
A sensorless speed-tacking controller for
permanent magnet synchronous motors

with uncertain parameters

M.L. Corradini ∗ A. Cristofaro ∗

∗ Scuola di Scienze e Tecnologie, Università di Camerino, via
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Abstract: This paper focuses on the so-called sensorless speed-tracking control for permanent
magnet synchronous motors. A control strategy is proposed allowing to extract rotor position
using electrical signals and an observer of electrical variables, and to guarantee the robust asymp-
totical tracking of a reference speed without measuring rotor velocity and position. Bounded
parameter variations are supposed to affect the mechanical system, and a (possibly time-
varying) uncertain load torque is considered. Numerical simulations are provided supporting
the effectiveness of the proposed control policy.
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1. INTRODUCTION

Control algorithms for electrical motors used in high per-
formance applications require, as well known, feedback
information about rotor position and, for speed tracking
applications, of rotor speed. On the other hand, just to
mention a single application which is attracting an in-
creasing interest in recent years, position or speed sen-
sors of wind turbines equipped with permanent-magnet
synchronous generators are usually physically inaccessible,
particularly for large size devices. As a consequence, so-
called sensorless control methods [Hamida et al., 2013],
[Paulus et al., 2013], [Qiao et al., 2013], [Kim et al.,
2011], [Ortega et al., 2011] avoiding the need of mechanical
sensors, attracted the industrial interest, and has induced
an intensive research activity in the control community.
Indeed, a number of contributions on this topic have re-
cently appeared for different types of electrical machines
(induction machines, stepper motors, Permanent Magnet
Synchronous Motors (PMSMs)). With specific reference
to PMSMs, whose popularity is growing for the reasons
discussed in [Ortega et al., 2011], the replacement of
speed/position sensors with mathematical algorithms can
finally allow low-cost motor drives to fully exploit the
inherent properties of Field Oriented Control (FOC), i.e.
closed loop current control, high efficiency and perfor-
mances, and quiet operation.
Classification of sensorless techniques can be made accord-
ing to the operational domain (see Acarnley and Wat-
son [2006] for a review). Back-EMF-based approaches are
largely used in Surface PMSMs, which perform poorly at
low-speed regimes [Paulus et al., 2013], [Ortega et al., 2011]
(indeed, position looses the property of observability at
zero speed [Poulain et al., 2008]). Such behavior, which can
empirically explained since the induced voltage vanishes
at low speed, has to be attributed to the approximations
inherently introduced in the linearization of the model of

the PMSM, whose first principles model is highly nonlinear
[Ortega et al., 2011]. In the low-speed domain, non-model-
based methods based on rotor saliency are used instead,
which are realized by a high frequency signal injection
[Paulus et al., 2013], [Hamida et al., 2013]. A number
of back-EMF-based methods have been reported in the
literature. An interconnected scheme of adaptive observers
has been very recently proposed [Hamida et al., 2013], and
extended Kalman filtering has been applied to estimate
the whole state vector [Bolognani et al., 2003], though
requiring intensive computing. In contrast, sliding mode
observers are being currently largely proposed [Qiao et al.,
2013], [Kim et al., 2011] due to their easy implementability,
robustness and good dynamic behavior. Moreover, follow-
ing a number of studies addressing modeling and nonlinear
control of electrical machines [Astolfi et al., 2007], [Kara-
giannis et al., 2009], [Ortega et al., 2007], a nonlinear back-
EMF-based observer for rotor position has been proposed
recently [Ortega et al., 2011],[Lee et al., 2010], mostly
relying on a different state variable representation of motor
dynamics.
The above cited approaches share the common method-
ology consisting in building one or more model-based
observers. The need of proving closed-loop convergence,
nonetheless, usually provide undesired behaviors in asymp-
totic performances of the system, or require the intro-
duction of limiting assumptions which are hardly verified
in practice. This paper is aimed at providing an answer
to the previous problems, proposing a sensorless, back-
EMF based, FOC algorithm for a PMSM featuring ro-
bustness with respect to motor parameter variations and
load torque. More in detail:

• deviations of model parameters with respect to their
nominal values, along with the initial angular posi-
tion, are computed off-line before operation;

• rotor position is extracted from electrical signals;
• the robust tracking is ensured of a reference speed

by a FOC scheme without the need of rotor speed
measurements;
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• the robust algorithm can account for bounded param-
eter variations affecting the electrical and mechanical
system;
• also time-varying load torque affected by bounded

uncertainty can be accounted for.

The proposed technical development exploits the particu-
lar expression of the classical fixed-frame (α,β) nonlinear
model of PMSM [Ichikawa et al., 2006] [Krause, 1986],
and makes use of well known techniques based on sliding
modes. A simulation study is reported to support the
proposed theoretical development.

2. SYSTEM MODEL

2.1 PMSM modeling

In the (α,β) reference frame, the electrical equations of
motion of a PMSM can be written as:

diα(t)

dt
= −R

L
iα(t) + ωe

λ0
L

sin(θe(t)) +
1

L
vα(t)

diβ(t)

dt
= −R

L
iβ(t)− ωe

λ0
L

cos(θe(t)) +
1

L
vβ(t)

(1)

where iα(t) and iβ(t) are the stator currents, respectively;
vα(t) and vβ(t) are the stator voltages, respectively; R is
the winding resistance and L is the winding inductance,
λ0 is the flux linkage of the permanent magnet, θe and ωe
are the electrical angular position and speed, respectively,
of the motor rotor.

The electrical torque Te is given by:

Te(t) = Kt(iβ(t) cos(θe(t))− iα(t) sin(θe(t))) (2)

in which Kt = 3
2λ0Nr is the torque constant with Nr

the number of pole pairs. For the electrical angular po-
sition/speed and the mechanical angular position/speed,

the following relations hold: Nr =
ωe
ωr

=
θe
θr

, θr denoting

the mechanical angular position of the motor rotor. In
the following, the whole development will be made in
the electrical frame. The mechanical motion equation is
described by:

Jω̇r(t) +Bωr(t) = Te(t)− τ(t) (3)

θ̇r(t) = ωr(t) (4)

where J is the total mechanical inertia of the the PMSM.
The torque τ summarizes the effect of the external torque
(generally known with large inaccuracy). It is likely to
introduce the following assumptions:

Assumption 2.1. The model parameter B and the load
torque τ appearing in (3) are uncertain, with bounded
uncertainty:

B = B̄ + ∆B; τ(t) = τ̄ + ∆τ(t) (5)

|∆B| ≤ ρB ; |∆τ | ≤ ρτ (6)

Remark 1. The inertia parameter J has been assumed
known only for simplifying the statement of the next
results. As it will be clear in the following, a bounded
variation for this parameter can be accounted for with
straightforward changes.

Assumption 2.2. Similarly, slowly varying parameter vari-
ations [Hamida et al., 2013] can affect model (1), i.e.

R = R̄+ ∆R, Ṙ ' 0 (7)

being R̄ the nominal values and ∆R the corresponding
uncertainty, assumed bounded a by known constants ρR.

Remark 2. Again, the parameter L has been assumed
known only for simplifying the statement of the next
results. As it will be clear in the following, its bounded
parametric variation can be accounted for with straight-
forward changes.

In view of the inherent physical limitations of the real
device, the following assumption is also introduced:

Assumption 2.3. A bound exists and is available on the
maximum achievable rotor velocity −ωMe ≤ ωe ≤ ωMe .

3. OFF-LINE DETERMINATION OF THE INITIAL
ANGULAR POSITION AND MOTOR PARAMETER

VARIATIONS

The following section is devoted to show that the unknown
resistor variation ∆R in (1) and the initial angular position
of the rotor θ(0) = θ0 can be derived exactly from
currents measurements under weak conditions. Once such
quantities are exactly available, they will be used for
building a sensorless robust speed-tracking controller as
explained in the next section.

A simple procedure is proposed, to be executed off-line be-
fore operation. It may take a not negligible amount of time,
but this has no effect in the effectiveness of the control
algorithm to be described in the following. Once identified
off-line, the sensorless controller can begin working using
the resistor deviation ∆R from the nominal value R̄ and
the initial angular position θ0 (just determined) which do
not vary with time because of Assumption 2.2.

Let us refer to system (1) with R given by (7); in addition
let us set vα(t) = vβ(t) = 0. Although the currents iα(t),
iβ(t) can be directly measured, consider the following
pseudo-observer: 

dîα(t)

dt
= − R̄

L
iα

dîβ(t)

dt
= − R̄

L
iβ

(8)

whose error dynamics are
ėα(t) = −∆R

L
iα + ωe

λ0
L

sin θe(t);

ėβ(t) = −∆R

L
iβ − ωe

λ0
L

cos θe(t);

(9)

with eα(t) = iα(t)− îα(t), eβ(t) = iβ(t)− îβ(t). Assuming

without loss of generality iα(0) = îα(0), iβ(0) = îβ(0) and
setting

Iα(t) =

∫ t

0

iα(s)ds, Iβ(t) =

∫ t

0

iβ(s)ds,

by integration one gets
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eα(t) = −∆R

L
Iα(t)− λ0

L
(cos θe(t)− cos θ0),

eβ(t) = −∆R

L
Iβ(t)− λ0

L
(sin θe(t)− sin θ0),

(10)

which gives(
eα(t) +

∆R

L
Iα(t)− λ0

L
cos θ0

)2

;

+

(
eβ(t) +

∆R

L
Iβ(t)− λ0

L
sin θ0

)2

=
λ20
L2
.

(11)

Exploiting the left-hand side one gets

I2α(t) + I2β(t)

L2
∆R2 +

2

L
(eα(t)Iα(t) + eβ(t)Iβ(t)) ∆R

−λ0
L

(Iα(t) cos θ0 + Iβ(t) sin θ0) ∆R+

−2λ0
L

(eα(t) cos θ0 + eβ(t) sin θ0) = −e2α(t)− e2β(t).

(12)
As the time t varies, (12) constitutes an infinite family
of equations with unknown variables ∆R, θ0. Equation
coefficients can be grouped in a time-dependent vector
W (t) as follows

W (t) =

[
I2α(t) + I2β(t)

L2

2
(
eα(t)Iα(t) + eβ(t)Iβ(t)

)
L

�
2λ0

L2
Iα(t)

�
2λ0

L2
Iβ(t) �

2λ0

L
eα(t) �

2λ0

L
eβ(t)

]
;

(13)

and defining E(t) := e2α(t) + e2β(t), equation (12) is
equivalent to

W (t) · [∆R2 ∆R ∆R cos θ0 ∆R sin θ0 cos θ0 sin θ0]T

= −E(t)
(14)

Let us consider now two distinct time instants t1, t2
such that W (t2) is not a multiple of W (t1); the triple
(cos θ0, sin θ0,∆R) = (x, y, z) satisfies the following set of
quadratic equations in the variables (x, y, z) : x2 + y2 = 1;

W (t1) · [z2 z zx zy x y]T = −E(t1);
W (t2) · [z2 z zx zy x y]T = −E(t2);

(15)

By Bézout’s theorem [Walker, 1978], the above set (15)
admits at most 8 = 23 distinct solutions. Since we are
interested in possibly recovering, without ambiguity, the
true solution (cos θ0, sin θ0,∆R), it is helpful consider a
further time instant t3 and the associate equation:

W (t3) · [z2 z zx zy x y]T = −E(t3). (16)

The following result is straightforward.

Proposition 3.1. A necessary condition for the existence of
a unique solution to equations set (15)-(16) is that

rank

[
W (t1)
W (t2)
W (t3)

]
= 3 (17)

for some 0 < t1 < t2 < t3.

Under the above condition, the maximum number of
admissible solutions can be reduced as stated in the
following result.

Theorem 3.1. Let us consider system (1) with unknowns
∆R and θ0. If there exist t1, t2, t3 such that rank condition
(17) is fulfilled, two cases are admissible:

i) the triple (cos θ0, sin θ0,∆R) is the unique solution of
equations (15)-(16);

ii) the polynomial system (15)-(16) admits 1 < ν ≤ 4
solutions.

Proof. For any t ≥ 0, the equation

W (t) · [z2 z zx zy x y]T = −E(t) (18)

can be rewritten in the equivalent form

z2 = zg(t, x, y) + f(t, x, y), (19)

where f(·, x, y), g(·, x, y) are polynomial functions ob-
tained from the coefficients of W (t) and E(t). Therefore
the system (15)-(16) is equivalent to

x2 + y2 = 1;

f(t1, x, y)− f(t2, x, y)

g(t2, x, y)− g(t1, x, y)
=
f(t1, x, y)− f(t3, x, y)

g(t3, x, y)− g(t1, x, y)

z(g(t2, x, y)− g(t1, x, y)) = f(t1, x, y)− f(t2, x, y);

z2 = zg(t1, x, y) + f(t1, x, y);
(20)

By construction the first two equations are both quadratic
and depending only on the variables x, y; as a consequence,
applying again Bézout’s theorem and observing that z is
completely determined by the third equation, the maxi-
mum number of admissible solutions is 4 = 22. We point
out that the second equation in (20) is well-posed if and
only if (17) is fulfilled. 2

It is worth to note that, in many cases, system (20)
admits the true solution (cos θ0, sin θ0,∆R) only: this is
a consequence of the strong constraint given by the fourth
equation. On the other hand, if it is not possible to isolate
the true solution by means of algebraic methods, one can
introduce a decision algorithm based on multiple models.

3.1 Multiple solutions: a decision algorithm

Let us suppose that system (20) (or system (15)) admits
1 < ν ≤ 4 (1 < ν ≤ 8) distinct solutions (Xk, Yk, Zk),
k = 1, ..., ν; we define a suitable set of system estimators

dη
(k)
α (t)

dt
= − R̄+ Zk

L
iα(t)

k = 1, ..., ν

dη
(k)
β (t)

dt
= − R̄+ Zk

L
iβ(t)

and we compute the quantities
ck(t) = − L

λ0
(iα(t)− η(k)α (t))−Xk

k = 1, ..., ν

sk(t) = − L

λ0
(iβ(t)− η(k)β (t))− Yk.

The terms ck(t) and sk(t) are possible candidates for
the true values of cos θ(t) and sin θ(t) respectively. We
introduce now the following system models for k = 1, ..., ν :
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i(k)α (t) = e−
(R̄+Zk)t

L iα(0) +
λ0
L

(
e−

(R̄+Zk)t

L Xk − ck(t)
)

+λ0
R̄+ Zk
L2

∫ t

0

e−
(R̄+Zk)(t−s)

L ck(s)ds,

i
(k)
β (t) = e−

(R̄+Zk)t

L iβ(0) +
λ0
L

(
e−

(R̄+Zk)t

L Yk − sk(t)
)

+λ0
R̄+ Zk
L2

∫ t

0

e−
(R̄+Zk)(t−s)

L sk(s)ds.

Such models have been obtained by integrating the system
of differential equations generated from (1) where the
uncertain terms are chosen accordingly to the set of
admissible solutions (Xk, Yk, Zk).
Fixing arbitrarily the time horizon T > 0 and defining the
cost functional

J (k, T ) :=

∫ T

0

||iα(t)− i(k)α (t)||2 + ||iβ(t)− i(k)β (t)||2dt,

(21)
one gets

min
k=1,...,ν

J (k, T ) = 0,

(cos θ0, sin θ0,∆R) = (Xk∗ , Yk∗ , Zk∗) (22)
with

k∗ = arg min
k=1,...,ν

J (k, T ). (23)

We point out that, if for any T > 0 the integer k∗ is not
unique, the associated triple of parameters (Xk, Yk, Zk) are
indistinguishable, i.e. they provide exactly the same effects
on the system output.

Remark 3. The development discussed so far can account
also for constant uncertainties affecting the inductance
parameter L, at the price of an increase of the number
of feasible solutions. In particular, if both R and L are
uncertain, these parameters (together with θ0) have to
satisfy a system of 5 quadratic equations, which is the
natural extension of (15).

4. CONTROL DESIGN

4.1 Sensorless Derivation of Rotor Angular Position from
Currents Measurements

In standard drives, rotor position is given by encoder
measurements, and rotor speed is usually estimated as
the incremental ratio of encoder positions over one sam-
pling period. It will be shown in the following that the
angular position of the rotor can be easily derived from
measurements of currents iα(t) and iβ(t), making use of
previous developments showing that ∆R and θ0 can be
exactly determined.

Remark 4. Resuts reported in the previous section shows
that ∆R and θ0 can be exactly determined. Accordingly,
the quantity R = R̄+∆R will be considered exactly known
hereafter.

Consider the following pseudo-observer
dîα(t)

dt
= −R

L
îα(t) +

1

L
vα(t)

dîβ(t)

dt
= −R

L
îβ(t) +

1

L
vβ(t)

(24)

and define the relative observation errors:

εα(t) = iα(t)− îα(t); εβ(t) = iβ(t)− îβ(t)

The following result can be proved:

Lemma 5. With reference to the plant (1), the angular
position θe of the rotor can be exactly derived from
currents after an arbitrary finite time.

Proof. The dynamics of the observation errors are
ε̇α(t) =

λ0
L
ωe sin(θe(t))

ε̇β(t) = −λ0
L
ωe cos(θe(t))

(25)

Integrating one gets:

εα(t) = εα(0)− λ0
L

(cos(θe(t))− cos(θ0))

εβ(t) = εβ(0)− λ0
L

(sin(θe(t))− sin(θ0))

Since the initial condition of the observer (24) can be set
equal to the initial value of the (measured) currents, it
follows that the angular position θe(t) can be computed as

θe(t) = arctan
εβ(t) +

λ0
L

sin(θ0)

εα(t) +
λ0
L

cos(θ0)

. (26)

2

4.2 The sensorless speed-tracking controller

The tracking problem is here considered, i.e. the variable
ωe is required to track a known reference ω∗. To guarantee
the robust tracking of the assigned reference in the frame-
work of the FOC scheme, consider the following sliding
surface:

s(t) = J(θe(t)− θ∗(t)) = 0 (27)

whose derivative is

ṡ(t) = J(ωe(t)− ω∗(t)) = −(B̄ + ∆B)(θe(t)− θ0)

+Kt

∫ t

0

[iβ(p) cos(θe(p))− iα(p) sin(θe(p))] dp

−
∫ t

0

[τ̄(p) + ∆τ(p)] dp− Jω∗(t) (28)

In the previous expression, one can consider two reference
currents:

i∗β(t) = I∗(t) cos(θe(t)); i∗α(t) = −I∗(t) sin(θe(t)),

whose tracking will be ensured later and where I∗(t) is to
be determined. When iα(t) = i∗α(t), iβ(t) = i∗β(t), one has:

ṡ(t) = J(ωe(t)− ω∗(t)) = −(B̄ + ∆B)(θe(t)− θ0)

+ v(t)−
∫ t

0

[τ̄(p) + ∆τ(p)] dp− Jω∗(t) (29)

being

v(t) = Kt

∫ t

0

I∗(p)dp. (30)

For ε > 0 arbitrary small, let us define the following
continuously differentiable approximation of the function
sign(z) :
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signε(z) =


sign(z) |z| ≥ ε
2ε−|z|
ε z |z| ∈ (ε/2, ε)

2ε−1z |z| ≤ ε/2
(31)

Lemma 6. Assume w∗(0) = 0. When iα(t) = i∗α(t), iβ(t) =
i∗β(t), for any ε > 0, the following control input I∗ε (t)
ensures the uniform asymptotic boundedness condition
|s(t)| ≤ ε for the sliding surface (27):

KtI
∗
ε (t) = Jω̇∗(t) + τ̄(t)− ζJ [(B̄ + ρB)ωMe + ρτ ]signε(s(t))

−ζJ [(B̄ + ρB)ωMe + ρτ ]tχε(s(t))(D
−θe(t)− ω∗(t))

(32)
with ζ > 1 and where

χε(z) =


0 |z| ≥ ε
2(ε−|z|)

ε2 |z| ∈ (ε/2, ε)
2ε−1 |z| ≤ ε/2

D−θe(t) = lim
|h|→0

θe(t)− θe(t− |h|)
|h|

.

Proof. Following standard techniques, a sliding motion
on (27) is enforced by v(t) = veq(t) +vn(t), where veq(t) is
the control input guaranteeing that ṡ(t) = 0 in the nominal
case, i.e.

Ktveq(t) = Jω∗(t) +

∫ t

0

τ̄(p)dp (33)

and vn(t) is designed to ensure such that s(t)ṡ(t) < 0 ∀t.
In particular, noticing that |θe(t)− θ0| < ωMe t, one gets

Ktvn(t) = −ζ1
[
(B̄ + ρB)ωMe t+ ρτ t

]
sign(s(t)) (34)

with ζ1 > 1. On the other hand, since in the presented
scenario the control v(t) is assigned by the integral identity
(30), it is not allowed to be discontinuous and a sliding-
mode cannot be properly enforced. In order to satisfy the
requested regularity conditions, the function sign(s(t))
can be replaced by its continuous and differentiable ap-
proximation signε(s(t)) given by (31).
Let us denote by vn,ε(t) such regularized controller. By
construction, since |θe(t) − θ0| ≤ ωMe t, the control law
v(t) = veq(t)+vn,ε(t) guarantees the uniform boundedness
condition

|s(t)| ≤ ε ∀t ≥ Tε > 0.

In order to conclude, it is straightforward to verify that

signε(s(t)) = J

∫ t

0

χε(s(p))(D
−θe(p)− ω∗(p))dp,

this showing that v̇n,ε(t) = KtI
∗
ε (t). 2

For any ε > 0 the derivative dχε(z)
dz exists almost every-

where and it satisfies∣∣∣∣dχε(z)dz

∣∣∣∣ ≤ 2

ε2
∀z ∈ R;

as a consequence the left-derivative D−I∗ε (t) is well defined
and it verifies

KtD
−I∗ε (t) = Jω̈∗(t) + τ̇(t)

−ζJρτ dχε(s(t))dz (D−θe(t)− ω∗(t))2

−ζJρτχε(s(t))(D2,−θe(t)− ω̇∗(t)),
where

D2,−θe(t) := lim
h→0

θe(t)− 2θe(t− |h|) + θe(t− 2|h|)
|h|2

.

The following result summarizes the control strategy guar-
anteeing the robust tracking of an assigned reference veloc-
ity by the rotor, in the presence of bounded perturbations
affecting the motor parameters and the load.

Theorem 4.1. With reference to the plant (1) under As-
sumption 2.1, the following control inputs vα(t), vβ(t)
ensure the (practical) robust tracking of an assigned ref-
erence velocity ω∗(t) using only measurements of the elec-
trical variables of the motor (i.e. sensorless control):

1

L
vα(t) =

R

L
iα(t)−D−I∗ε (t) sin(θe(t))

− ωMe ζ
[
λ0
L
| sin(θe(t))|+ |I∗ε (t) cos(θe(t))|

]
·

sign(iα(t) + I∗ε (t) sin(θe(t))) (35)

1

L
vβ(t) =

R

L
iβ(t) +D−I∗ε (t) cos(θe(t))

− ωMe ζ
[
λ0
L
| cos(θe(t))|+ |I∗ε (t) sin(θe(t))|

]
·

sign(iβ(t)− I∗ε (t) cos(θe(t))) (36)

with ζ > 1.

Proof. The complete proof is omitted for sake of brevity.
The stability of the overall closed-loop stability can be
proved using standard Lyapunov techniques. The imposi-
tion of the conditions iα(t) = i∗α(t) and iβ(t) = i∗β(t) can be
easily carried out by considering the following Lyapunov
function

Y (t) =
1

2
(iα(t)− i∗α(t))2 +

1

2
(iβ(t)− i∗β(t))2 (37)

and observing that, if vα(t) and vβ(t) are chosen according

to (35)-(36), then the inequality Ẏ (t) < 0 holds. 2

Remark 7. We point out that, for control implementation
purposes, the left-derivative D−θ(t) can be replaced by a
discrete derivative defined by the incremental ratio

D−δ θe(t) :=
θe(t)− θe(t− δ)

δ
for δ > 0 sufficiently small. In a similar way one can
discretize the second derivative:

D2,−
δ θe(t) :=

θe(t)− 2θe(t− δ) + θe(t− 2δ)

δ2
.

5. SIMULATION TESTS

Simulations have been performed using technical data
taken from [Kim et al., 2011], as a preliminary step be-
fore experimental implementation. Some of the performed
speed-tracking simulations are shown in Figs 2-3. The
following conditions have been used for simulations:

• a reference speed trajectory of the form ω∗(t) = 100∗
sin( 2π

0.1 t);
• a nominal load torque of 0.5 + 0.5 ∗ sin(π8 t) Kg, with

a 20% variation;
• 20% parameter variation applied to the nominal val-

ues of parameters B,R;
• boundary layers have been used to avoid chattering.

The development described in Section 3 provided the
following values: ∆R = 0.0416 Ω, θ0 = 0.0001 rad, very
close to true values ∆R = 0.05 Ω, θ0 = 0 rad. The small
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inaccuracy has to be ascribed to the numerical solver. In
particular Figure 1 shows that, in the considered scenario,
the measurements taken at three distinct time instants are
sufficient for identifying the correct values θ0,∆R: indeed
the three depicted curves, corresponding to the locus of
solutions of Eq. (12) for the selected time steps, have a
single common intersection point (θ0,∆R) ' (0, 0.05).

-2 -1 0 1 2 3 4

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

ΘH0L

D
R

Fig. 1. Solutions of Eq. (12) for t1 = 0.05s (dotted line),
t2 = 0.07s (dashed line) and t3 = 0.08s (solid line).

Fig. 2 shows the tracking performance obtained consid-
ering the sinusoidal velocity profile with respect to speed
in the case of the time-varying load. Furthermore, Fig.3
shows the currents iα(t), iβ(t). It should be noted that the
inevitable presence of boundary layers for the implemen-
tation of (35), (36) has the effect of constraining speed and
positions in a thin layer near the tracked variable.
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Fig. 2. Reference (dotted line) vs. actual speed for a time-
varying uncertain load torque.
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