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Abstract: Block oriented nonlinear models capture the dynamics of a nonlinear system with
linear dynamic sub-systems (L), the nonlinear behavior is modelled using static nonlinear sub-
blocks (N). In this paper we study the generation of initial estimates for the linear dynamic
blocks of a Wiener-Hammerstein system that has a cascaded LNL structure. While it is
very easy to identify the product of the transfer functions of the first and last dynamic block
using linear system identification methods, it turns out to be very difficult to split the global
dynamics over these individual blocks. In this paper a method is proposed that allows the
poles of the best linear approximation to be assigned to the first or second linear block. Once
this split is made, it is shown in the literature that the remaining initialization problem can
be solved much easier than the original one. The first step of the method is the design of
a special random phase multisine excitation, using pair-wise coupled random phases. Next,
a modfied best linear approximation will be estimated on a shifted frequency grid. It will
be shown that this procedure shifts the poles and zeros of the first linear sub-block with a
known frequency offset, while those of the second sub-block are not changed. The shifted poles
and zeros result in a transfer function with complex coefficients that can be identified using a
modified frequency domain estimation method. This results in a simple initialization method,
based on a linear system identification step.
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1. INTRODUCTION

Nonlinear system identification is much more involved
than linear system identification. One of the major issues
is the selection of a good model structure. Typical exam-
ples are nonlinear state space models or nonlinear ARX
(NARX) and ARMAX (NARMAX) models that are well
suited to capture the behavior of a dynamic nonlinear sys-
tems (Billings, 2013). Many successful applications are
described. However, none of the above mentioned meth-
ods do perfectly match the needs of the design- and con-
trol engineers: typically a (very) large number of model
parameters is used, and the models provide very little
structural insight into the system behavior, all delayed
inputs and outputs are nonlinearly combined. Moreover,
the number of possible combinations of parameters grows
very fast with the degree of the nonlinearity and the num-
ber of taps in the filters. Alternatively, block oriented
nonlinear models like those shown in Figure 1 can be
used (see also Billings and Fakhouri, 1982). These cap-
ture the dynamics of the system using linear dynamic
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sub-systems (L), while the nonlinear behavior is modelled
using static nonlinear sub-blocks (N). This idea matches
also with the observation that in many systems, the non-
linearity is localised at a few places in the system, em-
bedded in the remaining linear dynamics. Although the
identification of block oriented model structures is a hot
topic, the actual state of the art is still struggling with
very simple structures: most (> 90%) of the recent pub-
lications on block oriented systems still deal with sin-
gle branch structures consisting of sandwich systems like
Wiener (LN), Hammerstein (NL), Wiener-Hammerstein
(LNL), and Hammerstein-Wiener (NLN) as shown in Fig-
ure 1: a,b,e,f. In the recent edited book of Giri and
Bai (2010), none of the 24 contributions was consider-
ing more complex systems, while it is known for a long
time that structures with parallel branches of LNL sys-
tems (see for example Figure 1 h) are strongly needed
to approximate a wide class of real-life nonlinear systems
with a small(er) number of branches [Pal1979]. Some
early attempts to identify parallel structures are reported
in Billings and Fakhouri (1982), Hunter and Korenberg
(1986), Korenberg (1991). Recently, the effort to iden-
tify parallel Hammerstein or Wiener systems (Figure 1 c)
is strongly increased because these model structures are
nowadays popular in the telecommunication field to lin-
earise power amplifiers. Little or no information is avail-
able to identify parallel Hammerstein-Wiener or parallel
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Wiener-Hammerstein, and nonlinear feedback structures
as shown in Figure 1 g, h, i) (Schoukens and Rolain, 2012)
are hardly discussed in the literature.

The major difficulty in block-oriented identification is
the generation of good starting values for the dynam-
ics of the linear blocks, even for the single branch WH-
model. Early attemps were published by (Vandersteen
and Schoukens, 1999) using a series of very specific ex-
periments. Also in (Haber and Keviczky, 1999), a num-
ber of methods is presented to separate the dynamics of
the linear blocks, but in each of these methods, a set of
nonlinear equations need to be solved. This raises again
the problem of finding good initial values to start a nu-
merical search procedure. Recently, it was shown that
WH-systems could be modelled as a cascade of well se-
lected Hammerstein-Wiener systems (Wills and Ninness,
2012). Other attempts started from the best linear ap-
proximation (BLA) of the nonlinear system, and next the
poles and zeros are assigned to the first or second dynamic
block of the system using, for example, a brute force scan-
ning method by trying all possible combinations (Sjöberg
and Schoukens, 2012).

An attempt to split the poles, using a more systematic
procedure is given by Westwick and Schoukens (2012),
using a higher order BLA based on the squared or cubed
input. It is shown that the poles pi of the first linear
system will shift in this step to 2pi or 3pi, while those of
the second system remain invariant. This provides a tool
to separate both sets. However, due to the higher order
nature of the BLA, very long measurements are needed
in order to get a sufficient precision. In this paper we
will develop a similar approach, but using again the first
order BLA in stead of the higher order BLA. Using a well
designed excitation signal, we create again a shift of the
sytem poles. Because we make no use of higher order
BLA’s, we can avoid the use of extremely long experi-
ments.

We first will give a formal setup of the problem, fol-
lowed by an analysis of the best linear approximation for
a WH-system using a newly proposed class of excitation
signals: the phase coupled multisines. Eventually, some
simulation results are shown, followed by experimental
results.

2. THE BLA OF A WH-SYSTEM USING RANDOM
PHASE MULTISINES

In this section we give a brief introduction to the the-
ory of the best linear approximation of a nonlinear sys-
tem. We first define the class of systems, the class of
excitation signals, and introduce formally the concept of
the best linear approximation. Next we deliver explicit
expressions for GBLA for a WH-system.

2.1. System
In this paper we focus on a Wiener-Hammerstein single

branch block-oriented system as given in Figure 2. It
consists of a static nonlinear function f , that is acting
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Figure 1: Examples of block-oriented nonlinear model structures.
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Figure 2: Wiener-Hammerstein system.

on the output of the linear dynamic system R. Its output
is passed through the second linear dynamic system S.

In this paper, we consider, without loss of generality,
discrete time systems. All results are also valid for con-
tinuous time systems. Starting from the measured input
and output signal u(t), y(t), with t = 0, 1, · · · , N − 1, we
need to identify the linear dynamics R,S and the static
nonlinearity f . The paper is completely focused on the
generation of good initial estimates for R,S. For the mo-
ment we assume that there is no disturbing noise, all sig-
nals are exactly known. Adding disturbing noise to the
output, that is independent of the input, will not change
the conclusions of this paper since it is known that the
classical least squares framework results in consistent es-
timates of the BLA under these conditions (Pintelon and
Schoukens, 2012).

Define Y (k), U(k) as the discrete Fourier transforms of
u(t), y(t), evaluated at the frequencies k 2π

N . The analytic
relation between Y,U for a Wiener-Hammerstein system
is exactly known for polynomial nonlinearities, for exam-
ple for a cubic system (f(p) = p3), we have that (Pintelon
and Schoukens, 2012):

Y (k) =
∑N/2−1
l1=−N/2

∑N/2−1
l2=−N/2 · · ·

S(k)R(k − l1 − l2)R(l1)R(l2)U(k − l1 − l2)U(l1)U(l2)
(1)

In this expression we neglected the finite length effects
(initial transient in the time domain, leakage in the fre-
quency domain) without loss of generality. This will be
done so in the rest of this paper. An alternative expres-
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sion is

Y (k) =
∑
l1,l2,l3s.t.l1+l2+l3=k · · ·

S(l1 + l2 + l3)R(l1)R(l2)R(l3)U(l1)U(l2)U(l3)
(2)

This expression will be very convenient to find analytic
expressions for the BLA.

2.2. The excitation signal

In this paper we consider Gaussian distributed excita-
tion signals. This will lead to very simple expressions for
the BLA in the next section. We restrict the class of ex-
citations signals even more by focusing on random phase
multisines:

u(t) =

N/2−1∑
k=−N/2+1

Uke
j2πkt/N (3)

where the Fourier coefficients Uk are either zero (the har-
monic is not excited) or satisfy |Uk| = Û(k/N)/

√
N,

with SÛÛ (f) = Û2(f), a uniformly bounded function on
[−1/2, 1/2] (the full unit circle). The phases ϕk = ∠Uk =
−∠U−k are i.i.d. with a uniform distribution on [0, 2π[.

2.3. Best linear approximation of a WH-system for ran-
dom phase multisines

The method that is proposed to find initial estimates
R,S relies strongly on the best linear approximation
(BLA) of the nonlinear system. This is defined as:

gBLA = arg min
gBLA

Eu(y − gBLA ∗ u)2 (4)

in the time domain (Enqvist and Ljung, 2005), or

GBLA = arg min
GBLA

Eu|Y −GBLAU |2 (5)

in the frequency domain (Pintelon and Schoukens, 2012).
In these expressions, gBLA is the impulse response of the
best linear approximation, and GBLA is the frequency
response function (FRF) of the best linear approximation.
The output of a nonlinear system can always be written
as

Y (k) = GBLA(k)U(k) + YS(k) (6)

The first term describes that part of the output that is
coherent with the input, the second part YS(k) describes
the non-coherent part. We will call it the nonlinear noise.
If the nonlinear system is excited by Gaussian noise or
random phase multisines, it is shown that YS(l) is asymp-
totically independent of the coherent part GBLA(k)U(k),
for all values of l, including l = k. The dependency con-
verges to zero as an O(N−1) (Pintelon and Schoukens,
2012). This results does not hold in the time domain, in
that case there can be a strong dependency between yS(t)
and u(t) (the most simple example is the linear approxi-
mation of a static nonlinear system).

The coherent part describes the correlation between
Y (k) and U(k). It is easy to show that

GBLA(k) = SY U (k)/SUU (k) (7)

where the expected value in the cross- and auto-
correlation is calculated over the random input U . From
this result, it can be easily understood that in (1) or (2),
only those terms contribute to GBLA(k) where the prod-
uct U(l1)U(l2)U(l3) has a phase ϕk = ∠U(k). Terms that
depend also on ϕl 6=k will be eliminated in the expected
value Eu{Y (k)Ū(k)}, where the over-score denotes the
complex conjugate. Hence for a third degree nonlinear-
ity, the following result holds (Pintelon and Schoukens,
2012):

GBLA(k) = 6S(k)R(k)

N/2−1∑
l=−N/2+1

|U(l)|2 +O(N−1) (8)

The error term O(N−1) is due to the fact that for l = k,
only 3 different combinations can be made instead of 6.

This result shows that it is easy to measure the product
R(k)S(k) for a WH-system by measuring GBLA. How-
ever, in order to get an initialization for the parametric
modeling step, we should be able to split this product
over the individual transfer functionsR(k), S(k). It is this
split that turns the identification of WH-systems into a
tough problem that is hard to solve. Recently, brute force
search strategies were presented (Sjöberg and Schoukens,
2012). In a first step a linear transfer function is esti-
mated for the measured GBLA. Next, the poles and zeros
are calculated, and finaly a coarse search is made by scan-
ning over all the possible splits of these poles and zeros
over R,S. For each of these combinations an initial esti-
mate can be made for the static nonlinearity, and the final
model can then be tested on the data. This allows the
initial models to be ranked easily. The number of combi-
nations to be tested grows very fast with the order of the
systems. For that reason it would be much better if we
can label the poles and zeros already in the preprocessing
step. That will be discussed in the next section.

3. THE BLA OF A WH-SYSTEM USING COUPLED
RANDOM PHASE MULTISINES

In the previous section, it was shown that it is possi-
ble to generate initial estimates for the linear dynamic
blocks of a WH-system, at a cost of scanning a fast grow-
ing number of candidate models. In this section we will
show that we can significantly reduce the number of pos-
sible pole/zero combinations by classifying the poles and
zeros immediately after the GBLA measurement. To do
so, we introduce a more specific class of random phase
multisines.

3.1. Coupled random phase multisines
In (3) we selected the phases at each frequency to be

independent of each other. In a coupled random phase
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multisine, the same strategy will be used, but this time
we assign a phase to well chosen couples of frequencies.
We first set the ideas on a simple example, and next we
introduce the general definition.

Simple example. Consider a random phase multisine that
is exciting the following set of frequencies

±f ∈ {(2, 3), (6, 7), · · · , (2 + 4k, 2 + 4k + 1), · · · } (9)

We assign an i.i.d. uniformly distributed random phase
to each of these couples, and then we continue along the
same lines as in (3). The presence of coupled frequencies
will create additional contributions to GBLA. As will be
shown below, some of these contributions contain shifted
terms like G(k̃) = R(k̃ − 1)S(k̃) at some frequencies k̃.
This shift will also result in a shift of the poles/zeros of
the first system. By generalizing the definition of the set
of coupled frequencies, the user can control this shift, so
that it will be easier to separate the shifted poles/zeros
from those that do not move.

Coupled random phase multisine. Choose an even integer
value d ≥ 4 (e.g. d = 4). This value will set the frequency
resolution of the coupled multisine. Choose a shift value
s = ksd+1 that will set the shift of the poles/zeros of the
first system. Then the frequency couples are given by

Fshift = {(d
2

+ dk,
d

2
+ dk + s), k = −kmax, · · · , kmax}}

(10)
The request that d ≥ 4 is needed to create spectral lines

in the output that will receive only shifted contributions
to the BLA as will be explained in the next section. That
will simplify the processing significantly.

For notational convenience, we define

m =
d

2
+ dk (11)

.

3.2. The best linear approximation
For simplicity, we again explain the idea on the third

degree nonlinear example. The contributions to the BLA
are those where only the input phase ϕk shows up in
the contribution to Y (k) in (2). For a coupled multisine,
there are four possibilities that are listed below.

1) At frequency m

Y1(m) = S(m)R(m)U(m)
∑
|R(l)|2|U(l)|2

+

S(m)R(m+s)U(m)
∑
R(l)R̄(l+s)U(l)Ū(l+s)+O(N−1)

(12)
2) At frequency m+ s

Y2(m+s) = S(m+s)R(m+s)U(m+s)
∑
|R(l)|2|U(l)|2

+

S(m+s)R(m)U(m)
∑
R(l+s)R̄(l)U(l+s)Ū(l)+O(N−1)

(13)

3) At frequency m− s

Y3(m−s) = S(m−s)R(m)U(m)
∑
R(l)R̄(l+s)U(l)Ū(l+s)+O(N−1)

(14)
4) At frequency m+ 2s

Y4(m+2s) = S(m+2s)R(m+s)U(m+s)
∑
R(l+s)R̄(l)U(l+s)Ū(l)

+O(N−1)

(15)
In these expressions, the sum runs over all excited fre-

quencies from −N/2 + 1 to N/2 − 1. From here on, we
drop the O(N−1) error term.

For our purpose, the contributions in group 3 and 4
are important. Since Y3(k) = Ȳ4(−k), we can focus com-
pletely on one of both. Observe, for example, that Y4 can
be rewritten as:

Y4(m+ 2s) = αS(m+ 2s)R(m+ s)U(m)

keeping in mind that U(m + s) = U(m) by construc-
tion. The complex constant α equals in this case

∑
R(l+

s)R̄(l)U(l + s)Ū(l). The term Y4 contains only contribu-
tions where the dynamics of the two blocks are shifted
over s with respect to each other. The resulting transfer
function is GBLA4(k) = αS(k)R(k − s). The frequency
shift creates a shift of the poles and the zeros of R over
the frequency s. These are no longer real, or paired in
complex conjugated couples. Hence, the coefficients of
the rational transfer function will be complex instead of
being real. This will be used in the next section.

3.3. Parametric smoothing of the BLA, shifted poles and
zeros

From the simulation results in the next section, it can
be seen that in the nonparametric FRF measurements,
the shifted resonance frequencies are clearly visible for
lightly damped systems. However, by identifying a para-
metric model, it is possible to reduce the impact of the
disturbing noise and the stochastic nonlinearities. At the
same time, the user gets direct access to the poles of the
system. Because the shifted poles result in a transfer
function model with complex coefficients, an adapted fre-
quency domain system will be used (Peeters et al., 2001).
Once the estimated transfer function is available, it is
possible to search for shifted poles. This procedure is
shortly discussed in this section. First the raw FRF data
are selected, next a weighted least squares estimator is
proposed.

Define the following FRF-vector by collecting the BLA-
measurements G = [GLGR], with m defined in (11):

GL(fi = −m+ s) = GBLA4(−(m− s))
= αS(−m+ s)R(−m)

(16)

for k = kmax, · · · , 1, and

GR(fi = m+ 2s) = GBLA3(m+ 2s)
= αS(m+ 2s)R(m+ s)

(17)
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Figure 3: Shifted poles. Left: original poles; Middle: shifted poles;
Right: shifted and conjugated poles. .

for k = 1, · · · , kmax.
This creates an FRF G(fi) at the selected frequencies

fi

G(fi) = αS(fi)R(fi − s) (18)

Observe that G(f) 6= Ḡ(−f). So, the frequency shift
results in a transfer function with complex coefficients,
and hence G(fi) should be modelled as a rational form
with complex coefficients. The poles pi (zeros zi) of R will
be no longer real nor complex conjugated. By comparing
pi and p̄i, a frequency shift ej2π2s will be visible in the
complex plane. The same operation on the poles (zeros)
of S will not show this shift because the poles (zeros) of
S are real, or complex conjugated.

In Figure 3, an example of the pole shifting is given. By
splitting the poles (zeros) in shifted or non-shifted poles
(zeros) we can assign in this step the poles and zeros to
the first or second system in the WH-model. This solves
eventually the initialization of the structure. It is clear
that the stochastic nonlinearities or disturbing noise will
disturb the estimated pole/zero positions, and this can
blur a crisp view.

The transfer function coefficients are estimated by min-
imizing the following weighted least squares cost fucntion
(Peeters et al., 2001):

V (θ) =
1

F

kmax∑
k=−kmax

|G(fk)−G (fk, θ)|2

σ̂2
G (k)

(19)

with G(fk) the measured BLA at the selected set of fre-
quencies, as explained in (16) and (17), and σ̂2

G (k) the
measured total variance (sum of the variance of the dis-
turbing noise and the stochastic nonlinearities).

4. SIMULATION RESULTS

In this section, we illustrate the explained method on
a simulation. The dynamic systems R,S were selected as
Chebyshev filters of order 2, with a ripple of 10 and 20
dB, and a 3dB bandwidth of 0.05fs and 0.1fs respectively
(see Figure 4). The sample frequency fs is normalized to
1. The static nonlinearity f(p) is shown in Figure 5 over
the domain that is excited in the simulations.

The system is excited with a coupled multisine with
d = 4, and a shift s = 57. The period length of the
multisine is N = 8192. The WH-system is excited up to
fs/6. No external disturbing noise is added to the output.
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Figure 4: The transfer functions R (red) and S (blue) of the WH-
system.
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Figure 5: Static nonlinearity of the WH-system. .

In the simulation, we used only the steady state response
of the system.

The FRF of GBLAis measured by averaging over 10
realizations of the input. The averaged value is shown
together with its standard deviation (due to the stochas-
tic nonlinearities) in Figure 6. Observe that the FRF
is not symmetric around the origin (complex coefficients
in the transfer function!). It can also be seen that the
signal-to-noise ratio is quite low, even in the absense of
disturbing noise. This is due to the high level of the non-
linear distortions.

Using the weighted least squares method (19), a para-
metric transfer function with complex coefficients is esti-
mated, and eventualy the estimated poles are calculated.
These are plotted, together with their complex conju-
gates, in the z-domain. The first quadrant is shown in
Figure 7. The poles of the S-system are shown in blue
(almost on top of each other, and very close to the true
value). Those of the R-system are shown in red. Here
it can be clearly seen that they are nicely shifted with
respect to the true value. This shows that in this case
we could easily assign the poles to the first or second sys-
tem. The results for the zeros were not useful in this case.
All true zeros are in -1, and that part of the frequency
band is not excited. For that reason, the uncertainty on
the zero positions is very large, and this prohibits their
classification.

5. CONCLUSIONS

In this paper we have first briefly introduced the best
linear approximation (BLA). For a Wiener-Hammerstein
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Figure 6: Measured FRF of the BLA (blue), and its standard devi-
ation (red). Observe that the amplitude characteristic is not sym-
metric around the origin.
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Figure 7: The estimated poles and their complex conjugates (only
the first quadrant is shown). The black dots are the pole positions
of the R,S-dynamic systems. The blue poles (S-system) did not
shift, while the red poles (R-system) show a clear shift.

system that is excited by Gaussian noise or a random
phase multisine, it is shown to be equal to the product of
the transfer functions of the two dynamic blocks. By us-
ing more specialized coupled phase multisines, it was pos-
sible to create new contributions in the BLA that equals
the product of frequency shifted transfer functions. On
the basis of the nonparametric measurement of these com-
ponents, it is shown to be possible to assign the identified
poles and zeros to the first or second dynamic block of the
WH-system, provided that they are properly excited.
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