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Abstract: This paper presents a distributed control design for a class of interconnected linear
systems with Markovian jumps, parametric uncertainties and time delays in both system
states and control actuations. The switching of a countable number of modes associated with
constituent systems is encapsulated by appropriate probability transitions. The parameter
uncertainties are considered to be unknown but norm bounded. Analysis of time-delay systems
is supported by Pade approximations of the first order. A general framework of multi-
person nonzero-sum stochastic differential games is leveraged for distributed decision making
with performance risk-aversion. Towards performance risk-aversion and reliability, self-directed
controllers and/or decision makers are now capable of effectively incorporating risk-averse
attitudes via performance-measure statistics into person-by-person equilibrium decisions with
decentralized output feedback for distributed interactions.

Keywords: Distributed control, Markovian jumps, parametric uncertainty, time delays, Pade
approximation of the first order, nonzero-sum stochastic games, person-by-person equilibrium,
decentralized output feedback, risk-averse attitudes, performance-measure statistics

1. INTRODUCTION

The problem of control and coordination of ever larger and
more sophisticated systems has received growing attention
during the last 40 years, as can be seen from Sandell
(1978) and Siljak (1991). Many applied fields have already
been concerned with distributed control and coordina-
tion of interconnected dynamical systems, with applica-
tions in product design Androulakis (1999), manufacturing
systems Krothapalli (1999), and computing architectures
Shahabi (2002). In fact, decentralization is recommended
as a way to speed up product development processes and
decrease the computational time and the complexity of the
problem Prewitt (1998).

Although many progresses have been made in the devel-
opment of different frameworks to address analysis, sta-
bility and control problems of large-scale systems along
with the long-standing challenges due to dimensionality,
information structure constraints, parametric uncertainty
and delays Mahmoud (2010), there is little emphasis and
work on fully integrated approaches that take into account
of dynamic interactions and performance riskiness among
interconnected stochastic dynamical systems in the litera-
ture.

⋆ Correspondence to the Air Force Research Laboratory, Space Vehi-
cles Directorate, 3550 Aberdeen Ave, S.E., Kirtland Air Force Base,
New Mexico 87117 U.S.A. Email: AFRL.RVSV@kirtland.af.mil

In reaction, it is the aim of this paper to extend the recent
results Pham (2010) with the hope that the class of uncer-
tain stochastic large-scale systems will even accommodate
both state and control delays. It is also imperative to en-
vision a more effective integration of Pade approximations
of the first order and multiperson Nash game-theoretic
decision optimization to not only approximate time de-
layed states and controls but also to distribute person-by-
person equilibrium strategies for efficient achievements of
performance robustness and reliability requirements that
are now characterized by performance average and risks.

As earlier suggested, the specific contributions from the
line of research herein are to overcome the limitations of
standard trends through developing and utilizing: i) de-
centralized filtering with estimation interferences imposed
by immediate neighbors for each distributed systems; ii)
an efficient and tractable paradigm that calculates exactly
all the mathematical statistics associated with the general-
ized chi-squared performance measure for decision making
under performance risk aversion; and iii) a synthesis of
distributed person-by-person equilibrium decision policies
with output feedback for reliable performance that now
guarantee performance robustness with something much
stronger than ensemble average measures.

2. PRELIMINARIES

In this section, some spaces of random variables and
stochastic processes are introduced; e.g., a fixed proba-
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bility space (Ω,F, {F0,t : t ∈ [0, tf ]},P) with filtration
satisfying the usual conditions. All the filtrations are right
continuous and complete and Ftf , {F0,t : t ∈ [0, tf ]}.
In addition, let L2

Ftf
([0, tf ];Rn) denote the space of Ftf -

adapted random processes {~(t) : t ∈ [0, tf ]} such that

E{
∫ tf
0

||~(t)||2 dt} <∞}.
As for the setting, a class of uncertain large-scale linear
Markov jump systems having time delays in both states
and controls is considered as an approximate class of real
nonlinear systems with Markov jumps in the neighborhood
of the operating points. Each constituent system is con-
trolled by a separate controller or decision maker, who
belongs to the set N , {1, 2, . . . , N} and is in charge of
implementing control and/or decision policies u1, . . . , uN .
The decision horizon, on which the interaction dynamics
evolves, is [0, tf ].

Also relevant is that the mode switching at each dis-
tributed system and decision maker i for i ∈ N is gov-
erned by a continuous-time Markov process {rit, t ≥ 0}
taking values in the state space Si = {1, 2, . . . , Si} and
having the following infinitesimal generator Λi = (λi1i2)
for all i1, i2 in Si, where λi1i2 ≥ 0, for all i1 ̸= i2
and λi1i1 = −

∑
i2 ̸=i1

λi1i2 . Then, the modes of transition
probabilities are described as

Pr(rit+△t = i2|rit = i1) =

{
λi1i2△t+ o(△t) i2 ̸= i1
1 + λi1i1△t+ o(△t) i2 = i1

where lim△t 7→0
o(△t)
△t = 0. Henceforth, the dynamical

system associated with distributed controllers or decision
makers i and i ∈ N with Markov jumps and time delays
is modeled by the time-delay differential equation

ẋi(t) = Ai(r
i
t, t)xi(t) +Ad

i (r
i
t, t)xi(t− τi) +Bi(r

i
t, t)ui(t)

+Bd
i (r

i
t, t)ui(t− σi) + Ci(r

i
t, t)di(t) +Gi(r

i
t, t)wi(t) (1)

where for each t ∈ [0, tf ], xi(t) ∈ Rni is the dynamical
state, ui(t) ∈ Rmi is the control input, di(t) ∈ Rli is the
coupling interaction from immediate neighbors, τi and σi
are the state and input time delays, xi(0) = xi0, xi(t) =
gi(t) for t ∈ [−τi, 0] and ui(t) = hi(t) for t ∈ [−σi, 0] are
the initial functions, and wi(t) ∈ Rp represents unmodeled
nonlinearities via a mutually uncorrelated stationary Fi

tf
-

adapted Gaussian process with its mean E{wi(t)} = mwi

and covariance cov {wi(t1), wi(t2)} = Wiδ(t1 − t2) for all
t1, t2 ∈ [0, tf ] and Wi > 0.

In addition, the parameter uncertainties in (1) with time
delays are assumed to be unknown but bounded; e.g.,

Ai(r
i
t, t) = Ai(r

i
t) +Di

A(r
i
t)△i

1(r
i
t, t)E

i
A(r

i
t)

Ad
i (r

i
t, t) = Ad

i (r
i
t) +Di

Ad
(rit)△i

2(r
i
t, t)E

i
Ad

(rit)

Bi(r
i
t, t) = Bi(r

i
t) +Di

B(r
i
t)△i

1(r
i
t, t)E

i
B(r

i
t)

Bd
i (r

i
t, t) = Bd

i (r
i
t) +Di

Bd
(rit)△i

2(r
i
t, t)E

i
Bd

(rit)

Ci(r
i
t, t) = Ci(r

i
t) +Di

C(r
i
t)△i

1(r
i
t, t)E

i
C(r

i
t)

Gi(r
i
t, t) = Gi(r

i
t) +Di

G(r
i
t)△i

1(r
i
t, t)E

i
G(r

i
t)

with Ai(r
i
t), A

d
i (r

i
t), Bi(r

i
t), B

d
i (r

i
t), Ci(r

i
t), and Gi(r

i
t)

are constant matrices with appropriate dimensions. Ad-
missible uncertainties △1(r

i
t, t) and △2(r

i
t, t) are unknown

time-varying matrices with appropriate dimensions repre-
senting the parameter uncertainties of (1) and satisfying
△T

1 (r
i
t, t)△1(r

i
t, t) ≤ I and △T

2 (r
i
t, t)△2(r

i
t, t) ≤ I.

Towards distributed decision making, each decision maker
i and i ∈ N is further endowed with an incomplete infor-
mation structure which is consisted of a linear transfor-
mation Hi(r

i
t, t) , Hi(r

i
t) +Di

H(rit)△i
1(r

i
t, t)E

i
H(rit) of the

states xi(t) through the local online data {yi(τ) : τ ∈ [0, t]}
yi(t) = Hi(r

i
t, t)xi(t) + vi(t) (2)

whereupon vi(t) is another mutually uncorrelated sta-
tionary Fi

tf
-adapted Gaussian process with its mean

E{vi(t)} = mvi and covariance cov {vi(t1), vi(t2)} =
Viδ(t1 − t2) for all t1, t2 ∈ [0, tf ] and Vi > 0.

There are many ways of approximating time-delay systems
with ordinary differential equations. For instance, Pade
approximation of the first order is considered herein as one
of different schemes. In the domain of unilateral Laplace
transform, the relation between xi(t− τi) and xi(t) can be

written as Xd
i (s) = e−τisXi(s) where Xd

i (s) , L{xi(t −
τi)} and Xi(s) , L{x(t)}. Representing e−τis by an Pade
approximation of the first order yields

e−τis ≈
1− 1

2τis

1 + 1
2τis

. (3)

Further let pi(t) , xi(t− τi) + xi(t). Then, in the domain
of unilateral Laplace transformation, it follows that

Pi(s) , L{pi(s)} =
2

1 + 1
2τis

Xi(s) . (4)

Or, equivalently in the time domain, it is clear to see that

ṗi(t)=
1

τi
[4xi(t)− 2pi(t)], pi(0)=gi(−τi)+ gi(0

−) (5)

A delay in the control is handled similarly; e.g.,

q̇i(t)=
1

σi
[4ui(t)− 2qi(t)], qi(0)=hi(−σi)+ hi(0

−) (6)

Given the results (3), (5) and (6), the delayed system (1)
is therefore reformulated as follows

ṡi(t) = Ai(r
i
t, t)si(t) +Bi(r

i
t, t)ui(t) + Ci(r

i
t, t)di(t)

+Gi(r
i
t, t)wi(t) , si(0) (7)

where for each i ∈ N , si(t) ,
[
xTi (t) p

T
i (t) q

T
i (t)

]T
Ai(r

i
t, t) ,

Ai(r
i
t, t)−Ad

i (r
i
t, t) Ad

i (r
i
t, t) Bd

i (r
i
t, t)

4

τi
Ini×ni − 2

τi
Ini×ni 0

0 0 − 2

σi
Imi×mi

 ,

Bi(r
i
t, t),

Bi(r
i
t, t)−Bd

i (r
i
t, t)

0
4

σi
Imi×mi

, Ci(r
i
t, t),

Ci(r
i
t, t)
0
0


Gi(r

i
t, t) ,

Gi(r
i
t, t)
0
0

 , H
T

i (r
i
t, t) ,

HT
i (r

i
t, t)

0
0

 .
When interpreting the mathematical model (1)-(2) at
decision maker i in Ito stochastic differentials, one shows

dsi(t) = (Ai(r
i
t, t)si(t) +Bi(r

i
t, t)ui(t) + Ci(r

i
t, t)di(t)

+Gi(r
i
t, t)mwi)dt+Gi(r

i
t, t)UWiΛ

1/2
Wi
dξi(t) (8)

dyi(t) = (Hi(r
i
t, t)si(t) +mvi)dt+ dζi(t) (9)

where for each t ∈ [0, tf ], UWi
and ΛWi

correspond to the
eigen-decomposition of Wi such that Wi = UWiΛWiU

T
Wi

.
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The incremental Wiener processes dξi(t) and dζi(t) are

defined as dξi(t) , [wi(t) − mwi ]dt and dζi(t) , [vi(t) −
mvi ]dt, respectively.

Viewed from the mutual influence of one decision maker to
those of others, decision maker i is now capable of observ-
ing all best responses from the immediate neighbors de-
noted byNi; but subject to its current sensor accuracy and
confident factors via an uncorrelated stationary Wiener
measurement process. Specifically, the observations are
locally available at decision maker i

du−i(t) , Ci(r
i
t, t)di(t)dt , i ∈ N

= Ci(r
i
t, t)

Ni∑
j=1,j ̸=i

Hij(t)uj(t)dt+ dηi(t) . (10)

Notice that all decision makers must operate within their
respective local environments, which are now modeled by
the uncorrelated stationary Wiener processes adapted for
[0, tf ] and have the correlations of independent increments

E
{
[ξi(τ1)− ξi(τ2)][ξi(τ1)− ξi(τ2)]

T
}
=Wi|τ1 − τ2|

E
{
[ηi(τ1)− ηi(τ2)][ηi(τ1)− ηi(τ2)]

T
}
= Ni|τ1 − τ2|

E
{
[ζi(τ1)− ζi(τ2)][ζi(τ1)− ζi(τ2)]

T
}
= Vi|τ1 − τ2|

whereWi > 0, Ni > 0 and Vi > 0 are also assumed known.

Closely related to the continuing quest for N distributed
state estimators is the development of σ-algebra

Fi
0,t , σ{(wi(τ), vi(τ), ηi(τ)) : 0 ≤ τ ≤ t} , i ∈ N

Gyi

0,t , σ{yi(τ) : 0 ≤ τ ≤ t} , t ∈ [0, tf ] .

As the result, Kalman-like estimators that later form part
of the estimate-based decisions preserve, even earlier, the
inherent linear Gaussian structures of (8)-(9), but these,

too, take into account of the information available Gyi

tf
,

{Gyi

0,t : t ∈ [0, tf ]} ⊂ {Fi
0,t : t ∈ [0, tf ]}; e.g.,

dŝi(t) = (Ai(r
i
t, t)ŝi(t) +Bi(r

i
t, t)ui(t) +Gi(r

i
t, t)mwi

+u−i(t))dt+ Li(t)(dyi(t)− (Hi(r
i
t,t)ŝi(t) +mvi)dt) (11)

where ŝi(0) = si(0) and distributed estimation gains Li(t)

Li(t) = Σi(t)H
T

i (r
i
t, t)V

−1
i , Σi(0) = 0 (12)

Σ̇i(t) = Ai(r
i
t, t)Σi(t) + Σi(t)A

T

i (r
i
t, t) +Ni (13)

+Gi(r
i
t, t)WiG

T

i (r
i
t, t)− Σi(t)H

T

i (r
i
t, t)V

−1
i Hi(r

i
t, t)Σi(t).

Under the definition s̃i(t) , si(t)− ŝi(t), it follows that

ds̃i(t) = (Ai(r
i
t, t)− Li(t)Hi(r

i
t, t))s̃i(t)dt− Li(t)dζi(t)

+Gi(r
i
t, t)UWiΛ

1/2
Wi
dξi(t)− dηi(t), s̃i(0) = 0 . (14)

Beyond this, decision maker i for i ∈ N , however, attempts
to make risk-bearing decisions ui caused by Fi

0,t and Gyi

0,t

from its admissible feedback policy set Uyi,ui [0, tf ], which
is a closed subset of L2

Fi
tf

([0, tf ],Rmi).

Associated with each admissible 2-tuple (ui(·), u−i(·)) is
the generalized chi-squared random performance

Ji(ui, u−i) = sTi (tf )Q
f
i si(tf ) +

∫ tf

0

[sTi (τ)Qi(τ)si(τ)

+ uTi (τ)Ri(τ)ui(τ)− uT−i(τ)Mi(τ)u−i(τ)]dτ (15)

where the design parameters Qf
i ∈ Rni×ni , Qi ∈

C([0, tf ];Rni×ni), Mi ∈ C([0, tf ];Rni×ni) and Ri ∈

C([0, tf ];Rmi×mi) representing relative weightings for ter-
minal and transient tradeoffs between the regulatory of re-
sponses si, the effectiveness of the control and/or decision
policy ui and the coordination of control and/or decision
policies from the immediate neighbors u−i are determinis-
tic and positive semidefinite with Ri(t) invertible.

In the case of incomplete information, an admissible feed-
back policy ui for a local best response to all other decision
makers u−i must be of the form, for some ði(·, ·)

ui(t) = ði(t, yi(τ)) , τ ∈ [0, t] . (16)

In general, the conditional density pi(si(t)|Gyi

0,t), which

is the density of si(t) conditioned on Gyi

0,t represents the
sufficient statistics for describing the conditional stochastic
effects of future feedback policy ui. With regards to the
linear-Gaussian structure, the conditional covariance Σi(t)
is independent of feedback policy ui(t) and observations
{yi(τ) : τ ∈ [0, t]}. Henceforth, an optimal control and/or
decision policy ui(t) of the form (16) should deduce to

ui(t) = γi(t, ŝi(t)) , t ∈ [0, tf ] .

Towards these bases, the search for an optimal feedback
solution is productively restricted to a linear time-varying
feedback policy generated from the locally accessible ŝi(t)

ui(t) = Ki(t)ŝi(t) +mi(t) , t ∈ [0, tf ] (17)

where feedback decision parametersKi ∈ C([0, tf ];Rmi×ni)
and mi ∈ C([0, tf ];Rmi) will be formally defined later.

In effect, the a-priori knowledge about neighboring dis-
turbances u−i(·) and the admissible feedback policy (17),
the aggregation of the dynamics (11) and (14) associ-
ated with decision maker i is described by the controlled
stochastic differential equation together with the initial
state zi(0) = zi0

dzi(t)= (Ai
z(r

i
t, t)zi(t) + biz(r

i
t, t))dt+Gi

z(r
i
t, t)dςi(t) (18)

and the performance measure (15) is rewritten as follows

Ji(ui, u−i)=z
T
i (tf )Q

i
zfzi(tf ) +

∫ tf

0

[zTi (τ)Q
i
z(τ)zi(τ) (19)

+2zTi (τ)S
i
z(τ)+m

T
i (τ)Ri(τ)mi(τ)−uT−i(τ)Mi(τ)u−i(τ)]dτ

where the aggregate stationary Wiener process noise is

denoted by dςi(t) ,
[
dξTi (t) dζ

T
i (t) dη

T
i (t)

]T
together

with E
{
[ςi(τ1)− ςi(τ2)][ςi(τ1)− ςi(τ2)]

T
}

= Ξi|τ1 − τ2|,
∀τ1, τ2 ∈ [0, tf ] and whereas the aggregate system coef-
ficients and state variables are defined by

Ai
z(r

i
t, t) ,[

Ai(r
i
t, t) +Bi(r

i
t, t)Ki(t) Li(t)Hi(r

i
t, t)

0 Ai(r
i
t, t)− Li(t)Hi(r

i
t, t)

]
biz(r

i
t, t) ,

[
Bi(r

i
t, t)mi(t) + u−i(t) +Gi(r

i
t, t)mwi

0

]
Gi

z(r
i
t, t) ,

[
0 Li(t) 0

Gi(r
i
t, t)UWiΛ

1/2
Wi

−Li(t) −I

]
zi ,

[
ŝi
s̃i

]
, zi0 ,

[
si(0)
0

]
, Qi

zf ,
[
Qf

i Qf
i

Qf
i Qf

i

]
Qi

z(t) ,
[
Qi(t) +KT

i (t)Ri(t)Ki(t) Qi(t)
Qi(t) Qi(t)

]
Si
z(t),

[
KT

i (t)Ri(t)mi(t)
0

]
, Ξi,

[
Wi 0 0
0 Vi 0
0 0 Ni

]
.
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Such an acknowledgement of the linear dynamics (18)
and the integral-quadratic-form performance measure (19)
creates the following conclusion: performance measure as-
sociated with decision maker i is clearly a random variable
of the generalized chi-squared type. More important, per-
haps, is the fact that the degrees of uncertainty of the
ensemble performance-measure (19) must be assessed via
a complete set of higher-order statistics. One productive
step involved in extracting information from complex be-
havior of (19) is modeling and management of all the
mathematical statistics (also known as semi-invariants).
The methodology below is pursued for its central role in
the endeavor of extracting performance-measure statistics
pertaining to random distributions.

Theorem 1. Cumulant-Generating Function.
Let distributed controller or decision maker i be as-
sociated with the states zi(·) of the stochastic dy-
namics (18) and subject to the performance measure
(19). Further, let initial states zi(τ) ≡ zτi and τ ∈
[0, tf ], the moment-generating function φi(τ, zτi , θ) =
ϱi(τ, θ) exp{(zτi )TΥi(τ, θ)zτi +2(zτi )

T ℓi(τ, θ)} and υi(τ, θ) =
ln{ϱi(τ, θ)} for θ ∈ R+ Then, the cumulant-generating
function has the form of

ψi(τ, ziτ , θ) = (zτi )
TΥi(τ, θ)zτi +2(zτi )

T ℓi(τ, θ)+υi(τ, θ)

where the backward-in-time scalar valued υi(τ, θ) satisfies

d

dτ
υi(τ, θ) = −Tr{Υi(τ, θ)Gi

z(r
i
τ , τ)Ξi(G

i
z)

T (riτ , τ)}

− 2(ℓi)T (τ, θ)biz(r
i
τ , τ)− θmT

i (τ)Ri(τ)mi(τ)

+ θuT−i(τ)Mi(τ)u−i(τ) , υi(tf , θ) = 0 (20)

whereas the backward-in-time matrix valued Υi(τ, θ) with
Υi(tf , θ) = θQi

zf and vector valued ℓi(τ, θ) satisfy

d

dτ
Υi(τ, θ) = −(Ai

z)
T(riτ , τ)Υ

i(τ, θ)−Υi(τ, θ)Ai
z(r

i
τ , τ)

−2Υi(τ, θ)Gi
z(r

i
τ , τ)Ξi(G

i
z)

T(riτ , τ)Υ
i(τ, θ)− θQi

z(τ) (21)

d

dτ
ℓi(τ, θ) = −(Ai

z)
T (riτ , τ)ℓ

i(τ, θ)−Υi(τ, θ)biz(r
i
τ , τ)

− θSi
z(τ) , ℓi(tf , θ) = 0 . (22)

Proof. For notional simplicity, it is convenient to have
ϖi

(
τ, ziτ , θ

)
, exp{θJi(τ, zτi )}, in which the performance

measure (19) is rewritten as the cost-to-go function

Ji(τ, z
τ
i ) = zTi (tf )Q

i
zfzi(tf ) +

∫ tf

τ

[zTi (τ)Q
i
z(τ)zi(τ) (23)

+2zTi (τ)S
i
z(τ)+m

T
i (τ)Ri(τ)mi(τ)−uT−i(τ)Mi(τ)u−i(τ)]dτ

subject to the stochastic dynamics (18) with the ini-

tial condition zi(τ) = zτi . By definition, φi(τ, zτi , θ) ,
E{ϖi(τ, zτi , θ)}. Thus, its total time derivative is of the
form

d

dτ
φi(τ, zτi , θ) = −θ[(zτi )TQi

z(τ)z
τ
i + 2(zτi )

TSi
z(τ)

+mT
i (τ)Ri(τ)mi(τ)−(u−i)

T (τ)Mi(τ)u−i(τ)]φ
i(τ, zτi , θ).

Using the standard Ito’s formula, it follows that

dφi(τ, zτi , θ) = φi
τ (τ, z

τ
i , θ)dτ + φi

zτ
i
(τ, zτi , θ)dz

τ
i

+
1

2
Tr

{
φi
zτ
i
zτ
i
(τ, zτi , θ)G

i
z(r

i
τ , τ)Ξi(G

i
z)

T (riτ , τ)
}
dτ .

Given that φi(τ, zτi , θ) = ϱi(τ, θ) exp{(zτi )TΥi(τ, θ)zτi +
2(zτi )

T ℓi(τ, θ)} and its partial derivatives, it is clear to see

− θ[(zτi )
TQi

z(τ)z
τ
i + 2(zτi )

TSi
z(τ) +mT

i (τ)Ri(τ)mi(τ)

−(u−i)
T(τ)Mi(τ)u−i(τ)]φ

i(τ, zτi , θ) =
{
(zτi )

T d

dτ
Υi(τ, θ)zτi

+
d
dτ ϱ

i(τ, θ)

ϱi(τ, θ)
+ 2(zτi )

T d

dτ
ℓi(τ, θ) + 2(ℓi)T (τ, θ)biz(r

i
τ , τ)

+ (ziτ )
T [(Ai

z)
T (riτ , τ)Υ

i(τ, θ) + Υi(τ, θ)Ai
z(r

i
τ , τ)]z

τ
i

+ 2(zτi )
T (Ai

z)
T (riτ , τ)ℓ

i(τ, θ) + 2(zτi )
TΥi(τ, θ)biz(r

i
τ , τ)

+ 2(zτi )
TΥi(τ, θ)Gi

z(r
i
τ , τ)Ξi(G

i
z)

T (riτ , τ)Υ
i(τ, θ)zτi

+Tr{Υi(τ, θ)Gi
z(r

i
τ , τ)Ξi(G

i
z)

T (riτ , τ)}
}
φi(τ, zτi , θ) .

To have constant and quadratic terms be independent
of arbitrary zτi , it requires that the results (20)-(22)

hold. Finally, at τ = tf , it follows that φi(tf , z
tf
i , θ) =

exp{θ(ztfi )TQi
zfz

tf
i }. Consequently, the terminal-value con-

ditions Υi(tf , θ) = θQi
zf , ℓ

i(tf , θ) = 0, ϱi(tf , θ) = 1 and

hence, υi(tf , θ) = 0 which complete the proof.

In addition, it is reasonable to employ a MacLaurin series
expansion of the cumulant-generating function to capture
performance variations of (19) through the knowledge
representation of all the mathematical statistics, e.g.,

ψi(τ, zτi , θ) =
∞∑
r=1

∂(r)

∂θ(r)
ψi(τ, zτi , θ)

∣∣∣∣
θ=0

θr

r!
(24)

where κir , ∂(r)

∂θ(r)ψ
i(τ, zτi , θ)

∣∣∣
θ=0

are the performance-

measure statistics available at decision maker i and i ∈ N

κir =
∂(r)

∂θ(r)
ψi(τ, zτi , θ)

∣∣∣∣
θ=0

= (zτi )
T ∂(r)

∂θ(r)
Υi(τ, θ)

∣∣∣∣
θ=0

zτi

+ 2(zτi )
T ∂(r)

∂θ(r)
ℓi(τ, θ)

∣∣∣∣
θ=0

+
∂(r)

∂θ(r)
υi(τ, θ)

∣∣∣∣
θ=0

. (25)

For notational convenience, the change of variables

Hi
r(τ) ,

∂(r)Υi(τ, θ)

∂θ(r)

∣∣∣∣
θ=0

; D̆i
r(τ) ,

∂(r)ℓi(τ, θ)

∂θ(r)

∣∣∣∣
θ=0

Di
r(τ) ,

∂(r)υi(τ, θ)

∂θ(r)

∣∣∣∣
θ=0

; τ ∈ [0, tf ]; r ∈ N (26)

is introduced so that the next theorem provides an effective
and accurate capability for forecasting all the higher-order
characteristics associated with performance uncertainty.

Theorem 2. Performance-Measure Statistics.
Associate with distributed stochastic systems governed
by (18)-(19), where the pairs (Ai(r

i
t, t), Bi(r

i
t, t)) and

(Ai(r
i
t, t), Hi(rt, t)) are uniformly stabilizable and de-

tectable. For ki ∈ N fixed, the kith-cumulant of perfor-
mance measure (19) concerned by decision maker i is

κik = zTi0H
i
ki(0)zi0 + 2zTi0D̆

i
ki(0) +Di

ki(0) , i ∈ N (27)

where the supporting variables {Hi
r(τ)}k

i

r=1, {D̆i
r(τ)}k

i

r=1

and {Di
r(τ)}k

i

r=1 evaluated at τ = 0 satisfy the differential

equations (with the dependence ofHi
r(τ), D̆

i
r(τ) andDr(τ)

upon the admissible feedback parameters Ki(τ) andmi(τ)
in connection of other interactions u−i(τ) suppressed)
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d

dτ
Hi

1(τ) = −(Ai
z)

T (riτ , τ)H
i
1(τ)−Hi

1(τ)A
i
z(r

i
τ , τ)

−Qi
z(τ) , Hi

1(tf ) = Qi
zf (28)

d

dτ
Hi

r(τ) = −(Ai
z)

T (riτ , τ)H
i
r(τ)−Hi

r(τ)A
i
z(r

i
τ , τ) (29)

−
r−1∑
s=1

2r!

s!(r−s)!
Hi

s(τ)G
i
z(r

i
τ , τ)Ξi(G

i
z)

T(riτ , τ)H
i
r−s(τ)

d

dτ
D̆i

1(τ) = −(Ai
z)

T (riτ , τ)D̆
i
1(τ)−Hi

1(τ)b
i
z(r

i
τ , τ)

− Si
z(τ) , D̆i

1(tf ) = 0 (30)

d

dτ
D̆i

r(τ) = −(Ai
z)

T (riτ , τ)D̆
i
r(τ)−Hi

r(τ)b
i
z(r

i
τ , τ) (31)

D̆i
r(tf ) = 0 , 2 ≤ r ≤ ki

d

dτ
Di

1(τ) = −Tr
{
Hi

1(τ)G
i
z(r

i
τ , τ)Ξi(G

i
z)

T (riτ , τ)
}

− 2(D̆i
1)

T (τ)biz(r
i
τ , τ)−mT

i (τ)Ri(τ)mi(τ)

+ uT−i(τ)Mi(τ)u−i(τ), Di
1(tf ) = 0 (32)

d

dτ
Di

r(τ) = −Tr
{
Hi

r(τ)G
i
z(r

i
τ , τ)Ξi(G

i
z)

T (riτ , τ)
}

− 2(D̆i
r)

T (τ)biz(r
i
τ , τ), Di

r(tf ) = 0, 2 ≤ r ≤ ki (33)

where the terminal conditions Hi
r(tf ) = 0 for 2 ≤ r ≤ ki.

Proof. The expression of (27) is readily justified by using
the result (25) and definition (26). What remains is to

show that Hi
r(τ), D̆

i
r(τ) and D

i
r(τ) for 1 ≤ r ≤ ki indeed

satisfy the back-in-time differential equations (28)-(33).
Of note, these deterministic differential equations (28)-
(33) are then obtained by successively taking derivatives of
(20)-(22) with respect to θ and subject to the assumptions
of (Ai(r

i
τ , τ), Bi(r

i
τ , τ)) and (Ai(r

i
τ , τ), Hi(r

i
τ , τ)) being

uniformly stabilizable and detectable on [0, tf ].

3. PROBLEM STATEMENTS

Increased insight into the roles played by performance-
measure statistics associated with (19) creates a paradigm
shift for robust decision making under performance uncer-
tainty. Particularly, it will affect the core design strategies
in distributed control and analysis with performance risk
aversion. For such a problem, it is important to have a
compact statement of the risk-averse decision and control
optimization herein so as to aid the following mathemat-
ical manipulations. The approach here is to let Hi

r(·) ,[
(Hi

r)11(·)(Hi
r)12(·)

(Hi
r)21(·)(Hi

r)22(·)

]
, D̆i

r(·) ,
[
(D̆i

r)11(·)
(D̆i

r)21(·)

]
, Π1(·) ,

Li(·)ViLT
i (·), Π2(·) = Π3(·) , −Li(·)ViLT

i (·), Π4(·) ,
Gi(r

i
· , ·)UWi

Λ
1/2
Wi
WiΛ

1/2
Wi
UT
Wi
G

T

i (r
i
· , ·) + Li(·)ViLT

i (·) +Ni.
In effect, the time-backward state evolutions (28)-(33) of
which the admissible feedback parameters Ki and mi are
embedded, are further considered as the new dynamical
equations with the associated 4ki-tuple matrix, vector and
scalar state variables

Hi , (Hi
1, . . . ,Hi

ki ,Hi
ki+1, . . . ,H

i
2ki ,

Hi
2ki+1, . . . ,H

i
3ki ,Hi

3ki+1, . . . ,H
i
4ki)

= ((Hi
1)11, . . . , (H

i
ki)11, (H

i
1)12, . . . , (H

i
ki)12,

(Hi
1)21, . . . , (H

i
ki)21, (H

i
1)22, . . . , (H

i
ki)22)

D̆i , (D̆i
1, . . . , D̆i

ki , D̆i
ki+1, . . . , D̆

i
2ki)

= ((D̆i
1)11, . . . , (D̆

i
ki)11, (D̆

i
1)21, . . . , (D̆

i
ki)21)

Di , (Di
1, . . . ,Di

ki) = (Di
1, . . . , D

i
ki)

and the rules of action, for r = 1

d

dτ
Hi

1(τ) = F i
1(τ,Hi,Ki), Hi

1(tf ) = Qi
f (34)

= −(Ai(r
i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))

THi
1(τ)−Qi(τ)

−Hi
1(τ)(Ai(r

i
τ , τ)+Bi(r

i
τ , τ)Ki(τ))−KT

i (τ)Ri(τ)Ki(τ)

d

dτ
Hi

ki+1(τ) = F i
ki+1(τ,H

i,Ki), Hi
ki+1(tf ) = Qi

f (35)

= −(Ai(r
i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))

THi
ki+1(τ)

−Hi
ki+1(τ)(Ai(r

i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

−Hi
1(τ)Li(τ)Hi(r

i
τ , τ)−Qi(τ)

d

dτ
Hi

2ki+1(τ)=F i
2ki+1(τ,H

i,Ki),Hi
2ki+1(tf )=Q

i
f (36)

= −Hi
2ki+1(τ)(Ai(r

i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))

− (Ai(r
i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

THi
2ki+1(τ)−Qi(τ)

− (Li(τ)Hi(r
i
τ , τ))

THi
1(τ)

d

dτ
Hi

3ki+1(τ)=F i
3ki+1(τ,H

i,Ki),Hi
3ki+1(tf )=Q

i
f (37)

= −Hi
3ki+1(τ)(Ai(r

i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

− (Ai(r
i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

THi
3ki+1(τ)−Qi(τ)

− (Li(τ)Hi(r
i
τ , τ))

THi
ki+1(τ)−Hi

2ki+1(τ)Li(τ)Hi(r
i
τ , τ)

d

dτ
D̆i

1(τ) = Ği
1(τ,Hi, D̆i,Ki,mi), D̆i

1(tf ) = 0 (38)

=−(Ai(r
i
τ ,τ)+Bi(r

i
τ ,τ)Ki(τ))

TD̆i
1(τ)−KT

i (τ)Ri(τ)mi(τ)

−Hi
1(τ)(Bi(r

i
τ , τ)mi(τ)+u−i(τ)+Gi(r

i
τ , τ)mwi)

d

dτ
D̆i

ki+1(τ) = Ği
ki+1(τ,H

i, D̆i,mi), D̆i
ki+1(tf ) = 0 (39)

= −(Ai(r
i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

T D̆i
ki+1(τ)

−Hi
2ki+1(τ)(Bi(r

i
τ , τ)mi(τ)+u−i(τ)+Gi(r

i
τ , τ)mwi)

− (Li(τ)Hi(r
i
τ , τ))

T D̆i
1(τ)

d

dτ
Di

1(τ) = Gi
1(τ,Hi, D̆i,mi), Di

1(tf ) = 0 (40)

= −Tr{Hi
1(τ)Π1(τ) +Hi

ki+1(τ)Π3(τ)}
− Tr{Hi

2ki+1(τ)Π2(τ) +Hi
3ki+1(τ)Π4(τ)}

−2(D̆i
1)

T (τ)(Bi(r
i
τ , τ)mi(τ) + u−i(τ)+Gi(r

i
τ , τ)mwi)

−mT
i (τ)Ri(τ)mi(τ) + uT−i(τ)Mi(τ)u−i(τ)

and, for 2 ≤ r ≤ ki

d

dτ
Hi

r(τ) = F i
r(τ,Hi,Ki), Hi

r(tf ) = 0 (41)

= −(Ai(r
i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))

THi
r(τ)

−Hi
r(τ)(Ai(r

i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

s(τ)Π1(τ)+Hi
ki+s(τ)Π3(τ)]Hi

r−s(τ)

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

s(τ)Π2(τ)+Hi
ki+s(τ)Π4(τ)]Hi

2ki+r−s(τ)

d

dτ
Hi

ki+r(τ) = F i
ki+r(τ,H

i,Ki), Hi
ki+r(tf ) = 0 (42)
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= −(Ai(r
i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))

THi
ki+r(τ)

−Hi
ki+r(τ)(Ai(r

i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

−Hi
r(τ)Li(τ)Hi(r

i
τ , τ)

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

s(τ)Π1(τ)+Hi
ki+s(τ)Π3(τ)]Hi

ki+r−s(τ)

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

s(τ)Π2(τ)+Hi
ki+s(τ)Π4(τ)]Hi

3ki+r−s(τ)

d

dτ
Hi

2ki+r(τ) = F i
2ki+r(τ,H

i,Ki), Hi
2ki+r(tf ) = 0 (43)

= −Hi
2ki+r(τ)(Ai(r

i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))− (Ai(r

i
τ , τ)

− Li(τ)Hi(r
i
τ , τ))

THi
2ki+r(τ)− (Li(τ)Hi(r

i
τ , τ))

THi
r(τ)

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

2ki+s(τ)Π1(τ)+Hi
3ki+s(τ)Π3(τ)]Hi

r−s(τ)

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

2ki+s(τ)Π2(τ)+Hi
3ki+s(τ)Π4]Hi

2ki+r−s(τ)

d

dτ
Hi

3ki+r(τ) = F i
3ki+r(τ,H

i,Ki), Hi
3ki+r(tf ) = 0 (44)

= −Hi
3ki+r(τ)(Ai(r

i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

− (Ai(r
i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

THi
3ki+r(τ)

− (Li(τ)Hi(r
i
τ , τ))

THi
ki+r(τ)−Hi

2ki+r(τ)Li(τ)Hi(r
i
τ , τ)

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

2ki+s(τ)Π1+Hi
3ki+s(τ)Π3(τ)]Hi

ki+r−s(τ)

−
r−1∑
s=1

2r!

s!(r−s)!
[Hi

2ki+s(τ)Π2+Hi
3ki+s(τ)Π4(τ)]Hi

3ki+r−s(τ)

d

dτ
D̆i

r(τ) = Ği
r(τ,Hi, D̆i,Ki,mi), D̆i

r(tf ) = 0 (45)

= −(Ai(r
i
τ , τ) +Bi(r

i
τ , τ)Ki(τ))

T D̆i
r(τ)

−Hi
r(τ)(Bi(r

i
τ , τ)mi(τ)+u−i(τ)+Gi(r

i
τ , τ)mwi)

d

dτ
D̆i

ki+r(τ) = Ği
ki+r(τ,H

i, D̆i,mi), D̆i
ki+r(tf ) = 0 (46)

= −(Ai(r
i
τ , τ)− Li(τ)Hi(r

i
τ , τ))

T D̆i
ki+r(τ)

−Hi
2ki+r(τ)(Bi(r

i
τ , τ)mi(τ)+u−i(τ)+Gi(r

i
τ , τ)mwi)

− (Li(τ)Hi(r
i
τ , τ))

T D̆i
r(τ)

d

dτ
Di

r(τ) = Gi
r(τ,Hi, D̆i,mi), Di

r(tf ) = 0 (47)

= −Tr{Hi
r(τ)Π1(τ) +Hi

ki+r(τ)Π3(τ)}
− Tr{Hi

2ki+r(τ)Π2(τ) +Hi
3ki+r(τ)Π4(τ)}

− 2(D̆i
r)

T (τ)(Bi(r
i
τ , τ)mi(τ)+u−i(τ)+Gi(r

i
τ , τ)mwi

)

The product system of the equations (34)-(47) becomes

d

dτ
Hi(τ) = F i(τ,Hi(τ),Ki(τ)), Hi(tf ) (48)

d

dτ
D̆i(τ) = Ği(τ,Hi(τ), D̆i(τ),mi(τ)), D̆i(tf ) (49)

d

dτ
Di(τ) = Gi(τ,Hi(τ), D̆i(τ),mi(τ)), Di(tf ) (50)

where the key point is that F i , F i
1 × · · ·×F i

ki ×F i
ki+1 ×

· · · × F i
2ki × F i

2ki+1 × · · · × F i
3ki × F i

3ki+1 × · · · × F i
4ki ,

Ği , Ği
1×· · ·×Ği

ki×Ği
ki+1×· · ·×Ği

2ki and Gi , Gi
1×· · ·×Gi

ki .

Of note, once the immediate neighbors j ∈ Ni of decision
maker i fix their person-by-person equilibrium strategies
u∗j and thus the signalling or coordination effects u∗−i, deci-
sion maker i will then obtain an optimal stochastic control
problem with risk-averse performance considerations. The
construction of a person-by-person policy associated with
decision maker i now involves the 2-tuple (Ki,mi). In the
sequel and elsewhere, when this dependence is needed to
be clear, then the notations Hi ≡ Hi(·,Ki, u

∗
−i), D̆i ≡

D̆i(·,Ki,mi, u
∗
−i) and Di ≡ Di(·,mi, u

∗
−i).

For the terminal data (tf ,Hi
f , D̆i

f ,Di
f ), the theoretical

framework for risk-averse control of distributed stochastic
systems with time delays and coordinations u∗−i from
immediate neighbors j ∈ Ni is next analyzed by admissible
feedback policies for decision maker i and i ∈ N .

Definition 3. Admissible Feedback Policies.

Let compact subsets K
i ⊂ Rmi×(2ni+mi) and M

i ⊂ Rmi

be the sets of allowable feedback form values available
at decision maker i. For the given ki ∈ N and sequence

µi = {µi
r ≥ 0}ki

r=1 with µ
i
1 > 0, the sets of feedback param-

eters Ki
tf ,Hi

f
,D̆i

f
,Di

f
;µi

and Mi
tf ,Hi

f
,D̆i

f
,Di

f
;µi

are respectively

assumed to be the classes of C([0, tf ];Rmi×(2ni+mi)) and

C([0, tf ];Rmi) with values Ki(·) ∈ K
i
and mi(·) ∈ M

i
,

for which the solutions to the dynamic equations (48)-
(50) with the terminal-value conditions Hi(tf ) = Hi

f ,

D̆i(tf ) = D̆i
f and Di(tf ) = Di

f exist on [0, tf ].

To minimize the performance vulnerability of (19) against
all ensemble realizations from the stochastic environments
and mutual influences from Ni, performance risks are
henceforth interpreted as worries and fears about certain
undesirable characteristics of (19) and thus are managed
through a finite set of selective weights. This custom
set of design freedoms representing particular uncertainty
aversions is hence different from the ones with aversion
to risk captured in risk-sensitive optimal control as in
Jacobson (1973) and Whittle (1990).

On Ki
tf ,Hi

f
,D̆i

f
,Di

f
;µi

× Mi
tf ,Hi

f
,D̆i

f
,Di

f
;µi

the performance

index with mean-risk considerations is defined as follows.

Definition 4. Mean-Risk Aware Performance Index.
Let decision maker i select ki ∈ N and the set of scalar
coefficients µi = {µi

r ≥ 0}ki

r=1 with µi
1 > 0. Then, for the

given si0 , si(0), the mean-risk aware performance index

ϕi0 : (R(2ni+mi)×(2ni+mi))k
i

× (R2ni)k
i

× Rki

7→ R+

pertaining to risk-averse decision making over [0, tf ] is

ϕi0(Hi(0), D̆i(0),Di(0)) , µi
1κ

i
1︸ ︷︷ ︸

Mean

+µi
2κ

i
2 + · · ·+ µi

kiκiki︸ ︷︷ ︸
Risk

=

ki∑
r=1

µi
r[s

T
i0Hi

r(0)si0 + 2sTi0D̆i
r(0) +Di

r(0)] (51)

where additional design freedom by means of µi
r’s utilized

by decision maker i are sufficient to meet and exceed dif-
ferent levels of performance-based reliability requirements;
e.g., mean (i.e., the average of performance), variance (i.e.,
the dispersion of performance values), skewness (i.e., the
anti-symmetry of performance density), kurtosis (i.e., the
heaviness in the performance density tails), etc., pertaining
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to performance variations while {Hi
r(τ)}k

i

r=1, {D̆i
r(τ)}k

i

r=1

and {Di
r(τ)}k

i

r=1 evaluated at τ = 0 satisfy (48)-(50).

To explicitly indicate the dependence of the mean-risk
aware performance index (51) expressed in Mayer form on
the 2-tuple (Ki,mi) and the signaling effects u∗−i issued
by all immediate neighbors j from Ni, the mean-risk per-
formance index (51) is now rewritten as ϕi0(Ki,mi;u

∗
−i).

Definition 5. Nash Equilibrium.
An N -tuple of control and/or decision policies {(K∗

1 ,m
∗
1),

. . . , (K∗
N ,m

∗
N )} is said to constitute a Nash equilibrium

for the N -person stochastic game which is supported by
distributed large-scale stochastic systems with time delays
if, for all i ∈ N , the Nash inequalities hold

ϕi0(K
∗
i ,m

∗
i ;u

∗
−i) ≤ ϕi0(Ki,mi;u

∗
−i), i ∈ N .

For the sake of time consistency and subgame perfection, a
Nash equilibrium solution is required to have an additional
property that its restriction on [0, τ ] is also a Nash solution
to the truncated version of the original problem, defined on
[0, τ ]. With such a restriction so defined, it is now termed
as a feedback Nash equilibrium solution, which is now
free of any informational nonuniqueness, and thus whose
derivation allows a dynamic programming type argument.

Definition 6. Feedback Nash Equilibrium.
Let the 2-tuple (K∗

i ,m
∗
i ) define a feedback Nash con-

trol and/or decision policy for all admissible (Ki,mi) ∈
Ki

tf ,Hi
f
,D̆i

f
,Di

f
;µi

× Mi
tf ,Hi

f
,D̆i

f
,Di

f
;µi

, upon which the solu-

tions to the dynamical systems (48)-(50) exist on [0, tf ].

Then, {(K∗
1 ,m

∗
1), . . . , (K

∗
N ,m

∗
N )} when restricted to [0, τ ]

is still a N -tuple feedback Nash equilibrium solution to
the N -person Nash decision problem with the appropriate
terminal conditions (τ,Hi

∗(τ), D̆i
∗(τ),Di

∗(τ)), ∀ τ ∈ [0, tf ].

Now the objective of decision maker i is to minimize (51)
over Ki

tf ,Hi
f
,D̆i

f
,Di

f
;µi

×Mi
tf ,Hi

f
,D̆i

f
,Di

f
;µi

while subject to the

local neighborhood of the Nash decision policies u∗−i.

Definition 7. Optimization of Mayer Problem.

Given the profile of risk-averse attitudes µi = {µi
r ≥ 0}ki

r=1
with µi

1 > 0, the decision optimization problem defined by

min
Ki(·),mi(·)

ϕi0(Ki,mi;u
∗
−i) , i ∈ N (52)

is subject to the dynamical equations (48)-(50) on [0, tf ].

In conformity with the dynamic programming approach,
the terminal time and states (tf ,Hi

f , D̆i
f ,Di

f ) are parame-

terized as (ε,Yi, Z̆i,Zi), whereby Yi , Hi(ε), Z̆i , D̆i(ε)

and Zi , Di(ε). Thus, the value function now depends on
the parameterization of the terminal-value conditions.

Definition 8. Value Function.

Let (ε,Yi, Z̆i,Zi) ∈ [0, tf ] × (R(2ni+mi)×(2ni+mi))k
i ×

(R2ni+mi)k
i × Rki

. Then, Vi(ε,Yi, Z̆i,Zi) is defined by

Vi(ε,Yi, Z̆i,Zi) , inf
Ki(·),mi(·)

ϕi0(Ki,mi;u
∗
−i) . (53)

Definition 9. Reachable Sets.
Let a reachable set of decision maker i be defined by

Qi , {(ε,Yi, Z̆i,Zi) ∈ [0, tf ] × (R(2ni+mi)×(2ni+mi))k
i ×

(R2ni+mi)k
i × Rki

: Ki
ε,Yi,Z̆i,Zi;µi

×Mi
ε,Yi,Z̆i,Zi;µi

̸= ∅}.

Moreover, it is shown that the value function associated
with decision maker i is satisfying partial differential
equation (e.g., Hamilton-Jacobi-Bellman (HJB) equation)
at interior points of Qi, at which it is differentiable.

Theorem 10. HJB Equation-Mayer Problem.
Let (ε,Yi, Z̆i,Zi) be any interior point of Qi, at which the

value function Vi(ε,Yi, Z̆i,Zi) is differentiable. If there ex-
ists a feedback Nash decision (K∗

i ,m
∗
i ) ∈ Ki

tf ,Hi
f
,D̆i

f
,Di

f
;µi

×

Mi
tf ,Hi

f
,D̆i

f
,Di

f
;µi

, then the partial differential equation

0 = min
Ki∈K

i
,mi∈M

i

{ ∂
∂ε

Vi(ε,Yi, Z̆i,Zi)

+
∂

∂ vec(Yi)
Vi(ε,Yi, Z̆i,Zi)vec(F i(ε,Yi,Ki))

+
∂

∂ vec(Z̆i)
Vi(ε,Yi, Z̆i,Zi)vec(Ği(ε,Yi, Z̆i,mi)

+
∂

∂ vec(Zi)
Vi(ε,Yi, Z̆i,Zi)vec(Gi(ε,Yi, Z̆i,mi)

}
(54)

is satisfied and subject to Vi(0,Yi(0), Z̆i(0),Zi(0)) =

ϕi0(Hi(0), D̆i(0),Di(0)).

Proof. By what have been shown in Pham (2011), the
proof for the result herein is readily proven.

Finally, the sufficient conditions used to verify a feedback
Nash strategy for decision maker i are given as follows.

Theorem 11. Verification Theorem.
Let Wi(ε,Yi, Z̆i,Zi) be a differentiable solution to (54)

withWi(0,Hi(0), D̆i(0),Di(t0)) = ϕi0(Hi(0), D̆i(0),Di(0)).

Let (tf ,Hi
f , D̆i

f ,Di
f ) ∈ Qi, (Ki,mi) ∈ Ki

tf ,Hi
f
,D̆i

f
,Di

f
;µi

×

Mi
tf ,Hi

f
,D̆i

f
,Di

f
;µi

and (Hi(·), D̆i(·),Di(·)) be the trajecto-

ries of (48)-(50). Then,Wi(τ,Hi(τ), D̆i(τ),Di(τ)) is there-
fore time-backward increasing.

If (K∗
i ,m

∗
i ) is in Ki

tf ,Hi
f
,D̆i

f
,Di

f
;µi

× Mi
tf ,Hi

f
,D̆i

f
,Di

f
;µi

with

the corresponding solutions (Hi
∗(·), D̆i

∗(·),Di
∗(·)) of the

dynamical equations (48)-(50) such that, for τ ∈ [0, tf ]

0 =
∂

∂ε
Wi(τ,Hi

∗(τ), D̆i
∗(τ),Di

∗(τ)) +
∂

∂ vec(Yi)
Wi(τ,

Hi
∗(τ), D̆i

∗(τ),Di
∗(τ))vec(F i(τ,Hi

∗(τ),K
∗
i (τ)))

+
∂

∂ vec(Z̆i)
Wi(τ,Hi

∗(τ), D̆i
∗(τ),Di

∗(τ))

vec(Ği(τ,Hi
∗(τ), D̆i

∗(τ),m
∗
i (τ)))

+
∂

∂ vec(Zi)
Wis(τ,Hi

∗(τ), D̆i
∗(τ),Di

∗(τ))

vec(Gi(τ,Hi
∗(τ), D̆i

∗(τ),m
∗
i (τ))) (55)

then, the 2-tuple (K∗
i ,m

∗
i ) is a feedback Nash policy and

Wi(ε,Yi, Z̆i,Zi) = Vi(ε,Yi, Z̆i,Zi) (56)

Proof. It follows the same manner as in Pham (2011).

4. DISTRIBUTED PERSON-BY-PERSON CONTROLS

As already recognized, the initial state si0 represents
both quadratic and linear contributions to the mean-risk
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aware performance index (51) of Mayer type. Therefore,
it is suggested that the value function is also linear
and quadratic in si0. Subsequently, a candidate function
Wi(ε,Yi, Z̆i,Zi) associated with (53) is expected to be

Wi(ε,Yi, Z̆i,Zi) = sTi0

ki∑
r=1

µi
r(Yi

r + E i
r(ε)) si0

+ 2sTi0

ki∑
r=1

µi
r(Z̆i

r + T̆ i
r (ε)) +

ki∑
r=1

µi
r(Zi

r + T i
r (ε)) (57)

where the functions E i
r ∈ C1([0, tf ];R(2ni+mi)×(2ni+mi)),

T̆ i
r ∈ C1([0, tf ];R2ni+mi), and T i

r ∈ C1([0, tf ];R) are
yet to be determined. Next, the time derivative of
Wi(ε,Yi, Z̆i,Zi) is obtained

d

dε
Wi(ε,Yi, Z̆i,Zi)=

ki∑
r=1

µi
r[Gi

r(ε,Yi, Z̆i,mi) +
d

dε
T i
r (ε)]

+ sTi0

ki∑
r=1

µi
r[F i

r(ε,Yi,Ki) +
d

dε
E i
r(ε)]si0

+ 2sTi0

ki∑
r=1

µi
r[Ği

r(ε,Yi, Z̆i,mi) +
d

dε
T̆ i
r (ε)] . (58)

The substitution of (57) for the value function into the
HJB equation (54) and making use of (58) yield

0 = min
Ki∈K

i
,mi∈M

i

{
sTi0

ki∑
r=1

µi
r[F i

r(ε,Yi,Ki) +
d

dε
E i
r(ε)]si0

+ 2sTi0

ki∑
r=1

µi
r[Ği

r(ε,Yi, Z̆i,mi) +
d

dε
T̆ i
r (ε)]

+
ki∑
r=1

µi
r[Gi

r(ε,Yi, Z̆i,mi) +
d

dε
T i
r (ε)]

}
. (59)

Taking the gradients with respect to Ki and mi of the
expression within the bracket of (59) yields the necessary
conditions for an extremum of (51) on [0, ε]

K∗
i (ε) = −R−1

i (ε)B
T

i (r
i
ε, ε)

ki∑
r=1

µ̂i
rHi

∗r(ε) (60)

m∗
i (ε) = −R−1

i (ε)B
T

i (r
i
ε, ε)

ki∑
r=1

µ̂i
rD̆i

∗r(ε) (61)

where µ̂i
r , µi

l/µ
i
1 for µi

1 > 0.

With the feedback person-by-person decision policy (60)-
(61) being replaced in the expression of the bracket (59)

and having {Yi
r}k

i

r=1, {Z̆i
r}k

i

r=1, and {Zi
r}k

i

r=1 evaluated on

the optimal solution trajectories of (48)-(50), E i
r(ε), T̆ i

r (ε)
and T i

r (ε) are thus chosen so the sufficient condition (55) in
the verification theorem is satisfied regardless the arbitrary
values si0; for example,

E i
r(ε) = Hi

∗r(0)−Hi
∗r(ε) , T̆ i

r (ε) = D̆i
∗r(0)− D̆i

∗r(ε)

T i
r (ε) = Di

∗r(0)−Di
∗r(ε) , i ∈ N , 1 ≤ r ≤ ki .

At last, the sufficient condition (55) of the verification the-
orem is satisfied so that the extremizing feedback person-
by-person decision and/or control policy (60)-(61) asso-
ciated with decision maker i therefore becomes optimal.

And yet it is not too soon to offer a closing summary of
the analysis and its procedural mechanism to compute the
risk-averse decisions with two degrees of freedom as follows

u∗i (t) = K∗
i (t)ŝ

∗(t) +m∗
i (t) , t = tf − ε , i ∈ N (62)

whereupon the statistical measures of performance risks
are utilized locally at each distributed controllers i.

5. CONCLUSIONS

This paper shows recent advances on distributed infor-
mation and decision frameworks pertaining to a linear-
quadratic class of large-scale uncertain stochastic systems
with state and control delays. The emphasis is on the appli-
cation of a new generation of summary statistical measures
associated with the generalized chi-squared performance
measure. In views of performance risks, a new paradigm
shift for understanding and building distributed person-
by-person equilibrium decision policies is obtained, with
which the self-directed but yet strongly connected decision
makers, who are subject to distributed decision making,
are fully capable of implementing risk-bearing actions and
local best responses in the furtherance of their own goals.
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