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Abstract: This paper investigates the control problem of distributed parameter systems (DPS)
with time-varying delay by employing mobile actuator-sensor networks. It is assumed that each
agent in the networks has a sensor device which can measure spatial state, and an actuator
device that can dispense control signals to spatially distributed process and can communicate
with its neighbors. To better control the DPS with time-varying delay, the strategy how to
navigate the agents is considered. By constructing Lyapunov functionals and using inequality
analysis, criterias for stability of the DPS with time-varying delays are derived. Meanwhile, the
guidance scheme of every agent with augmented vehicle dynamics is derived. Simulation results
show that such mobile actuator-sensor networks can improve the control performance of the
DPS with time delay.

1. INTRODUCTION

The mobile actuator-sensor networks have many innate
advantages compared to wireless sensor networks on the
improved performance, monitoring and efficient control
of processes in practical applications, and have received
increasing attention, see for example Akyildiz and Kasi-
moglu (2004), Akkaya and Senel (2009), Tricaud and Chen
(2009, 2010). The networked actuators which are usual-
ly attached to mobile agents (terrain robots, underwater
vehicles, UAVs) can dispense relevant control signal on
practical systems to improve certain control objects with
the help of networked sensors. In particular, the control or
estimation of distributed parameter systems (DPS) using
mobile actuator-sensor networks has gained research at-
tention from scholars in many areas (Uciński, 2004; Zeng &
Ayalew, 2010; Chao & Chen, 2012; Tricaud & Chen, 2012).
For instance, in Chao, Chen and Ren (2006) moving actu-
ators were used to control the spatially distributed process
with the help of the static sensor networks using central
voronoi tessellations. Zeng and Ayalew (2010) investigated
the estimation and coordinated control using one mobile
radiant actuator. Recently, the control and estimation
problem of 1D DPS were investigated in Demetriou (2010)
by assuming that every mobile agent was massless and
inertialess. The controller design problem for 1D DPS and
adaptive control problem of 2D DPS were also investigated
in Demetriou (2011, 2012), where the vehicle dynamics for
each mobile agent was augmented in the mobile actuator-
sensor networks. However, most works for the control
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and/or estimation of DPS focus on the systems without
time delays.

On the other hand, the time delays often appear in many
chemical systems, biological systems, electrical engineering
systems and mechanical applications(Sen, Ghosh & Ray,
2010). Therefore, time delays are considered in order to
better reflect the reality in the distributed parameter sys-
tems. However, delays may destabilize the systems, so the
stability and control probelm for distributed parameter
systems with time delays have been intensively studied in
the recent years (Luo, Xia, Liu & Deng, 2009; Fridman
& Orlov, 2009; Fridman, Nicaise & Valein, 2010; Tai &
Lun, 2012). For example, the exponential stability of DPS
with time-varying delays was investigated in Fridman and
Orlov (2009), and several sufficient conditions for exponen-
tial stabilization were given by using different Lyapunov
functions and linear matrix inequality. However, all the
above results only considered the stability of delayed DPS
from theory and didn’t answer how to effectively improve
the performance of the control systems in the guarantee of
the stability of distributed parameter systems with time-
varying delay from the practical application.

Inspired by the above works, this paper discusses not
only the stability but also the improved control for dis-
tributed parameter systems with time-varying delay using
mobile actuator-sensor networks. By constructing a new
Lyapunov functional and using inequality analysis, the
stability conditions of DPS with time-varying delay are
derived, and a stable guidance scheme for every mobile
agent is provided.
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2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the distributed parameter system with time-
varying delay given by

∂w(t, x)

∂t
= a1

∂2w(t, x)

∂x2
+ a2w(t, x) + a3w(t− τ(t), x)

+
n

i=1

∑
b(x, θi(t))ui(t),

y(t) :=

 y1(t; θ1(t))
...

yn(t; θn(t))

 =



∫ l

0

c(x; θ1(t))w(t, x)dx

...∫ l

0

c(x; θn(t))w(t, x)dx

 ,
(1)

where (t, x) ∈ R+ × Ω, Ω = [0, l], a1 > 0, a2 and a3 are
constants, τ(t) denotes the time-varying delay satisfying
τ(t) ≥ 0 and τ̇(t) < η < 1. w(t, x) denotes the state;
b(x; θi(t)) and c(x; θi(t)) represent the spatial distribution
of the ith actuator and the ith sensor, respectively; ui(t)
represents the control signal of the ith actuator; θi(t)
represents the position of the ith mobile agent which is
affixed with an actuator and a sensor. The initial boundary
value conditions are given by

w(t, 0) = w(t, l) = 0, (2)

w(t, x) = φ(t, x), (t, x) ∈ [−τ, 0]× Ω, (3)

where φ(t, x) is the suitable smooth function.

Assumption 1. (Demetriou, 2010) In order to simplify sta-
bility analysis, it is assumed that the spatial distributions
of the ith actuator and the ith sensor in the ith mobile
agent are the same and given by

b(x; θi(t)) = c(x; θi(t))

=

{
1 if x ∈ [θi(t)− ε, θi(t) + ε]
0 otherwise,

(4)

which can also be written by b(x; θi(t)) = c(x; θi(t)) =
H(θi(t)−ε)−H(θi(t)+ε), whereH(θi(t)−ε) andH(θi(t)+
ε) are two Heaviside step functions.

Assumption 1 implies that the ith mobile agent (sensor)
can provide the spatially averaged observation in the sense
that

yi(t) =

∫ l

0

c(x; θi(t))w(t, x)dx

≈ 2ε× w(t, θi(t)− ε) + w(t, θi(t) + ε)

2
, i = 1, 2, · · · , n. (5)

Assumption 2. The motion equation of the ith mobile
agent is given by

miθ̈i(t) = fi(t), i = 1, · · · , n,
θi(0) = θi0, θ̇i(0) = 0, (6)

where θi(t) denotes the position of the ith mobile actuator-
sensor agent within the spatial domain Ω = [0, l], and fi(t)
is its associated control force.

Here, we consider not only the stability of distributed
parameter control systems with time-varying delay (1)
but also how to design the control force fi(t) such that

the state w(t, x) converges to zero faster than the fixed
actuators and sensors.

Assumption 3. Given an agent i, its neighbor set is Ni =
{j| |θi − θj | < R}. it is assumed that the ith agent

can transmit information (θi, θ̇i, yi) to its neighbor agents

and can receive information (θj , θ̇j , yj), j ∈ Ni, from its
neighbor agents.

To control the distributed parameter system with time-
varying delay and ensure the state w(t, x) converges to
zero, how to choose both the control signals ui(t), i =
1, 2, · · · , n, and the agent positions θi(t), i = 1, 2, · · · , n,
is crucial. For the need of minimal design complexity, the
static output feedback controller is considered and given
by ui(t) = −

j∈N(i)

∑
rijyj(t), i = 1, 2, · · · , n, where rij > 0

is the feedback gain, and yj(t), j = 1, 2, · · · , n are the
averaged measurements given by (5).

3. STABILITY ANALYSIS AND GUIDANCE OF
MOBILE AGENTS

In this section, the stability criteria for the distributed pa-
rameter system with time-varying delay and the guidance
law for every agent are derived.

Let us regard (1) as an evolution equation in a Hilbert
space. Similar to the assumptions in Demetriou (2010), let
W be a Hilbert space which is equipped with the inner
product ⟨·, ·⟩ and induced norm | · |. Let V be a reflexive
Banach space with norm denoted by ∥ · ∥. It is assumed
that V is embedded densely and continuously in W. Let V∗

denote the conjugate dual of V with induced norm ∥ · ∥∗.
It follows V ↪→ W ↪→ V∗ with both embedding dense and
continuously, and we have |ϕ| ≤ c∥ϕ∥, ϕ ∈ V, for some
c > 0.

In this work, W = L2(Ω) is the state space and w(t, ·) =
{w(t, x), 0 ≤ x ≤ l} denotes the state of the distributed pa-
rameter system with time-varying delay (1). The Sobolev
space V is given by V = H1

0 = {ψ ∈ H1(Ω)|ψ(0) =
ψ(l) = 0} and its conjugate dual space V∗ is H−1(Ω).
The system’s elliptic operator A1 is given in Dautray and
Lions (2000)

A1ϕ =
d

dx
(a1

dϕ

dx
), a1 > 0, ϕ ∈ Dom(A1),

with Dom(A1) = {ψ ∈ L2(Ω) |ψ,ψ′ abs. continuous, ψ
′′

∈ L2(Ω) and ψ(0) = ψ(l) = 0}. Since a1 > 0, the operator
A1 is bounded and symmetry, and −A1 is coercive in
Friedman (1964). Define bounded operators A2 = a2 and
A3 = a3. The n input operators are given by

Bi(θi)ui(t) = b(x; θi)ui(t), i = 1, · · · , n
and their matrix operator is given by

B(θ)u(t) = [B1(θ1) · · · Bn(θn)]

 u1(t)...
un(t)

 .
Since the ith actuator and ith sensor are affixed onboard
the ith mobile agent in the sense that the actuator and
sensor are collocated from Assumption 1, we have Ci = B∗

i
(Curtain and Zwart, 1995) and therefore
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yi(t) = Ciw(t) = B∗
i w(t)

=

∫ l

0

b(x; θi)w(t, x)dx, i = 1, · · · , n.

The control law ui(t) = −
j∈N(i)

∑
rijyj(t), i = 1, 2, · · · , n can

be expressed in a compact form

u(t) = −Γy(t)

where u(t) = [u1(t), · · · , un(t)]T , Γ = [rij ]n×n > 0, y(t) =
[y1(t), · · · , yn(t)]T . The gain matrix Γ = [rij ]n×n > 0
means Γ is symmetric positive definite, where rij ≥ 0.
Hereafter, rij > 0 if and only if the ith agent can exchange
information with the jth agent. Thus the closed loop
system of (1) is given by

ẇ(t) =A1w(t) +A2w(t) +A3w(t− τ(t)) +B(θ(t))u(t)

=A1w(t) +A2w(t) +A3w(t− τ(t))−B(θ(t))Γy(t)

=A1w(t) +A2w(t) +A3w(t− τ(t))

−B(θ(t))ΓB∗(θ(t))w(t). (7)

To further derive the stability conditions on the distribut-
ed parameter control system with time-varying delay and
the guidance scheme of mobile agents, the following lem-
mas are needed.

Lemma 1. The self-adjoint operators B(θ(t))ΓB∗(θ(t)),
−A1 and −A1 +B(θ(t))ΓB∗(θ(t)) are positive definite.

Proof. Since Γ = ΓT > 0,

⟨B(θ(t))ΓB∗(θ(t))w(t), w(t)⟩
= ⟨ΓB∗(θ(t))w(t), B∗(θ(t))w(t)⟩
≥ λmin(Γ)|B∗(θ(t))w(t)|2 > 0.

The proof of the positive definite of −A1 and −A1 +
B(θ(t))ΓB∗(θ(t)) is similar to Demetriou (2010).

Lemma 2. |(−A1 + B(θ(t))ΓB∗(θ(t)))w(t)| ≥ λ0|w(t)|,
where λ0 > 0 is the minimum eigenvalue of −A1 +
B(θ(t))ΓB∗(θ(t)).

Proof. Let Ac = −A1 +B(θ(t))ΓB∗(θ(t)), then

|(−A1 +B(θ(t))ΓB∗(θ(t)))w(t)|2

= ⟨Acw(t), Acw(t)⟩
= ⟨w(t), A∗

cAcw(t)⟩ = ⟨w(t), AcAcw(t)⟩
≥ λmin(AcAc)⟨w(t), w(t)⟩ = λ2min(Ac)⟨w(t), w(t)⟩
= λ20|w(t)|2.

From Lemma 1, −A1 + B(θ(t))ΓB∗(θ(t)) is positive, so
λ0 > 0.

Our main result is given in the following theorem.

Theorem 1. Consider the distributed parameter system
(1) with time-varying delay satisfying Assumptions 1-3.
The proposed guidance law for each agent renders the
system (1) stable and improves the control performance
in the sense of that the system state w(t, x) converges to
zero fast, If there exist positive constants p and q, such
that

−pλ20 + 2pa22 + q < 0 and 2pa23 − q(1− η) < 0.

The guidance law for each agent is given by (6), where

fi =− p(w(t, θi(t)− ε)− w(t, θi(t) + ε))(
j∈Ni

∑
rijyj(t))

− kiθi(t)− diθ̇i(t), i = 1, 2, · · · , n, (8)

where ki ≥ 0 and di ≥ 0.

Proof. Choose a Lyapunov functional candidate V (t) as
follows

V (t) = V1(t) + V2(t) + V3(t) + V4(t)

where

V1(t) =−p⟨w(t), A1w(t)⟩,
V2(t) = p⟨w(t), B(θ(t))ΓB∗(θ(t))w(t)⟩,

V3(t) = q

∫ t

t−τ(t)

⟨w(s), w(s)⟩ds,

V4(t) =

n∑
i=1

(mi(θ̇i(t))
2 + ki(θi(t))

2),

and p > 0, q > 0, ki > 0.

Next, calculating the derivative of V (t) along with the
trajectory of system (7) yields

V̇1(t) =−p⟨ẇ(t), A1w(t)⟩ − p⟨w(t), A1ẇ(t)⟩, (9)

V̇2(t) = p⟨ẇ(t), B(θ(t))ΓB∗(θ(t))w(t)⟩
+p⟨w(t), B(θ(t))ΓB∗(θ(t))ẇ(t)⟩

+p⟨w(t), d
dt

(B(θ(t))ΓB∗(θ(t)))w(t)⟩, (10)

V̇3(t) = q⟨w(t), w(t)⟩
−q(1− τ̇(t))⟨w(t− τ(t)), w(t− τ(t))⟩, (11)

V̇4(t) =
n∑

i=1

(2miθ̇i(t)θ̈i(t) + 2kiθi(t)θ̇i(t)).

Using the fact that both A and B(θ(t))ΓB∗(θ(t)) are self-
adjoint, then

V̇1(t) + V̇2(t) =− 2p⟨ẇ(t), A1w(t)⟩
+ 2p⟨ẇ(t), B(θ(t))ΓB∗(θ(t))w(t)⟩

+ p⟨w(t), d
dt

(B(θ(t))ΓB∗(θ(t)))w(t)⟩. (12)

For the first two parts of (12), using the fact ±2⟨x, y⟩ ≤
⟨x, x⟩+ ⟨y, y⟩, we obtain

−2p⟨ẇ(t), A1w(t)⟩+ 2p⟨ẇ(t), B(θ(t))ΓB∗(θ(t))w(t)⟩
=−2p⟨ẇ(t), (A1 −B(θ(t))ΓB∗(θ(t)))w(t)⟩
=−2p⟨(A1 −B(θ(t))ΓB∗(θ(t)))w(t) +A2w(t)

+A3w(t− τ(t)), (A1 −B(θ(t))ΓB∗(θ(t)))w(t)⟩
=−2p|(A1 −B(θ(t))ΓB∗(θ(t)))w(t)|2

−2p⟨A2w(t) +A3w(t− τ(t)),

(A1 −B(θ(t))ΓB∗(θ(t)))w(t)⟩
≤−2p|(A1 −B(θ(t))ΓB∗(θ(t)))w(t)|2

+p⟨A2w(t) +A3w(t− τ(t)), A2w(t) +A3w(t− τ(t))⟩
+p⟨(A1 −B(θ(t))ΓB∗(θ(t)))w(t),
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(A1 −B(θ(t))ΓB∗(θ(t)))w(t)⟩
=−p|(A1 −B(θ(t))ΓB∗(θ(t)))w(t)|2 + p⟨A2w(t), A2w(t)⟩
+p⟨A3w(t− τ(t)), A3w(t− τ(t))⟩
+2p⟨A2w(t), A3w(t− τ(t))⟩

≤−p|(A1 −B(θ(t))ΓB∗(θ(t)))w(t)|2 + p⟨A2w(t), A2w(t)⟩
+p⟨A3w(t− τ(t)), A3w(t− τ(t))⟩+ p⟨A2w(t), A2w(t)⟩
+p⟨A3w(t− τ(t)), A3w(t− τ(t))⟩

=−p|(A1 −B(θ(t))ΓB∗(θ(t)))w(t)|2 + 2p⟨A2w(t), A2w(t)⟩
+2p⟨A3w(t− τ(t)), A3w(t− τ(t))⟩. (13)

For the last part of (12), we have

p⟨w(t), d(B(θ(t))ΓB∗(θ(t)))

dt
w(t)⟩

= 2p⟨w(t), θ̇(t)∂B(θ(t))

∂θ(t)
ΓB∗(θ(t))w(t)⟩

= 2p



∫ l

0

θ̇1(t)
∂B1

∂θ1(t)
w(t, x)dx

...∫ l

0

θ̇n(t)
∂Bn

∂θn(t)
w(t, x)dx



T

Γy(t). (14)

Examining (14) in detail, we obtain∫ l

0

θ̇i(t)
∂Bi

∂θi(t)
w(t, x)dx

= θ̇i(t)

∫ l

0

∂Bi

∂θi(t)
w(t, x)dx

= θ̇i(t)

∫ l

0

∂(H(θi(t)− ε)−H(θi(t) + ε))

∂θi(t)
w(t, x)dx

= θ̇i(t)

∫ l

0

(δ(θi(t)− ε)− δ(θi(t) + ε))w(t, x)dx

= θ̇i(t)(w(t, θi(t)− ε)− w(t, θi(t) + ε)). (15)

Thus it follows from (14) and (15),

p ⟨w(t), d(B(θ(t))ΓB∗(θ(t)))

dt
w(t)⟩

= 2p
n∑

i=1

[ θ̇i(t)(w(t, θi(t)− ε)− w(t, θi(t) + ε))

×(
j∈Ni

∑
rijyj(t)) ]. (16)

Using the condition in (6), we get

V̇4(t) =
n∑

i=1

(2miθ̇i(t)θ̈i(t) + 2kiθi(t)θ̇i(t))

=
n∑

i=1

2θ̇i(t) (miθ̈i(t) + kiθi(t))

=
n∑

i=1

2θ̇i(t) (fi + kiθi(t)). (17)

Combining (11), (13), (16) and (17), and using the condi-
tion τ̇(t) ≤ η < 1, we get that

V̇ (t) ≤− p|(A1 −B(θ(t))ΓB∗(θ(t)))w(t)|2

+ 2p⟨A2w(t), A2w(t)⟩
+ 2p⟨A3w(t− τ(t)), A3w(t− τ(t))⟩
+ q⟨w(t), w(t)⟩ − q(1− η)⟨w(t− τ(t)), w(t− τ(t))⟩

+ 2p
n∑

i=1

[ θ̇i(t)(w(t, θi(t)− ε)− w(t, θi(t) + ε))

×(
j∈Ni

∑
rijyj(t)) ]

+ 2
n∑

i=1

θ̇i(t) (fi + kiθi(t)). (18)

From Lemma 2 and using A2 = a2, A3 = a3, we have

V̇ (t)≤ (−pλ20 + 2pa22 + q)|w(t)|2

+(2pa23 − q(1− η))|w(t− τ(t))|2

+2

n∑
i=1

θ̇i(t)[p(w(t, θi(t)− ε)− w(t, θi(t) + ε))

×(
j∈Ni

∑
rijyj(t)) + fi + kiθi(t) ]. (19)

Considering the control force (8), the derivative of V (t)
becomes

V̇ (t)≤ (−pλ20 + 2pa22 + q)|w(t)|2

+(2pa23 − q(1− η))|w(t− τ(t))|2

−2
n∑

i=1

di(θ̇i(t))
2. (20)

If the conditions −pλ20 +2pa22 + q < 0, 2pa23 − q(1− η) < 0

are hold, then we have V̇ (t) < 0. Thus, from the standard
Lyapunov stability theorems, the system (1) is stable. The
proof is completed.

In Theorem 1, it is assumed that every agent can receive
or transmit information of its measurements from/to its
immediate neighbors in the sense that the local connectiv-
ity of the agents is required. This may be relaxed if any
two agents can’t exchange information with each other.
In this case, the non-interacting controllers are given by
ui(t) = −riyi(t), ri > 0, i = 1, · · · , n. From Theorem 1, it
is easy to get the following corollary.

Corollary 1. Consider the distributed parameter system
(1) with time-varying delay satisfying Assumptions 1-2.
Every agent only takes information from its own sensor
and the control law for the ith actuator is given by ui(t) =
−riyi(t), i = 1, 2, · · · , n. The proposed guidance law for
each agent renders the system (1) stable and improves
the control performance in the sense of that the system
state w(t, x) converges to zero fast, if there exist positive
constants p and q, such that

−pλ20 + 2pa22 + q < 0 and 2pa23 − q(1− η) < 0.

The guidance law for each agent is given by (6), where

fi =− priε(w
2(t, θi(t)− ε)− w2(t, θi(t) + ε))

− kiθi(t)− diθ̇i(t), i = 1, 2, · · · , n,
where ki ≥ 0 and di ≥ 0.
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When τ(t) ≡ τ (τ is a constant), Theorem 1 will reduce
to the following Corollary 2.

Corollary 2. Consider the distributed parameter system
(1) with τ(t) ≡ τ satisfying Assumptions 1-3. The guid-
ance law for each agent renders the system (1) stable and
enhances the performance in the sense of that the system
state w(t, x) converges to zero fast, if there exist positive
constants p and q, such that

−pλ20 + 2pa22 + q < 0 and 2pa23 − q < 0.

The guidance law for each agent is given by (6), where

fi =− p(w(t, θi(t)− ε)− w(t, θi(t) + ε))(
j∈Ni

∑
rijyj(t))

− kiθi(t)− diθ̇i(t), i = 1, 2, · · · , n, (21)

where ki ≥ 0 and di ≥ 0.

Remark 1. It should be noted that the control force fi(t)
in Theorem 1 for the ith agent depends on not only
its location and velocity, but also the difference of the
measurements w(t, xai − ε) − w(t, xai + ε) and the output
readings of its neighbor agents yj(t), j ∈ Ni, in the sense
that the mobile agents and the spatial process interact
with each other.

4. SIMULATIONS

Consider the system (1) with the initial condition φ(t, x) =

sin(πx)e−7x2

(t+2) where x ∈ Ω = [0, 1], t ∈ [−τ, 0], τ = 2.
The coefficients are a1 = 0.003, a2 = 0.01 and a3 = 0.01.
For simplicity, the closed loop system is simulated for
20 seconds with two mobile actuator-sensor agents whose
parameters are chosen as mi = 1, p = 1, ki = 0.002, di =
0.5, i = 1, 2 and ε = 0.035. The gain matrix Γ was taken
as [

20 10
10 20

]
.

The initial conditions for the two mobile agents are chosen
as θ1(0) = 0.2, θ̇1(0) = 0, θ2(0) = 0.8, θ̇2(0) = 0. The
positions for the two fixed agents are 0.2 and 0.8.

The system state for the uncontrolled case and the con-
trolled case with two mobile agents which are affixed with
actuators and sensors are depicted in Fig. 1 and Fig. 2,
respectively. It can be seen that the distributed parameter
system with time delay is well controlled by the mobile
actuator-sensor networks.
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Fig. 1. The state of system (1) without control.
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Fig. 2. The state of system (1) with two mobile actuators.
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Fig. 3. Evolution of state L2 norm.
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Fig. 4. Spatial distribution of w(t, x) at t = 0, 5, 10, 15.
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Fig. 5. Actuator trajectory.

Fig. 3 depicts the evolution of state L2(0, 1) for the closed
loop system with two fixed actuators and two mobile
actuators. As we can see, the state L2 norm for the
mobile actuator-sensor networks converges to zero much
faster than that for the fixed actuator-sensor networks,
so the effects of the mobile actuator-sensor networks on
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controlling distributed parameter systems with time delay
are encouraging. Fig. 4 depicts the spatial distribution of
the closed loop state at four time instances. It is evident
that the state at different time instances converges to zero
much faster when the agents are allowed to move. Finally,
the trajectory for the two mobile actuators is depicted in
Fig. 5.

5. CONCLUSION

In this paper, the performance enhancement of distributed
parameter systems with time-varying delay using mobile
actuator-sensor networks has been presented. We have also
provided an analytical expression for the control force
of each mobile agent and the stabilization conditions for
the closed loop systems with time-varying delays. The
simulation results have revealed that mobile actuator-
sensor networks could better enhance the performance on
the process state.
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M. A. Demetriou and D. Uciński. Simplified controller
design for distributed parameter systems using mobile
actuator with augmented vehicle dynamics. In American
Control Conference, pages 3140-3145, 2011.

M. A. Demetriou. Adaptive control of 2D PDEs using
mobile collocated actuator/sensor pairs with augmented
vehicle dynamics. IEEE Transactions on Automatic
Control, 57(12):2979-2993, 2012.

E. Fridman and Y. Orlov. Exponential stability of linear
distributed parameter systems with time-varying delays.
Automatica, 45(1):194-201, 2009.

E. Fridman, S. Nicaise and J. Valein. Stabilization of sec-
ond order evolution equations with unbounded feedback
with time-dependent delay. SIAM Journal on Control
and Optimization, 48(8):5028-5052, 2010.

A. Friedman. Partial Differential Equations of Parabolic
Type. En-glewood Cliffs, NJ: Prentice-Hall, 1964.

Y. P. Luo, W. H. Xia, G. R. Liu and F. Q. Deng.
LMI approach to exponential stability of distributed
parameter control systems with delay. Acta Automatica
Sinica, 35(3):299-304, 2009.

S. Sen, P. Ghosh and D.S. Ray. Reaction-diffusion systems
with stochastic time delay in kinetics. Physical Review
E, 81(5):056207, 2010.

Z. X. Tai and S. X. Lun. Absolutely exponential stability
of Lur′e distributed parameter control systems. Applied
Mathematics Letters, 25(3):232-236, 2012.

C. Tricaud and Y. Q. Chen. Optimal mobile actua-
tor/sensor network motion strategy for parameter esti-
mation in a class of cyber physical systems. In American
Control Conference, pages 367-372, 2009.

C. Tricaud and Y. Q. Chen. Optimal trajectories of mobile
remote sensors for parameter estimation in distributed
cyber-physical systems. In American Control Confer-
ence, pages 3211-3216, 2010.
C. Tricaud and Y.Q. Chen. Optimal Mobile Sensing
and Actuation Policies in Cyber-Physical Systems.
Springer. ISBN 978-1-4471-2261-6. 2012. (170 pages)
http://www.springer.com/engineering/robotics/book/
978-1-4471-2261-6.
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