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Abstract: In previous papers by the use of the architecture generating property of the optimal linear 

quadratic tracking theory those problems that give the PI, PD and PID controllers had been presented, 

thus avoiding heuristics and giving a systematic approach to explanation for their excellent performance. 

This approach has been used also in derivation of the family of generalized PI
m
D

n-1
controllers.  In this 

paper by the combined use of the optimal linear quadratic tracking and system sensitivity theories a 

problem is formulated and solutions are shown that give a family of robust PID controllers. Examples of 

the control architectures and structures for first and second order systems are presented. 
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

1. INTRODUCTION 

The PD, PI and PID controllers are successfully applied 

controllers to many applications, almost from the beginning 

of controls applications; see D'Azzo and Houpis (1988), 

Franklin et al. (1994). The facts of their successful 

application, good performance, easiness of tuning are 

speaking for themselves and are sufficient rational for their 

use, although their structure is justified by heuristics: "These 

... controls - called proportional-integral-derivative (PID) 

control - constitute the heuristic approach to controller design 

that has found wide acceptance in the process industries." 

Franklin et al. (1994), pp. 168. 

Robustness issues are dealt with mainly by tuning algorithms 

of the PID controller's gains. Previous papers, Rusnak (1998, 

1999), have shown that the PID controllers can be derived by 

the use the optimal tracking control. Namely, problems had 

been stated whose solutions lead to the PD, PI and PID 

controllers. This enables avoiding heuristics and is giving a 

systematic approach to explanation of the good performance 

of the PID controllers. This approach enabled generalization 

and derivation of the family of the generalized PID 

controllers, the PI
m
D

n-1
 controllers; Rusnak (2000a, 2000b). 

The classical one block PID controller has been generalized, 

the cascade architecture – the PIV controller, has been 

presented for PID controller with one integrator, Rusnak 

(2011), and the PI2D, IPIV and PI2V controllers for 

controller with two integrators, Rusnak (2011), have been 

derived. One of the main contributions of the results in 

Rusnak (2011) is that they show for what problems the PID 

controllers are the optimal controllers and for which they are 

not. The generalized PI
2
D controller had been implemented 

in real-time on Linear Motion Control System (Dvash et. all). 

The use of the optimal linear quadratic tracking (LQT) theory 

gives the architecture as well as the structure of the 

controllers. By Architecture we mean, loosely, the 

connections between the outputs/sensors and the 

inputs/actuators; Structure deals with the specific realization 

of the controllers' blocks; and Configuration is a specific 

combination of architecture and structure. These issues fall 

within the control and feedback organization theory that have 

been presented in Rusnak (2006, 2008). This issue is beyond 

the scope of this paper. The optimal tracking theory is used 

here as a basis, at a system theoretic level, that enables 

formulation of the control-feedback loops organization 

problem that leads to the robust PID controllers. This paper 

does not deal with the numerical values of the controllers' 

filters coefficients/gains; rather it concentrates in 

organization of the control loops and structure of the filters. 

This is the way the optimal LQT theory is used. 

The LQT theory requires a reference trajectory generator. 

The reference trajectory is generated by a system that reflects 

the nominal behaviour of the plant. The differences are the 

initial conditions, the input to the reference trajectory 

generator and the deviation of the actual plant from the 

nominal one. The zero steady state is imposed by integral 

action of the required order on the state tracking error. 

The issue of sensitivity of control systems, in general, and 

design of robust controllers, in particular, are widely treated 

issues. These are for example the H∞, QFT design techniques 

and more. These techniques, albeit their vitality, do not 

enable generalization. This is as they do not possess the 

architecture generating property.   

The author is unaware of specific treatment of the issue of the 

architecture and structure of robust PID and robust 

generalized PID controllers.  

The novelty and contribution of this paper is the 

simultaneous application of the LQT theory and sensitivity 

theory, Frank (1978), in derivation of architectures and 

structures of robust PID controllers. It is shown that the 

presented approach: 

1) Can systematically rationalize the existing practices. 

2) Enables, due to the architecture generating property of 

the LQT criterion, systematic generalization of problems 

for which the generalized PID controllers are optimal.  

3) Enables to derive controllers that are robust with respect 

to specific parameters. 

4) Shows the exact structure of the robust controller.  

Examples of robust controllers for first and second order 

systems are derived. 

Throughout this paper the same notation for time domain and 

Laplace domain is used, and the explicit Laplace variable (s) 

is stated to avoid confusion wherever necessary. 
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2. PRELIMINARIES OF PROBLEM STATEMENT 

In this section preliminary definitions essential for the 

problem statement are introduced. Let's consider the n
th

 order 

continuous linear time-invariant single input single output 

system in the observer canonical form.  
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where x  is the state; u is the input and y is the output and xo is 

zero mean random vector. 

The parameters of the plant are 

 Tnn bbbaaa  2121   and we denote as 

well  Tnaaah  21
. The parameters of the plant, 

, are not known exactly or may change during the life time 

of the plant. It is assumed that only their estimate-nominal-

average-most probable values are known. Thus the nominal 

system is  
nominalnominalnominal

,, ccbbAA mmm  . The 

nominal system is the "best" representation of the system and 

thus is used here as the model of the system. 

The n
th

 order reference trajectory generator is 
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where xr  is the state; wr  is the input and yr is the reference 

output. wr is a zero mean stochastic process, and xro is zero 

mean random vector. The case when the orders of the plant 

and reference trajectory are different is beyond the scope of 

this paper. The parameters of the trajectory generator are 

 Tnrrrnrrrr bbbaaa  2121  . The 

parameters of the trajectory generator, r, are known with 

absolute certainty.  

Further we assume that the reference system (2.3) is equal to 

the nominal-average system of (2.2), i.e. 

 nominalrnominalr ccAA  ,
. 

In order to reject constant disturbances we introduce integral 

action, Kwakernaak and Sivan (1972), Anderson and Moore 

(1989), i.e. we consider the integral of the tracking error 

oor txxc 1111 )();(   . (2.4) 

In order to achieve robustness we consider the sensitivity 

functions of the system performance with respect to the 

system's parameters, . That is, the gradient of the system 

output with respect to the plant's parameters, Frank (1978), 

i.e. 
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and in order to drive the sensitivity to small values (ideally to 

zero) we consider the integral of the sensitivity function as 

well, i.e. 
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All vectors and matrices are of the appropriate dimensions. 

The observer canonical form is used for convenience. For n
th

 

order system there are at most 2n coefficients-parameters that 

the state space representation can "capture". From this point 

of view any canonical could have fit. 

 

3. THE SENSITIVITY SYSTEM 

In section 2, eq. (2.5) the sensitivity functions, Frank (1978), 

have been introduced. The sensitivity functions will be 

minimized in the optimization process to derive robust PID 

controller. The sensitivity system is, Frank (1978), 
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Equations (3.1) can be written 
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i is the common unit length column. 

We also denote 
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The associated transfer functions are 
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Remark: For n
th

 order system there are 2n parameters. 

 

4. THE ROBUST PID CONTROLLER PROBLEM  

The robust PID controller problem is defined. That is, the 

problem being dealt with here is finding the optimal control 

u*(t) that minimizes the quadratic criterion: 
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subject to (2.1-6, 3.1-6). That is, the objective is the 

simultaneous minimization of the squares of the tracking 

error, e=x-xr, the sensitivity of the output with respect to the 

plant's parameters, )(ty
, their integrals,  TTTt 21)(   , 

and the input, u(t). 

 

5. THE AUGMENTED PROBLEM 

The problem of the robust PID controller in (4.1), can be 

written as the minimization of 
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The steady state solution is 
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Notice that the solution is independent of the reference 

trajectory driving input, w'r. For the formal independence w'r 

is required to be white. It is assumed that for all practical 

purposes, over the ensemble average of all reference 

trajectories, this is so. 

 

6. SOLUTION OF THE ROBUST PID CONTROLLER 

PROBLEM 
By corresponding partition of the gain matrix, K, in eq. (5.7) 

the optimal input can be written, formally, as 
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So the optimal robust PID controller is 
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7. ARCHITECTURES AND STRUCTURES OF THE 

ROBUST PID CONTROLLER PROBLEM 

From section 6 several architectures emerge. Three of them 

are presented here. 

7.1 Direct Full State Sensitivity Robust PID Architecture 

This architecture and structure are direct implementation of 

equation (6.4), and is the same architecture as depicted in 

Frank (1978), chapter 9, figure 9.4-1, that is 
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This architecture requires the availability-measurement of the 

full state. 
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Figure 1: Block Diagram of the Direct State Sensitivity 

Robust PID Architecture. 

7.2 Indirect State Sensitivity Robust PID Architecture 

This architecture and structure do not require the availability-

measurement of the full state and the measurement of the 

input and output is sufficient. The outputs are not used for the 

sensitivity function computation. This is called the indirect 

state sensitivity robust PID architecture. The state used for 

derivation of the sensitivity functions are derive from a plant 

emulator that is using (2.1) 
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Figure 2 presents the block diagram of the indirect state 

sensitivity robust PID architecture. 
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Figure 2: Block Diagram of the Indirect State Sensitivity 

Robust PID Architecture. 

For single input systems we get 
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The above means that the robust PID controller applies the 

PID controller, CPID(s) and then in cascade the robustifying 

controller CRobust(s). This is a one block controller 

architecture whose structure is given by  
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7.3 Mixed State Sensitivity Robust PID Architecture 

In section 7.1 availability of the full state has been assumed. 

In this section partial state availability is assumed. The rest of 

the state is derived by model of the system as in section 7.2 

(in stochastic system it will an estimator, issue that is not 

treated in this paper). For deterministic system for those 

states that are measured it is the direct state sensitivity and for 

those states that are not measured it is the indirect state 

sensitivity. Block diagram of this approach is presented in 

figure 3. 
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Figure 3: Block diagram of the Mixed State Sensitivity 

Robust PID Architecture. 

 7.4 Discussion 

The Direct Full State Sensitivity Robust PID Architecture, 

Figure 1, section 7.1, is the optimal architecture. However in 

practice not all states are measurable. 

The Indirect State Sensitivity Robust PID Architecture, 

Figure 2, section 7.2, assumes that no state is available. It is 

suboptimal but it is the one that is usually implemented. This 

architecture is the one practiced in design of robust systems.  

The Mixed State Sensitivity Robust PID Architecture, Figure 

3, section 7.3, a newly proposed architecture, uses the 

measured states for building the respective sensitivity 

function and the remaining sensitivity function are derived 

from a plant's emulator. 

8. ARCHITECTURE AND STRUCTURE OF ROBUST PI 

CONTROLLERS FOR FIRST ORDER SYSTEM 

The case of desensitizing of the performance with respect to 

the time constant of a first order system is considered. For 
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known systems this approach leads to the P and PI 

controllers, Rusnak (2011). 

The system and the respective transfer function are 
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whose solution is 
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In realization of the controller one must remember that the 

actual time constant, , of the system is unknown. Therefore, 

the controller is realized with an estimate (the nominal value) 

of this time constant. The computation of the sensitivity 

function is realized in the controller.  

8.1 Direct Full State Sensitivity Robust PID Architecture 
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Figure 4 presents a block diagram of this architecture. 
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Figure 4: Two block controller architecture generated by the 

direct full state sensitivity robust PID problem for 1
st
 order 

system (8.5).  

8.2 Indirect Full State Sensitivity Robust PID Architecture 
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8.2.2 PI controller 

For PI controller in the  loop we have 
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These are the robust P and PI controllers. The main 

observation is that the robust P/PI controller is a cascade of 

classical P/PI controller and a second order Lead-Lag. Figure 

5 presents a block diagram of this architecture. 
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Figure 5: One block controller architecture generated by the 

indirect full state sensitivity robust PID problem for 1
st
 order 

system (8.12). 

9. ARCHITECTURE AND STRUCTURE OF ROBUST PID 

CONTROLLERS FOR SECOND ORDER SYSTEM 

The case of desensitizing a second order system with respect 

to the time constant is dealt with. For known systems this 

approach leads to the PD and PID controllers, Rusnak (2011). 

(Here, for convenience the system is represented in the 

companion canonical form.) 

The system and the respective transfer function are 
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9.1 Direct Full State Sensitivity Robust PID Architecture 
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9.2 Indirect State Sensitivity Robust PID Architecture 

The controller is 
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One block Robust PID (see Figure 5) 
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As an example figures 6 and 7 present the architecture of 

parallel and cascade indirect state sensitivity robust PID 

controller architectures. 
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Figure 6: Architecture of parallel indirect state sensitivity 

robust PID controller for 2
nd

 order system (9.12). 
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Figure 7: Architecture of cascade indirect state sensitivity 

robust PID controller for 2
nd

 order system (9.13). 

10. CONCLUSIONS 

The optimal linear quadratic tracking theory and system 

sensitivity theory have been used to formulate a problem and 

show solutions that give a family of robust PID controllers. 

The architecture generating property of the LQT criterion has 

been exploited to derive architectures and structure of the 

family of optimal robust PID controllers. This way heuristics 

were avoided and systematic approach has been presented in 

derivation of robust PID controllers. Examples of 

architectures and structures for first and second order systems 

were presented. 
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