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via Madonna delle Carceri, 62032 Camerino (MC), Italy,

e mail: {letizia.corradini, roberto.giambo, silvia.pettinari}@unicam.it

Abstract: This paper investigates the possible adoption of a fractional order sliding surface
for the robust control of perturbed integer-order LTI systems. It is proved that the standard
approach used in Sliding Model Control (SMC) cannot be used and a substantial redesign of the
control policy is needed. A novel control strategy is discussed, ensuring that the sliding manifold
is hit at an infinite succession of time instants becoming denser as time grows. Interesting
asymptotic properties are derived relatively to the closed loop response in the presence of a
wide class of disturbances. It is also proved that the chattering phenomenon may be remarkably
alleviated. A careful simulation study is reported using an electromechanical system taken
from the literature, which includes also a comparative analysis of performances with respect
to standard SMC and second-order SMC.

Keywords: Fractional-Order Control, Sliding-Mode Control, Robust Control.

1. INTRODUCTION

In recent years, fractional calculus has attracted the inter-
est of the control community in relation to those physical
real world phenomena which have been found to be effec-
tively modeled with Fractional Order (FO) dynamics Pod-
lubny [2002], Atanackovic et al. [2007], Caponetto et al.
[2010], Ding and Te [2009].Since a relevant number of frac-
tional calculus applications can be found in different areas
Magin [2006], Monje et al. [2010], the scientific interest
mostly focussed on the control of inherently FO systems,
and extensions of many different control approaches have
been derived to accommodate fractional order systems
Efe [2010], Agrawal [2004], Dadras and Momeni [2010],
Oustaloup et al. [1996], Podlubny [1999a], Delavari et al.
[2010], Faieghi et al. [2012].

With reference to the well known field of Sliding Mode
Control (SMC) Utkin [1992], the adoption of a sliding sur-
face, possibly of fractional order, to deal with FO systems
is well established in the literature, this approach being
known as fractional sliding mode control Dadras and Mo-
meni [2011], El-Khazali [2005], Pisano et al. [2010]. In par-
ticular, the use of second-order sliding mode approaches
to control and estimation of FO dynamics has been widely
investigated by Pisano et al. [2011], Pisano and Caponetto
[2013], Pisano et al. [2012b], with applications to fault
detection Pisano et al. [2011, 2012a]. In this context, the
basic features and control design methods typical of sliding
mode control are shown to be mostly extendable, at least
for some classes of FO plants, from the classical integer-
order setup to the FO framework. To the best of the
authors’ knowledge, however, the possibility of using a
fractional order sliding surface for Linear Time-Invariant
(LTI) integer-order systems has been never investigated,
although it could be worthwhile to study the possibility
that fractional order dynamics are imposed, by forcing

the plant onto a FO sliding surface, to the reduced order
system of an originally LTI integer-order system. Undoubt-
edly, it can be foreseen that, due the particular form of
such a surface, the concept itself of sliding motion could
need to be revisited, since it should be first established if
a sliding motion can be achieved and, in this case, which
condition can be imposed for its achievement.

To pursue the above goal, the present note investigates
the possible adoption of a FO sliding surface s(t) = 0 for
controlling an LTI integer-order, perturbed plant. After
proving the asymptotical stability of the plant restricted
onto the surface, it will be shown that the traditional
strategy of choosing a discontinuous control input, in
addition to the equivalent control, satisfying the classi-
cal sliding condition cannot be used for the proposed
FO sliding surface. An ad hoc control strategy will be
proposed ensuring that the sliding manifold is hit at an
infinite succession of time instants becoming denser as
t grows to infinity. Moreover, the robust asymptotical
achievement of the condition s(t) = 0 will be proved for
the system restricted onto the surface. Investigating the
behavior of the system, interesting asymptotical properties
will be derived relatively to the closed loop response to
wide classes of disturbances. Moreover, the non uniform
distribution of the time instants when the crossing of the
sliding manifold occurs, becoming denser asymptotically,
coupled with the asymptotical vanishing of the function
s(t) suggests that the well known chattering phenomenon
may be remarkably alleviated. In order to test the practical
feasibility of the proposed approach, a detailed simulation
study is reported in this note. Reference has been made to
the electromechanical system studied by Eker [2010], Eker
[2013], and a careful performance comparison has been
made with standard SMC Utkin [1992] and second-order
SMC Bartolini et al. [2003], Levant [2005].
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2. PRELIMINARIES

2.1 Preliminary definitions

Given a real number α ∈]0, 1[, the Caputo derivative
(Podlubny [1999b]) of a function f(t) is defined as

Dαf(t) :=
1

Γ(1− α)

∫ t

0

f ′(τ)

(t− τ)α
dτ, (1)

and the Caputo integral is given by

D−αf(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ. (2)

where Γ(·) is the Euler-Gamma function.

Proposition 1. Caputo derivative (1) is only right invert-
ible.

Proposition 2. If f(t) is regular enough, then

d

dt
(Dαf(t)) = Dα

(

d

dt
f(t)

)

+
f(0)

Γ(1− α)tα
. (3)

In the following, the notation f(t) ≈ g(t) means that func-
tions f(t) and g(t) have the same asymptotic behaviour.
Bold type symbols (i.e. x) denote vectors or matrices
depending on the context, while scalars are denoted by
non-bold characters (i.e. x).

2.2 The plant

Consider an LTI system with matched uncertainties

ẋ(t) = Ax(t) +B(u(t) + d(t)) (4)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is the input

vector and d(t) is an unknown signal representing possible
disturbances and/or perturbations.

Assumption 1. The couple (A,B) is controllable. More-
over, the disturbance term d(t) belongs to the following
general class

Dp := {d(t) : |d(t)| ≤ ρ tp, p ≥ 0, ρ > 0}. (5)

Due to Assumption 1, there always exists a transformation
matrix T which brings the system into the canonical
controllability form

ẋ(t) = Ax(t) +B(u(t) + d(t)) (6)

with

A =

[

A11 A12

A21 A22

]

, B = [0, · · · , 1]T . (7)

where A11 ∈ R
n−1×n−1, A12 ∈ R

n−1×1, A21 ∈ R
1×n−1,

A22 ∈ R. Consequently, the state vector is partitioned as
x(t) = [x1(t), x2(t)] with x1(t) ∈ R

n−1 and x2(t) ∈ R.

3. A FRACTIONAL ORDER SURFACE

Consider the following function

s(t) := Dα(C1x1(t) +C2D
−1

x1(t)) =

=
1

Γ(1− α)

∫ t

0

C1ẋ1(τ) +C2x1(τ)

(t− τ)α
dτ (8)

with α ∈]0, 1[, C1,C2 ∈ R
1×(n−1) are row vectors of

positive real values and the initial values are x1(0) = x2(0)
and x2(0) = x20 ∈ R with x20 arbitrary chosen. By (8) the
sliding surface s(t) = 0 is defined.

Proposition 3. The vectors C1,C2 in (8) can be always
designed such that the system (4) restricted to the surface
s(t) = 0 has stable assigned eigenvalues.

Proof. When the plant is restricted onto the surface
s(t) = 0 for any t, the integrand of (8) is null, i.e. it holds
∀t

C1ẋ1(t) +C2x1(t) = 0

hence
x2 = −(C1A12)

−1(C1A11 +C2)x1

and the system restricted to s(t) = 0 verifies ẋ1 =
Hx1, with H := (In−1 − (C1A12)

−1
A12C1)A11 −

(C1A12)
−1

A12C2. By construction H is a companion
matrix

H =

[

0 In−1

−h1 . . . −hn−1

]

,

soC1,C2 can always be designed such that the roots of the
polynomial λn−1+hn−1λ

n−2+ . . .+hj+1λ
j + . . .+h1 = 0

lie strictly in the open left half of the complex plane. �

Define the control input as the sum of an equivalent input
and a nonlinear input, i.e

u(t) := ue(t) + un(t) (9)

and choose the equivalent control ue(t) so that ṡ(t) van-
ishes in the disturbance-free case:

ue(t) =− (C1A12)
−1((C1A11A11 +C1A12A21 +C2A11)x1(t)+

+ (C1A11A12 +C1A12A22 +C2A12)x2(t)). (10)

Since Caputo derivative is right invertible (Proposition
1), due to Proposition 2 the time derivative of (8) is given
by

ṡ(t) =
1

Γ(1− α)

∫ t

0

C1ẍ1(τ) +C2ẋ1(τ)

(t− τ)α
dτ =

= K

∫ t

0

un(τ) + d(τ)

(t− τ)α
dτ . (11)

with K := C1A12/Γ(1 − α) > 0. As well known, one
of the two steps constituting the traditional design of a
sliding mode controller is the design of a discontinuous
state-feedback control un(t) forcing the system state to
reach the sliding manifold imposing s(t)ṡ(t) < 0 ∀t.

The following result shows that such usual strategy of
choosing un(t) satisfying the classical sliding condition
cannot be used for the proposed FO sliding surface (8).

Proposition 4. Consider the uncertain LTI system (4) un-
der Assumption 1. There does not exist any control input
u(t) able to guarantee the fulfillment of the sliding condi-
tion s(t)ṡ(t) < 0 ∀t.

Proof. Due to (11), the sliding condition reads

s(t) ṡ(t) = Ks(t)

∫ t

0

un(τ) + d(τ)

(t− τ)α
dτ < 0 .

If s(t) > 0, due to (5) and Euler’s function properties
(Whittaker and Watson [1992]), the sliding condition re-
quires that

∫ t

0

un(τ)

(t− τ)α
dτ < −

Γ(1− α)Γ(p+ 1)

Γ(−α+ p+ 2)
ρ t1−α+p. (12)

Analogously if s(t) < 0 the sliding condition requires
∫ t

0

un(τ)

(t− τ)α
dτ >

Γ(1− α)Γ(p+ 1)

Γ(−α+ p+ 2)
ρ t1−α+p. (13)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2035



Since the integral of any function is a continuous function,
a control un(t) able to guarantee simultaneously (12) for
s(t) > 0 and (13) for s(t) < 0 does not exist. �

3.1 A relaxed sliding condition

A different condition will be imposed such that the con-
dition s(t) = 0 is anyway robustly fulfilled asymptotically.
To this purpose, consider a non-uniform partition of the
time axis [0,+∞[ by an infinite number of intervals Ii with
I0 = [0, t1] and Ii =]ti, ti+1] for i > 0, where the infinite
succession of instants ti verifies

ti+1 = ti + h/(i+ 1) , (14)

with a real positive constant h. For simplicity we set h = 1.

Condition 3.1. (Relaxed sliding condition). Consider the
perturbed plant (4) under Assumption 1, and the surface
(8). If it robustly holds that limi→∞ s(ti) = 0 for ti
satisfying (14), then a relaxed sliding condition is said to
hold. Such condition, in fact, ensures that the system state
is forced onto the sliding surface at infinite time instants
becoming infinitely dense as i → ∞.

Remark 5. If in addition to Condition 3.1 it can be proved
that limi→∞ supt∈Ii

s(t) = 0 then:

• the system (4) constrained onto the surface s(t) = 0
(8) is robustly asymptotically stable;

• commutation at infinitely high frequency between the
conditions s(t) > 0 and s(t) < 0 occurs asymptoti-
cally. Since the function (8) vanishes asymptotically,
chattering alleviation is achieved.

Considering (11),

s(t)=s(0)+K

∫ t

0

ṡ(τ)dτ = s(0)+K

∫ t

0

∫ ℓ

0

un(τ) + d(τ)

(t− τ)α
dτdℓ

with K > 0. By Fubini’s theorem (Apostol [1969]) one gets

s(t)=s(0) +K

∫ t

0

(un(ℓ) + d(ℓ))(t− ℓ)1−αdℓ. (15)

In order to simplify notation, the following definitions are
introduced

s(t) := si(t) and un(t) := uni(t) for t ∈ Ii (16)

Ui(a, b, c) :=K

∫ b

a

uni(ℓ)(c− ℓ)1−αdℓ , (17)

Ei(t) :=K

∫ ti

ti−1

d(ℓ)((t− ℓ)1−α − (ti − ℓ)1−α)dℓ , (18)

Di(t) :=K

∫ t

ti

d(ℓ)(t− ℓ)1−αdℓ , (19)

ǫi(t) :=











E1(t) i = 1,
i−1
∑

j=1

Ej(t)− Ej(ti) + Ei(t) i > 1. (20)

Moreover, consider a control input un(t) of the form

un(t) =







un0(t) = 0 t ∈ [0, t1],

uni(t) =
Li

t2−α
t ∈ Ii , i > 0

(21)

with

Li :=
Ci

K(B(ti/ti+1, α− 1, 2− α) + π/ sin(πα))
, (22)

Ci :=











s0(t1) i = 1,
i−1
∑

j=1

Uj(tj , tj+1, ti+1) +

i−1
∑

j=0

sj(tj+1) i > 1 (23)

where B(·, ·, ·) is the incomplete Beta function.

Remark 6. The control input (21) guarantees that for
i ≥ 0

Ui(ti, ti+1, ti+1) = −Ci. (24)

In order to prove Proposition 9 the following results need
to be addressed.

Remark 7. The quantities (18) and (20) verify the follow-
ing equation

i
∑

j=1

ǫj(tj+1) =
i−1
∑

j=0

Ej+1(ti+1). (25)

Lemma 8. Let s(t) be the function defined in (15) and set
s(t) = si(t) for t ∈ Ii =]ti, ti+1] with ti given by (14). Due
to (17)-(23) for i > 0

si(ti+1) = ǫi(ti+1) +Di(ti+1) .

Proof. The result follows by induction from (15)-(19),
(23), Remark 6 and Remark 7. For details see Corradini
et al. [2014]. �

Proposition 9. Consider the uncertain LTI system (4) un-
der Assumption 1. The control input u(t) given by (9),
(10), (21) ensures that the relaxed sliding condition 3.1
holds, i.e.

lim
i→∞

s(ti) = 0

for all time instants ti defined as (14).

Proof. Let s(t) = si(t) for t ∈ Ii. By Lemma 8 we get
that for t ∈ Ii with i > 0

si(ti+1) = ǫi(ti+1) +Di(ti+1). (26)

In order to guarantee the asymptotically vanishing of
si(ti+1) we will show that each term on the right of (26)
is smaller than a vanishing quantity.
Under Assumption 1, by (20), (14), Lagrange theorem,
Beta function’s properties and McLaurin-Cauchy test
(Whittaker and Watson [1992])

|ǫi(ti+1)| ≤
(1− α)Kρ

i+ 1

Γ(1− α)Γ(p+ 1)

Γ(p− α+ 2)
t1−α+p
i

≈
(log i)1−α+p

i+ 1
.

By (19) and the Mean value theorem (Apostol [1967]),

|Di(ti+1)| ≤ K
(1 + log(i+ 1))p

(i+ 1)2−α
≈

(log(i+ 1))p

(i+ 1)2−α
. (27)

In conclusion for i > 1

si(ti+1) ≈
(log(i+ 1))1−α+p

i+ 1
, (28)

so it vanishes when i tends to infinity. �

Lemma 10. Set a constant value α ∈]0, 1[. Under Assump-
tion 1 the coefficient Li defined in (22) asymptotically
develops like

Li ≈

{

log(log i) (log i)2−α if p = 0,
(log i)2−α if p > 0.
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Proof. At first note that since α ∈]0, 1[ and ti are verifies
(14), it holds that B(t1/t2, α − 1, 2 − α)≤B(ti/ti+1, α −
1, 2−α)≤Γ(α− 1)Γ(2−α) . Let W := |B(t1/t2, α− 1, 2−
α) + π/ sin(πα)|.

Due to (17) and (21), (22) can be written as

Li = σi +

i−1
∑

j=1

βi,jLj (29)

where by (28) and McLaurin-Cauchy test

|σi| ≤
1

W



|s0(t1)|+ |s1(t2)|+

i
∑

j=2

(log j)1−α+p

j





≈ (log i)2−α+p ;

in addition due to the Mean value integration theorem and
McLaurin-Cauchy test

|βi,j | ≤
(log(i+ 1))1−α

(j + 1)(log(j + 1))2−α
≈

(log i)1−α

j(log j)2−α
.

Collecting all the estimates obtained we have that

Li = (log i)2−α+p + (log i)1−α

i−1
∑

j=0

Lj

j(log j)2−α
.

Solving the corresponding continuous-time ordinary differ-
ential equation and rewriting the solution in discrete-time
we have that the asymptotic behaviour of Li is given by

Li ≈

{

log(log i)(log i)2−α p = 0
(log i)2−α p > 0

�

Corollary 11. Under Assumption 1, the input signal un(t)
defined in (21) has the following asymptotic behaviour

un(t) ≈

{

log(log i) p = 0,
1 p > 0.

Proof. Due to Lemma 10 and the Integral criterion of
convergence (Whittaker and Watson [1992]), if p = 0, then
the input signal uni(t) defined in (21) verifies

uni(t) ≤
Li

(log i)2−α
≈ log(log i) . (30)

Otherwise if p > 0, uni(t) ≈ ku where ku is a constant less
than 1. �

Theorem 3.1. Consider the perturbed plant (4) under As-
sumption 1, driven by the input signal u(t) given by (9),
(10), (16) and (21). It can be proved that s(t) defined in
(8) verifies limi→∞ supt∈Ii

s(t) = 0.

Proof. In the hypothesis, due to Proposition 9, the
relaxed sliding condition 3.1 holds so it is sufficient to prove
that for t ∈ Ii the difference si(t)− si−1(ti) vanishes when
i increases.
By (15) we get si(t)− si−1(ti) = Q1 +Q2 +Q3 with

Q1 =K

∫ ti

0

un(ℓ)((t− ℓ)1−α − (ti − ℓ)1−α)dℓ, (31)

Q2 =K

∫ t

ti

uni(ℓ)(t− ℓ)1−αdℓ, (32)

Q3 =K

∫ ti

0

d(ℓ)((t− ℓ)1−α − (ti − ℓ)1−α)dℓ+

+K

∫ t

ti

d(ℓ)(t− ℓ)1−αdℓ. (33)

The cases p = 0 and p > 0 will be addressed separately.
Consider first p = 0. By Assumption 1 |d(t)| ≤ ρ and due
to Corollary 11 |un(t)| ≤ log(log i), therefore all the terms
(31)-(33) vanish asymptotically, indeed

|Q1| ≤K
log(log i)

i+ 1
(1 + log i)1−α ≈

(log i)2−α

i+ 1
,

|Q2| ≤K
log(log i)

(2− α)(i+ 1)2−α
,

|Q3| ≤
ρK

2− α
(t2−α − t2−α

i ) ≈
ρK(log(i+ 1))1−α

(i+ 1)
.

Consider next the case p > 0. By Corollary 11 |un(t)| ≈ 1.
As in the previous case, terms (31)-(33) vanish asymptot-
ically. �

4. A SIMULATION STUDY

To test the feasibility of the presented approach and evalu-
ate achievable performances, the electromechanical system
studied by Eker [2010] has been considered. Denoting by
x1(t) the output measured shaft speed ωL(t), x2(t) the
time derivative ω̇L(t) and u(t) the control input (armature
voltage, whose norm is limited by 10 V), the control
objective is the tracking of a desired set-point ωr(t) = 1000
[rpm]. The linearised system with zero initials is given by

{

ẋ1(t) = x2(t)
ẋ2(t) = a1x1(t) + a2x2(t) + b u(t) + d(t)

(34)

where a1 = −783.5763, a2 = −118.1663, b = 644.0997
and d(t) denotes the uncertainty. We assumed that the
disturbance signal belongs to the class D1 (5) so in
particular |d(t)| ≤ ρt with ρ = 5000. Note that the
eigenvalues of the state matrix are −7.05 and −111.1.

To evaluate the performances achievable with the control
policy described above, a systematic comparison with the
first-order sliding mode controller (SMC) and the second-
order sliding mode controller (2-SMC) reported by Eker
have been performed. The two control laws are here shortly
reported for the reader’s convenience.The sampling period
for both the SMC and the 2-SMC approach is 3 ms.

Define the tracking error as e(t) = ωr(t)−x1(t). According
to Eker [2010] the SMC sliding surface is given by

sSMC(t) = λce(t) + ė(t) (35)

with λc = 20 and the control uSMC(t) = ueSMC(t) +
unSMC(t) is defined as

ueSMC(t) = −(a1x1 + (λc + a2)x2(t))/b, (36)

unSMC(t) = ksc tanh(sSMC(t)/Ωc)/b, (37)

with ksc = 15000 and Ωc = 20. In Eker [2010] the PID
sliding surface for the 2-SMC method is

ṡ2SMC(t) + βs2SMC(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kdė(t)

(38)

where β = 160, kp = 32, ki = 2, kd = 1 and the control
u2SMC(t) = ue2SMC(t) + un2SMC(t) is

ue2SMC(t) = −(kie(t)− kda1x1 − (kda2 + kp)x2(t)

+ βṡ2SMC(t))/(b kd), (39)

un2SMC(t) = λ1s(t) + ks tanh(s2SMC(t)/Ω), (40)

with λ1 = 200 and Ω = 20. As remarked by Eker Eker
[2013] in his reply to Naderi and Faieghi [2013] the control
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(39)-(40) can be referred as second-order sliding mode
Levant [2007], since u2SMC(t) is discontinuous, (38) is
a function of (39)-(40) and therefore s2SMC and all its
derivatives are discontinuous Levant [2005].

With reference to the presented approach, the considered
sliding surface has the form

sFOS(t) = D−α(c1e(t) + c2D
−1e(t)) (41)

with α = 0.47, c1 = 1, c2 = 13 and the control signal
is given by (10) and (16). Moreover we considered a
succession of time instants ti = ti−1 + h/i with h = 0.05.
From the implementation viewpoint, it may be useful to
point out that the succession (14) is expected to produce
numerical problems as time grows. The solution adopted
was to make a translation in time and reset the initial
condition when the difference ti − ti−1 was found smaller
than a given threshold (0.001).

All the three approaches guarantee the rapid reaching of
the set-point speed ωr = 1000 rpm. The output controlled
with the FOS framework is faster than the SMC output
but slower than the 2-SMC output (Figure 1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

200

400
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800

1000

1200

time[sec]
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m
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Output measured shaft speed

 

 

FOS
SMC
2−SMC

Fig. 1. Output signal ωL(t) controlled by (9) in red, (36)-
(37) in blue and (39)-(40) in green.
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Fig. 2. Sliding surfaces (41), (35), (38) in red, blue and
green respectively.

Figure 2 displays that the sliding surfaces (41), (35) and
(38) vanishes and therefore the tracking error e(t) tends to
zero. The phase plane e(t) and ė(t) of the FOS, SMC and
2-SMC system are depicted in Figures 3-5. Figure 6 shows
the control signal u(t) of the three different frameworks.
It’s evident that due to the chosen disturbance signal the
SMC is effected by a consistent chattering which is not
alleviated by the saturation function. On the other hand
both the FOS control (9) and the 2-SMC (39)-(40) are
not affected by chattering. Figures 7-8 show that after
53 seconds the 2-SMC control input saturates and as
a consequence the output speed ωL does not chase the
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Fig. 3. Phase plane e(t) and ė(t) of the FOS system.
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command input 1000 rpm anymore. On the other hand the
output speed of the presented FOS framework continues
to follow ωr even after 53 seconds.
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