x)) (57)

(we remove the time dependance for clarity).

Lemma 6. With ‖ · ‖ denoting the L2-norm in x ∈ [0, 1],
and with L2 and L∞ denoting the usual function spaces
in t ∈ [0,∞), the adaptive law (57) guarantees that

|θ̂(x)| ≤M, for all (x, t) ∈ [0, 1]× [0,∞) (58)

‖θ̃‖ ∈ L∞ (59)

‖θ̂t‖ ∈ L2 ∩ L∞ (60)

ê(0)√
1 + ‖φ‖2

∈ L2 ∩ L∞ (61)

Proof. Omitted due to space constraints.

6.4 Backstepping transformation

Based on (50), we introduce the adaptive state estimate

v̂(x) = ψ(x) +

∫ 1

x

θ̂(ξ)φ(1− (ξ − x))dξ (62)

and apply the following backstepping transformation:

w(x) = v̂(x)− κ̂ ∗ v̂(x) , T [v̂](x), (63)

where κ is the solution to the Volterra equation

κ̂(x) = −θ̂(x) + κ̂ ∗ θ̂(x) = −T [θ̂](x). (64)

Transformation (63) is invertible,

v̂(x) = w(x)− θ̂ ∗ w(x), (65)

and leads to the target system

wt =wx − κ̂(x)ê(0)

+w ∗ T [θ̂t](x)

+T

[∫ 1

x

θ̂t(ξ)φ(1− (ξ − x))dξ

]
(66)

w(1) = 0 (67)
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This leads to the controller

U(t) = v̂(1) =

∫ 1

0

κ̂(1− y)v̂(y, t)dy, (68)

i.e.,

U(t) =

∫ 1

0

κ̂(1− y)

[
ψ(y, t) +

∫ 1

y

θ̂(ξ)φ(1− (ξ − y), t)dξ

]
dy,

(69)
which corresponds to the controller (23) presented in
Theorem 5. The φ system can be rewritten as

φt = φx (70)

φ(1) =w(0) + ê(0) (71)

We now have two interconnected systems, φ and w, given
by (70)-(71) and (66)-(67).

6.5 L2 Boundedness

From (64) and the Gronwall inequality, we get the follow-
ing bound:

|κ̂(x)| ≤MeM , K (72)

We also know from the previous section, that ‖θ̂t‖ is
bounded. Let’s now consider the Lyapunov functions:

V1 =
1

2

∫ 1

0

(1 + x)φ2(x)dx (73)

V2 =
1

2

∫ 1

0

(1 + x)w2(x)dx (74)

Using the PDEs (70)-(71), (66)-(67), and the Young in-
equality, we get the following upper bounds:

V̇1 ≤
3

2
w2(0) +

3

2
ê2(0)− 1

2
φ2(0)− 1

2
‖φ‖2 (75)

V̇2 ≤−
1

2
w2(0)−

(
1

2
− c1 − c2 − c3 − c4

)
‖w‖2

+
K

c1
ê2(0) + l1‖w‖2 + l2‖φ‖2 (76)

where the ci are arbitrary positive constants and li are
integrable bounded nonnegative functions.
We consider next the Lyapunov function

V = V1 + 4V2. (77)

Taking c1 = c2 = c3 = c4 = 1
16 , we get, from (75)-(77),

the inequality

V̇ ≤ −1

4
V + l V + l4−

1

2
φ2(0)− 1

2
w2(0) ≤ −1

4
V + l V + l4

(78)
since 1

2‖φ‖
2 ≤ V1 ≤ ‖φ‖2, 1

2‖w‖
2 ≤ V2 ≤ ‖w‖2.

Therefore, V is bounded and integrable (Lemma D.3 in
Smyshlyaev and Krstic [2010]), and ‖φ‖, ‖w‖ ∈ L2 ∩L∞.
The transformation (65) gives v̂ ∈ L2 ∩ L∞, and with
(62), ‖ψ‖ ∈ L2 ∩ L∞.
Then, from (53), we get that ‖v‖ ∈ L2 ∩ L∞, and from
(11) that ‖u‖ ∈ L2 ∩ L∞.

6.6 Pointwise Boundedness

The L2 boundedness of ‖φ‖ and ‖ψ‖ gives U ∈ L2 ∩
L∞ (see (69)). Therefore, (49) ensures that for all x,

0
0.5

1
0 5 10 15
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−1

0

1

2

3

4

tx

θ̂(
x
,t
)

0
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−10

−5

0

5

10

tx

u
(x
,t
)

Fig. 1. Response of system (81) to the adaptive control
(23)-(24) : evolution of state u (top), and of the esti-

mate θ̂ of the unknown infinite-dimension parameter
θ (bottom).

ψ(x, .) ∈ L2 ∩ L∞.
The following equalities hold:

ê(x) = e(x)−
∫ 1

x

θ̃(ξ)φ(1− (ξ − x))dξ (79)

ê(x) = v(x)− ψ(x)−
∫ 1

x

θ̂(ξ)φ(1− (ξ − x))dξ (80)

Therefore, using the facts that e(x) = 0 for t ≥ 1, (59) and
(79), ê(x, .) ∈ L2∩L∞, and then with (80), v(x, .) ∈ L2∩
L∞. Then, (11) gives u(x, .) ∈ L2 ∩ L∞ for all x ∈ [0, 1].
With (48), we finally get φ(x, .) ∈ L2 ∩ L∞.

In summary, the solution (u, φ, ψ, θ̂) is pointwise bounded.

6.7 Convergence

With (78), V̇ is bounded from above. As V is also positive
and integrable, we obtain that V → 0, that is, ‖w‖ → 0
and ‖φ‖ → 0. From (65), we get ‖v̂‖ → 0, and from (62),
‖ψ‖ → 0 follows. (50) and then (11), lead to ‖v‖ → 0 and
‖u‖ → 0.
Moreover, with (69), we get U(t) → 0. Therefore, ψ(x, .)
tends to 0 (from (49)) and, with (50), we get v(x, .) → 0.
Finally, with (11) we get the convergence of u(x, .) to zero.
This completes the proof of Theorem 5.

7. SIMULATIONS

We take the example of the Korteweg-de Vries-like equa-
tions used in Krstic and Smyshlyaev [2008]. The system
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Fig. 2. Comparison of the open and closed loops. For the
closed loop, we represent the input U and the output
Y (middle), and the boundary values of the estimation

θ̂ (bottom).

is determined by three coefficients, a, δ, and ε and a
transformation leads to the following PIDE (b =

√
a
ε ):

ut(x, t) = εux(x, t)− δb sinh (bx) u(0, t)

+δb2
∫ x

0

cosh (b(x− y)) u(y, t)dy. (81)

Taking ε = 1 and assuming we want to control PIDE
(81) without knowing a and δ, we apply the adaptive
output-feedback presented in Section 5. The results of the
simulation for a = 1, δ = 4, and a constant gain function
γ(x) = 1 in the update law, are given in Figure 1.
We see on the first graph of Figure 2 that the open-loop is
unstable and oscillatory; the two other graphs in Figure 2

describe how the adaptive control works. θ̂ is initialized at
zero, which makes the start of control slow (very small for
at least 2 time units); this slow start of control allows u to

grow, which excites the update law, enabling θ̂ to converge
towards (but not exactly to) θ(t). Control then catches up
and ensures the convergence of u to zero for all x ∈ [0, 1].
A higher gain function would induce a faster convergence:
for instance, γ(x) = 10 doubles the convergence speed.
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