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Abstract: This paper presents a closed-form expression for the model-plant mismatch that
may be present in a feedback control system. The main limitation on the expression is that the
controller and plant models should be representable by means of transfer functions, i.e. they
should be linear and time invariant. This includes a variety of controllers, among which the
ubiquitous Proportional, Integral and Derivative (PID) controller. The expression can then be
used to identify the true plant transfer function. The MPM expression is shown to work for
single-input single-output as well as a multiple-input multiple-output systems.
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1. INTRODUCTION

The situation where only poor process models are available
for control is a common one. This is especially true in,
but not limited to, the mineral-processing industry where
the availability of only poor process models is typical
(Hodouin, 2011). For this class of processes Hodouin
(2011) states that the peripheral control tools are as
important as the controller itself. Peripheral control tools
constitute all the elements in the control loop, other than
the controller itself, that function to improve controller
performance. These include fault detection and isolation,
data reconciliation, observers, soft sensors, optimisers and
model parameter tuners.

Many controller design methods make use of the plant
model that is available. This usually helps to improve
controller performance, but the dynamics of industrial
processes can change significantly over time (as is shown
for the example of a milling circuit in Olivier and Craig
(2013)). As soon as the plant dynamics change, model-
plant mismatch (MPM) is present and the controller de-
signed based on the original model will produce sub-
optimal control moves. Examples of the source of a change
in plant dynamics are maintenance on equipment or a
change in operating conditions/parameters. In order to
restore the controller performance the process needs to
be re-identified and the controller redesigned, which is a
costly and time-consuming exercise (Conner and Seborg,
2005). Apart from the formerly mentioned problems, pro-
cess re-identification also involves intrusive plant tests that
disturb the normal operation of the plant (Badwe et al.,
2009).

An alternative to full process re-identification, is to firstly
identify the elements in the process transfer function
matrix that contain significant mismatch and to only

re-identify these. Algorithms for MPM detection have
been proposed by Badwe et al. (2009) and Kano et al.
(2010). These algorithms identify the transfer function
matrix elements that contain mismatch as well as the
significance of the mismatch. This is useful information
that can be used to help assess the need for process re-
identification. These algorithms do however not supply
any additional information about the true plant. This still
leads to the need for process re-identification (although not
as expensive as full process re-identification) and ad-hoc
controller re-tuning.

Model identification techniques making use of closed-loop
data have been introduced some time ago (see for exam-
ple Gustavsson et al. (1977) and Söderström and Stoica
(1989)). A good overview of closed-loop identification is
given by Van den Hof (1998). In this article different
closed-loop identification techniques are discussed and
their characteristic properties are compared. The methods
described by Van den Hof (1998) are mostly based on
statistical approaches and do not make explicit use of
the transfer functions representing the system, unlike the
method presented in this article. A more recent approach
to on-line closed loop identification is given in Pingkang
et al. (2006).

This paper presents, as its main objective, a closed-form
expression for the model-plant mismatch, which can be
used to update the model to be the same as the actual
plant. Although this method is related to closed-loop
identification, it does make use of the explicit expression
for the mismatch to identify the true plant. This implies
that the model structure is known a priori and can simply
be updated through the mismatch expression.

The newly identified model may then be used to update
the controller, such that it can perform in an optimal
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Fig. 1. Block diagram of a control loop with model outputs
being generated.

manner. The expression is however only valid for systems
that contain a controller and plant model that can be
expressed by means of transfer functions. This does include
an array of controllers, but probably most importantly it
includes PID controllers.

PID control is still very predominant in the mineral-
processing industry (as it is in other industries as well).
An industrial survey on grinding mill circuits by Wei and
Craig (2009) found that more than 60% of the respondents
make use of PID control, which implies a large scope for
implementation of the presented expression.

Another limitation on the expression is that it requires the
input signals to be sufficiently exciting in order to make
the implementation sensible. This limitation is however
also present for the MPM detection algorithms presented
by Badwe et al. (2009) and Kano et al. (2010).

Identifying the mismatch in the manner proposed in this
paper is equivalent to identifying the uncertainty in the
model (Skogestad and Postlethwaite, 2005). Another ex-
ample of how this may be done is presented by Böling et al.
(2004).

The paper firstly gives the derivation of the MPM expres-
sion and shows how the true plant transfer function may
be obtained from it. Thereafter the expression is used in
a single-input single-output (SISO) application example
to show its usefulness. Next some provisions for multiple-
input multiple-output (MIMO) applications are presented
before a MIMO application example is shown.

2. MODEL-PLANT MISMATCH EXPRESSION

Consider the control loop shown in Fig. 1 in which all sig-
nals and transfer functions are represented in the Laplace
domain. G is the plant that generates the true output
y(s), Ĝ is the model of the plant that generates the model
output ŷ(s), Q is the controller, v(s) is any disturbance
that may be present and r(s) is the reference signal (set-
point).

The derivation of the MPM expression which follows
is done for a general, internally stable (Skogestad and
Postlethwaite, 2005), MIMO system in which all signals
may be vectors and all transfer functions may be matrices.
The reference to the Laplace operator (s) will be dropped
for ease of representation. Let the residual (e(s)) be the
difference between the actual output and the model output
as

e= y − ŷ, (1)

e=Gu+ v − Ĝu, (2)

e= ∆u+ v, (3)

where ∆ = G − Ĝ is the mismatch. This definition for
the mismatch is equivalent to the definition for additive
uncertainty presented by (Skogestad and Postlethwaite,
2005, p.293). For notational simplicity during the deriva-
tion however we will use ∆ to represent uncertainty in
general, as opposed to weighted uncertainty. The control
signal (u(s)) is given by

u=Q (r − y) , (4)

u=Q (r − [Gu+ v]) , (5)

u=Qr −QGu−Qv, (6)

(I +QG)u=Qr −Qv, (7)

u= (I +QG)
−1
Q (r − v) , (8)

u=Q (I +GQ)
−1

(r − v) , (9)

where the push-through rule for matrix manipulation
(Skogestad and Postlethwaite, 2005, p.68) was used to go
from (8) to (9). Substitution of (9) into (3) then gives

e= ∆Q (I +GQ)
−1

(r − v) + v, (10)

e= ∆Q
(
I + {∆ + Ĝ}Q

)−1

(r − v) + v, (11)

e= ∆Q
(
I + ∆Q+ ĜQ

)−1

(r − v) + v. (12)

The expression G = ∆+ Ĝ is used to go from (10) to (11).
After this substitution all the terms in (11) are known,
save for the disturbance if it is unmeasured. Further matrix
algebra leads to

(e− v) (r − v)
−1

= ∆Q
(
I + ∆Q+ ĜQ

)−1

, (13)

(e− v) (r − v)
−1
(
I + ∆Q+ ĜQ

)
= ∆Q, (14)

(e− v) (r − v)
−1
(
I + ĜQ

)
= ∆Q

− (e− v) (r − v)
−1

∆Q,
(15)

(e− v) (r − v)
−1
(
I + ĜQ

)
=[

I − (e− v) (r − v)
−1
]

∆Q.
(16)

Rewriting the equation with ∆ isolated on the left-hand
side gives the closed-form mismatch expression as:

∆ =
[
I − (e− v) (r − v)

−1
]−1

·

(e− v) (r − v)
−1
(
I + ĜQ

)
Q−1.

(17)

This expression may be used to derive the mismatch if the
disturbances are known. If the disturbances are however
unmeasured, data from a period of operation free from
significant disturbances can be used (if this is possible),
and with v = 0, (17) becomes

∆ =
[
I − er−1

]−1
er−1

(
I + ĜQ

)
Q−1. (18)

If however unmeasured disturbances cannot be ignored,
disturbance estimation techniques (see for example Lee
and Ricker (1994)) may be used to account for their values.
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Usually signals (such as r(s)) will not be square for MIMO
systems and will consequently not have an inverse in the
true sense. This issue will be discussed further in Section 4
before we present the MIMO application example. Suffi-
cient excitation is required in either the disturbance or the
reference signal in order for the application of (17) to be
sensible.

The expression G = ∆ + Ĝ may now again be used to
obtain the transfer function of the actual plant as

G =
[
I − (e− v) (r − v)

−1
]−1

·

(e− v) (r − v)
−1
(
I + ĜQ

)
Q−1 + Ĝ.

(19)

If (18) was used as the mismatch expression, the plant
transfer function is given by

G =
[
I − er−1

]−1
er−1

(
I + ĜQ

)
Q−1 + Ĝ. (20)

3. SISO APPLICATION EXAMPLE

The derived MPM expression is firstly applied to a simple
SISO system to illustrate its use. Consider the first order
plus time delay model

G =
K

τs+ 1
e−θs, (21)

which is arbitrarily specified as the model to be

Ĝ =
2

4s+ 1
e−s, (22)

for illustration of this example. The controller is derived
based on the simple internal model control (SIMC) tuning
rules given by Skogestad (2003) which gives a PI-controller
with a gain and integral time constant of

Kc =
1

K

τ

τc + θ
; τI = τ, (23)

where τc is the desired closed-loop bandwidth. Skogestad
(2003) recommends selecting τc = θ to achieve a good
trade-off between output performance and robustness.
This results in the PI controller with Kc = 1 and τI = 4.
The gain is however reduced to Kc = 0.7 such that robust
performance is achieved for 10% uncertainty in all 3 plant
parameters. See Skogestad and Postlethwaite (2005) for
a complete discussion on how such a robust performance
analysis may be performed. ∗ The plant is then perturbed
with a 15% increase in the gain, time constant, and time
delay to be

G =
2.3

4.6s+ 1
e−1.15s. (24)

These perturbations are less severe than what may be
present on an industrial process (Olivier et al., 2012)
but severe enough to violate the robust performance re-
quirement. In this article perturbations that cause the
controller to violate the robust performance requirement
are regarded as severe. In this situation where robust
performance is no longer achieved, the uncertainty and
consequently the true plant model should be calculated
such that the controller can be updated. The nominal and
perturbed step-responses of the system are shown in Fig. 2.

∗ In this analysis we used wI = 0.1 16s+1
0.7s+1

and wP = 0.2 10s+1
10s

according to the discussion in Skogestad and Postlethwaite (2005).
The performance weight specifies integral action and a closed-loop
bandwidth of 0.02.

0 5 10 15 20
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Fig. 2. Nominal (dashed line) and perturbed (solid line)
step responses for the first order SISO system.

For this simple system the step function set-point is given
in the Laplace domain by r = 1

s . Ĝ and Q are known and
e is simply the difference between the actual output and
the model output (see equation 1). Equation (18) is then
applied to produce the mismatch as

∆ =
4.6 s− e0.15s − 4.6 s e0.15s + 1.15

e1.15s (9.2 s2 + 4.3 s+ 0.5)
, (25)

from which the true plant may be calculated as

G= ∆ + Ĝ, (26)

=
2.3

4.6s+ 1
e−1.15s, (27)

which is exactly the same as the true plant given in (24).

4. MIMO APPLICATION PROVISIONS

It was stated in Section 2 that signals such as r(s)
are usually not square, which is a problem for MIMO
applications. This is because a non-square matrix does not
have an inverse in the traditional sense. Say for example we
have an n× 1 output (y(s)) that is generated by applying
an n× 1 input signal (u(s)) to an n× n plant (G(s)) as

y = Gu, (28) y1...
yn

 =

 g11 · · · g1n...
. . .

...
gn1 · · · gnn


 u1...
un

 , (29)

from which y(s) is calculated to be y1...
yn

 =

 g11u1 + · · ·+ g1nun
...

gn1u1 + · · ·+ gnnun

 . (30)

What the method is then basically doing is to try and
determine the transfer function by inverting the input
signal as

G = yu−1. (31)

In the SISO case this is not a problem as both y(s) and
u(s) are scalars. In the MIMO case however the expression
cannot be applied as such because the non-square signal
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u(s) does not have an inverse. If however the input signal
is rewritten as the diagonal matrix

U =

 u1 · · · 0
...

. . .
...

0 · · · un

 , (32)

the output becomes

Y =

 g11u1 · · · g1nun...
. . .

...
gn1u1 · · · gnnun

 . (33)

Now U is square and does have a matrix inverse. Applying
equation (31) now gives

G= Y U−1, (34)

G=

 g11u1 · · · g1nun...
. . .

...
gn1u1 · · · gnnun


 u1 · · · 0

...
. . .

...
0 · · · u2


−1

, (35)

=

 g11 · · · g1n...
. . .

...
gn1 · · · gnn

 , (36)

which is equal to the original transfer function.

The input signal can easily be written in the form of a
square matrix as in (32). The output is however not usually
available as a square matrix. It is however apparent that
the first entry of (33) is equal to the first output in (30)
if u2 · · ·un = 0. This means that a portion of the output
signal generated without excitation in u2 · · ·un can be used
to calculate the first entry of (33). The same argument
holds for the calculation of the other entries of (33).

A similar situation holds true for measured disturbances.
If disturbances are however unmeasured, care would need
to be taken to use a portion of data that is disturbance
free as unmeasured disturbances are not handled by the
expression.

5. MIMO APPLICATION EXAMPLE

In order to illustrate the working of the MPM expression
in the MIMO case, the algorithm is applied to a 2 × 2
ball mill grinding circuit for which MPM is introduced.
Consider the ball mill grinding circuit of Fig. 3 which is
described in Chen et al. (2009).

The manipulated variables are the fresh ore feed rate
[u1 (t/h)] and the dilution water flow rate [u2 (m3/h)].
The controlled variables are the product particle size
[y1 (%− 200 mesh)] and the circulating load [y2 (t/h)].
The nominal values and constraints for the manipulated
and controlled variables are given in Table 1. Care should
be taken when using the method to not use data where the
output or control variable values are saturated against the
limits. This is because the saturation function is not linear
and therefore not compatible with the MPM expression.

The MIMO transfer function model of the milling circuit
is given by[

y1(s)
y2(s)

]
=

[
g11(s) g12(s)
g21(s) g22(s)

] [
u1(s)
u2(s)

]
, (37)

where

Ball

mill

Sump

Hydro-

cyclone

Product

Dilution

water

Pump

Circulating

load

Vibratory

conveyor

Ore

Feed water

Ore

feed

Fig. 3. Ball mill grinding (reproduced from Chen et al.
(2009)).

Table 1. Nominal values and constraints for the
2x2 ball mill grinding circuit variables

Var. Description Nom Min Max Unit

u1 Fresh ore feed rate 65 60 70 t/h
u2 Dilution water flow rate 45 40 50 m3/h
y1 Product particle size 70 68 72 %
y2 Circulating load 150 140 170 t/h

g11(s) =
−0.58

2.5s+ 1
e−0.68s, (38)

g12(s) =
4(1− 0.9938e−0.47s)

(2s+ 1)(6s+ 1)
e−0.2s, (39)

g21(s) =
2.2

6s+ 1
e−0.6s, (40)

g22(s) =
2.83

3.5s+ 1
e−0.13s. (41)

Milling circuits are often controlled by decentralized PI(D)
controllers (Wei and Craig, 2009; Hodouin, 2011) as was
also implemented for this circuit by Chen et al. (2009).
The diagonal PI controller is in the form

Q(s) =

Kc1

(
1 +

1

τI1s

)
0

0 Kc2

(
1 +

1

τI2s

)
 , (42)

with Kc1 = −2, τI1 = 3.3 min, Kc2 = 0.42 and τI2 =
5.2 min. A test for robust performance ∗∗ on this system
shows that with 10% gain uncertainty the performance
specification is achieved.

The plant is perturbed to be

g11(s) =
−0.464

2s+ 1
e−0.68s, (43)

g12(s) =
4(1− 1.1014e−0.47s)

(2s+ 1)(6s+ 1)
e−0.2s, (44)

g21(s) =
2.2

6.6s+ 1
e−0.6s, (45)

g22(s) =
2.547

3.5s+ 1
e−0.13s, (46)

∗∗With WI = 0.21s+0.1
0.1s+1

[
1 0
0 1

]
and WP = 0.45s+0.05

s

[
1 0
0 1

]
selected according to the discussion in Skogestad and Postlethwaite
(2005). The performance weight specifies integral action and a closed-
loop bandwidth of 0.05.
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which is less severe than the mismatch introduced into
the system by Chen et al. (2009) but more severe than
allowed by the robust performance analysis weight. Now
robust performance is not achieved and the uncertainty
(and also the changed plant model) should be calculated.
The nominal and perturbed responses for a step in the
particle size set-point are shown in Fig. 4 and Fig. 5.
The nominal and perturbed responses for a step in the
circulating load set-point are shown in Fig. 6 and Fig. 7.

There is a much bigger difference between the nominal
and perturbed responses for the particle size than for
the circulating load. Once the output signals have been
generated the mismatch can be identified. The mismatch
is given by

∆ =

 0.0232e−0.68s

s2 + 0.9 s+ 0.2

−0.0066e−0.67 s

s2 + 0.667 s+ 0.0833
−0.0333e−0.6s s

s2 + 0.3182 s+ 0.0253

−0.0809e−0.13s

s+ 0.2857

 ,

(47)
from which the actual transfer function is calculated to be
exactly the same as the original transfer function as given
in (38) - (41).

6. APPLICATION TO CONTROLLER DESIGN

Once the mismatch has been identified correctly equation
(26) may be used to obtain the true transfer function of the
plant. Seeing that the tuning of the controller is based on
the plant model, it is now possible to update the controller
tuning based on the newly obtained plant model. Consider
the SISO application example where the perturbed plant
transfer function was calculated as shown in (27). It is
now possible to redefine the controller based on the tuning
relation given by (23). Applying this equation gives the
controller with Kc = 0.909 and τI = 4.4. Again only 70%
of this gain is used, resulting in the controller

Q = 0.6364 ·
(

1 +
1

4.4s

)
. (48)

This controller is less aggressive owing to the smaller gain
and larger integral time constant. Considering Fig. 2 it is
clear that the perturbed performance can be made similar
to the nominal control performance by using a less aggres-
sive controller, in line with the initial tuning objective.
The test for robust performance is again performed for the
perturbed plant and the returned controller. It is found
that this system does achieve robust performance with
10% uncertainty in all 3 plant parameters. This controller
retuning method is also applicable to the MIMO case.

One would not apply this controller retuning method
unsupervised. It is suggested that controller retuning be
done manually if significant mismatch is detected. Here
significant mismatch implies that the robust performance
specification is violated. This will be less expensive and
less time consuming than full re-identification.

7. CONCLUSION

This paper presents a closed-form expression for the MPM
that may be present in a feedback control system where the
controller is representable by means of a transfer function.
The expression may be used to identify an accurate plant

transfer function. The expression is directly applicable for
SISO systems where the plant is easily identified. In the
MIMO case some provisions are needed to ensure correct
results. The plant model was correctly identified in both
the SISO and MIMO cases. The plant transfer function can
then be used to redefine the controller. The expression does
need sufficiently exciting signals to make its application
sensible.

REFERENCES

Badwe, A.S., Gudi, R.D., Patwardhan, R.S., Shah, S.L.,
and Patwardhan, S.C. (2009). Detection of model-plant
mismatch in mpc applications. J. Process Control, 19,
1305–1313.
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Fig. 4. Response of controlled variables for a step in the particle size showing the set-point (dotted line), the nominal
response (dashed line) and the perturbed response (solid line).
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Fig. 5. Response of manipulated variables for a step in the particle size showing the nominal response (dashed line) and
the perturbed response (solid line).
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Fig. 6. Response of controlled variables for a step in the circulating load showing the set-point (dotted line), the nominal
response (dashed line) and the perturbed response (solid line).
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Fig. 7. Response of manipulated variables for a step in the circulating load showing the nominal response (dashed line)
and the perturbed response (solid line).
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