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Abstract: In this paper, we study the variance optimization problem in Markov decision
processes (MDP). The objective is to find the optimal policy which has the minimal average
variance of the system rewards. As the variance function is quadratic and the variance of rewards
are correlated mutually, the associated variance minimization problem is not a linear program.
The traditional approaches of classical MDP theory, which are good at solving linear problems,
are inapplicable to this problem. In this paper, we define a fundamental quantity called variance
potential and derive a variance difference equation which quantifies the difference of variances of
Markov systems under any two policies. Based on the variance difference equation, we propose an
iterative algorithm, which is similar to the policy iteration in classical MDP theory, to reduce the
reward variance of Markov systems. Although this algorithm converges to a local optimum, it is
very efficient compared with the traditional gradient-based algorithms. Numerical experiments
demonstrate the main idea of this paper.

1. INTRODUCTION

Markov decision process (MDP) is an important theory to
study the performance optimization of stochastic dynamic
systems and it has been richly studied in the literature
[5, 7, 16, 18]. In the literature of MDP, many studies
focus on the performance optimization of MDP under
the long-run average or discounted performance criteria.
Much less literature studies the optimization of MDP
under the variance criterion. However, variance is an
important performance metric of stochastic systems and it
reflects the risk-related factors of systems. For example, in
financial engineering, the investors want to optimize their
portfolios to minimize the risk of their investments while
keeping their average returns above a certain amount,
which is called the mean-variance optimization of portfolio
management [13, 14, 20].

The current studies of MDP under the mean and vari-
ance criterion mainly have two categories. In the field
of machine learning, studies focus on the two-objectives
optimization of mean and variance [15, 19]. The optimiza-
tion goal is to minimize the variance while keeping the
mean performance above a certain level, or to maximize
the mean performance while keeping the variance under a
certain level, or to take the variance as a penalty factor and
to maximize the combined objective function. Gradient-
based approaches are usually applied to find the optimal
policy or parameters [19]. However, these studies suffer
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from the intrinsic deficiencies of gradient-based methods,
such as the slow convergence speed, difficulty of selecting
step-size, and being trapped into a local optimum. On the
other hand, in the research field of MDP, studies usually
target on the variance minimization problem within an
optimal policy set where the system average or discounted
performance already achieves maximum [3, 16], or within
a policy set where the average performance is not less than
a given value [4, 17], or within a policy set with a given
discounted performance [8, 9]. However, all these studies
require that the variance should be minimized within a
given optimal policy set. There is no study to directly
minimize the variance of MDP within the entire policy
space.

It is theoretically and practically meaningful to minimize
the variance of stochastic systems regardless of the mean
performance. For example, in a process control plant, it
is important to control the reaction process steadily to
reduce the quality variation of products [10, 11]. The
difficulty of this problem is mainly because that the cost
function of MDP under the variance criterion is nonlinear.
Denote r(i, a) as the reward of a Markov system at state i
with action a adopted. The cost function of this MDP un-
der the variance criterion is denoted as f(i, a) = [r(i, a)−
η]2, where η is the long-run average reward of this Markov
system. Therefore, the cost function of this MDP is with
a quadratic form, which indicates that the optimization of
this MDP is a nonlinear problem. As we know, a standard
MDP problem under the average criterion can be formu-
lated as a linear program [16], max

x(i,a)

∑
i∈S,a∈A

r(i, a)x(i, a),

subject to some linear constraints (i.e., transition prob-
ability conservation equations,

∑
i∈S,a∈A

x(i, a) = 1, and
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x(i, a) ≥ 0), where x(i, a)’s are optimization vari-
ables. However, for an MDP problem under the vari-
ance criterion, the associated programming formulation is

min
x(i,a)





∑
i∈S,a∈A

r2(i, a)x(i, a)−
[

∑
i∈S,a∈A

r(i, a)x(i, a)

]2


,

subject to the same linear constraints as above. Obviously,
this programming problem is not linear. It is a quadratic
programming problem which is not necessarily convex.
The traditional approaches in MDP theory, such as the
policy iteration or the value iteration, do not fit this
problem. This partly explains the difficulty of this variance
minimization problem.

In this paper, we use the direct-comparison theory, which
was proposed by X.-R. Cao [1, 2], to study the variance
minimization problem of MDP. The key idea of the direct-
comparison theory is the performance difference equation.
Difference equation clearly describes the relation between
the Markov system performance and the policies or pa-
rameters. The direct-comparison theory is widely valid for
Markov systems, no matter the cost function is linear,
instant, or not. For the variance minimization problem,
we define a fundamental quantity called variance potential
which quantifies the long-term accumulated deviation of
reward variances. Based on the variance potential, we
derive a variance difference equation, which quantifies the
difference of variances of Markov systems under any two
different policies. With the variance difference equation,
we derive a necessary condition for the optimal policy
under the variance criterion. An iterative algorithm similar
to the policy iteration is further developed to efficiently
reduce the variance of MDP. Although our algorithm also
converges to a local optimum, it is usually more efficient
compared with the traditional gradient-based approach.
Finally, we conduct numerical experiments to demonstrate
the efficiency of our approach.

2. VARIANCE CRITERION OF MARKOV DECISION
PROCESSES

Consider a Markov chain X = {Xt, t = 0, 1, · · · }, where
Xt is the system state at time epoch t. The state space
S is assumed finite. Without loss of generality, we define
the state space as S = {1, 2, · · · , S}, where S is the size
of the state space. When the system is at state i, we can
choose an action a from the action space A(i), i ∈ S. For
simplicity, we assume that the action spaces at different
states are identical, i.e., A(i) = A, ∀i ∈ S. We assume
A is finite and A = {a1, a2, · · · , aA}, where A is the size
of action space A. After an action a ∈ A is adopted at
state i, the system state will transit to state j at the next
time epoch with a transition probability pa(i, j), i, j ∈ S.
Meanwhile, the system will get an instant reward denoted
as r(i, a). The transition probability matrix P is an S-by-S
matrix and its ith row jth column element is the transition
probability pa(i, j), i, j ∈ S. The reward function r is an
S-dimensional column vector whose ith element is r(i, a),
i ∈ S. In some places of this paper, we may assume that
the reward is independent of the action adopted and we
denote it as r(i) for simplicity, i ∈ S. The steady state
distribution of the Markov system is denoted as an S-
dimensional row vector π = (π(1), π(2), · · · , π(S)), where
π(i) is the probability that the system stays at state i,

i ∈ S. Obviously, we have πP = π, Pe = e, and πe = 1,
where e is an S-dimensional column vector whose elements
are all 1. The long-run average performance of the Markov
chain is denoted as η and we have

η = πr = lim
T→∞

1
T

E

{
T−1∑
t=0

r(Xt)

}
, (1)

where we assume that the Markov chain is ergodic and η
is independent of the initial state X0.

According to the definition of variance in a stochastic
process, we define the variance of a Markov chain as below
[4, 16].

ηvar = lim
T→∞

1
T

E

{
T−1∑
t=0

[r(Xt)− η]2
}

. (2)

In the optimization of MDP, we have to choose a policy
which determines the action selection rule at different sys-
tem states. We consider the stationary and deterministic
policy. Thus, a policy L is a mapping from the state space
S to the action space A. L(i) indicates the action adopted
at state i, i ∈ S. The total policy space is denoted as
Ψ, i.e., L ∈ Ψ. Different policy L will affect the value
of transition probability matrix, reward function, system
performance, etc. We use the superscript “L” to identify
the effect of different policy, such as PL, rL, ηLvar, etc. The
optimization goal is to find the optimal policy L∗ from the
policy space Ψ, which minimizes the average variance of
the Markov chain. That is,

L∗ = arg min
L∈Ψ

{
ηLvar

}
. (3)

As we discussed in Section 1, the variance criterion is
nonlinear and this optimization problem is not necessarily
convex. The traditional optimization approach of MDP
theory, such as the policy iteration, cannot be directly
applied to this problem. In the next section, we resort to
other approaches to handle this problem.

3. ANALYSIS AND OPTIMIZATION

In this section, we derive the variance difference equation
of MDP under any two different policies, which is similar
to the direct-comparison theory in Markov systems [1, 2].
Based on the difference equation, we propose an iterative
algorithm to efficiently reduce the variance of MDP. Some
optimality properties and theorems of this variance mini-
mization problem are also studied.

3.1 Variance Difference Equation

First, we define a fundamental quantity called variance
potential of Markov systems.

gvar(i) = lim
T→∞

E

{
T∑

t=0

[(r(Xt)− η)2 − ηvar]
∣∣∣X0 = i

}
,

(4)
where η and ηvar are the long-run average performance
and the steady state variance defined in (1) and (2), respec-
tively. From the above definition, we see that gvar(i) quan-
tifies the long-term accumulated deviations of (r(Xt)−η)2
from the average variance ηvar under the condition of the
initial state i.
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Extending the summation terms of (4) at time t = 0 and
recursively substituting it, we have the following equation

gvar(i) = (r(i)− η)2 − ηvar +
∑

j∈S
p(i, j)gvar(j), (5)

Furthermore, we can rewrite (5) in a matrix form as below.
gvar = (r − ηe)2¯ − ηvare + Pgvar, (6)

where gvar := (gvar(1), gvar(2), · · · , gvar(S))T is an S-
dimensional column vector, (r − ηe)2¯ means the compo-
nentwise square of each element of vector (r − ηe), i.e.,
(r − ηe)2¯ := ((r(1)− η)2, (r(2)− η)2, · · · , (r(S)− η)2)T .

With (4), we observe that the value of variance potential
gvar can be estimated from the sample path of the Markov
system under the current policy. This is because that the
value of r(Xt) is observed and the values of η and ηvar

can be estimated directly based on their definitions. On
the other hand, we see that gvar can also be calculated by
directly solving equation (6), since r, P , η, and ηvar are
either known parameters or calculable parameters. Please
note, (6) is a non-deterministic equation. For a solution of
gvar to (6), gvar +ce is also a solution to (6) for any c ∈ R.
We can add one more equation πgvar = 0 or gT

vare = 0 to
make the solution of (6) deterministic.

Below, we discuss the difference of variance ηvar of the
Markov system under any two different policies L and L′.
For simplicity, we use the superscript “′” to indicate the
parameters of Markov system under policy L′. With (2),
we see that the variance of Markov system with policy L
can also be written as below.

ηvar = π(r − ηe)2¯. (7)
Similarly, the variance of Markov system with policy L′ is
written as

η′var = π′(r′ − η′e)2¯. (8)
The goal of our analysis is to quantify the difference be-
tween ηvar and η′var with an equation. By right-multiplying
π′ on both sides of (6), we have

π′gvar = π′(r − ηe)2¯ − π′ηvare + π′Pgvar

= π′(r − ηe)2¯ − ηvar + π′Pgvar. (9)
Substituting π′P ′ = π′ and (8) into the above equation,
we have

η′var − ηvar = π′(r′ − η′e)2¯ + π′P ′gvar − π′Pgvar

−π′(r − ηe)2¯
= π′(P ′ − P )gvar + π′r′2¯ − η′2 − π′(r − ηe)2¯.

(10)
We can further rewrite (10) as

η′var − ηvar = π′(P ′ − P )gvar + π′(r′ − ηe)2¯ − (η′ − η)2

−π′(r − ηe)2¯. (11)
Therefore, we obtain the following variance difference
equation of MDP under any two different policies L and
L′

η′var − ηvar = π′
[
(P ′ − P )gvar + (r′ − ηe)2¯

−(r − ηe)2¯
]
− (η′ − η)2. (12)

The above equation gives a clear description of the relation
between the variance and the policy (represented by P
and r) in MDP. For the current policy, we can calculate
or estimate the long-run average performance η and the
variance potential gvar. Since the Markov chain is assumed
ergodic, π′(i)’s are always positive for any policy and i ∈ S.
If we choose a new policy with proper P ′ and r′, which
makes the element of the column vector represented by
the square bracket in (12) negative, then we see that
π′

[
(P ′ − P )gvar + (r′ − ηe)2¯ − (r − ηe)2¯

]
< 0. Since

(η′ − η)2 is always non-negative, we have η′var − ηvar < 0
and the variance of the Markov system under this new
policy is reduced. This is the basic idea which we utilize
to construct an iterative algorithm to reduce the variance
of MDP in Subsection 3.2.

Remark 1. Variance difference equation (12) avoids the
difficulty of computing the value of η′ since (η′ − η)2
is always non-negative. Otherwise, computing η′ under
every possible policy L′ is computationally cumbersome,
which is equivalent to the enumerative comparison of every
policy.

Based on the variance difference equation, we directly
derive the following theorem.
Theorem 1. If we choose a new policy L′ with P ′ and
r′ which satisfies

∑
j∈S p′(i, j)gvar(j) + (r′(i) − η)2 ≤∑

j∈S p(i, j)gvar(j) + (r(i) − η)2 for all i ∈ S, then we
have η′var ≤ ηvar. If the inequality strictly holds (<) for at
least one i ∈ S, then we have η′var < ηvar.

This theorem is very straightforward with (12) and we
omit the detailed proof for simplicity. Based on (12), we
further derive the following necessary condition of the
optimal policy with the minimal variance.
Theorem 2. For the variance minimization problem, the
optimal policy L with P and r must satisfy

∑
j∈S p′(i, j)

gvar(j) + (r′(i) − η)2 ≥ ∑
j∈S p(i, j)gvar(j) + (r(i) − η)2

for any i ∈ S and L′ ∈ Ψ.

The proof of this theorem is also omitted for the limit of
space.

Remark 2. The condition listed in Theorem 2 is only a
necessary condition of optimal policy for the variance min-
imization problem of MDP. It is not a sufficient condition.

Remark 3. When the long-run average performance of
all the policies in a given policy space is the same, the
condition listed in Theorem 2 is a necessary and sufficient
condition of optimal policy with minimal variance.

With Remark 3, the variance difference equation (12) can
be used to thoroughly solve the following special variance
minimization problem

min
L∈Ψλ

{ηLvar}, subject to ηL = λ, (13)

where Ψλ is a policy set with the same long-run average
performance as λ. Ψλ should be decomposable as Aλ(1)×
Aλ(2) × · · · × Aλ(S), where Aλ(i) is a set of actions at
state i and any policy chooses actions from Aλ(i) has the
same average performance λ, i ∈ S. For this optimization
problem (13), the variance difference equation (12) can be
rewritten as below.
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η′var−ηvar = π′
[
(P ′ − P )gvar + (r′ − ηe)2¯ − (r − ηe)2¯

]
,

(14)
where the term (η′−η)2 disappears since η′ = η for all the
policies in Ψλ. As we will discuss later in Subsection 3.2,
a policy iteration type algorithm can be developed to find
the global optimal solution of this optimization problem.

3.2 Iterative Optimization Algorithm

With (12) and Theorem 1, we can construct the following
iterative algorithm to reduce the variance of Markov chain.

Algorithm 1. Policy iteration type algorithm to reduce
the variance of Markov chain.

Initialization

• Arbitrarily choose an initial policy L(0) from the
policy space Ψ, set l = 0.

Policy Evaluation

• For the current policy L(l), calculate or estimate η,
ηvar, and gvar based on the system sample path.

Policy Update

• Update the policy as follows:

L(l+1)(i) = arg min
a∈A

∑

j∈S
pa(i, j)gvar(j) + (r(i, a)− η)2,

for all i ∈ S and keep L(l+1)(i) = L(l)(i) if possible.

Stopping Rule

• If L(l+1) = L(l), stop; Otherwise, set l := l +1 and go
to step 2.

We can see that the above iterative algorithm is similar
to the policy iteration for long-run average performance
in the classical MDP theory. Therefore, the above algo-
rithm also possesses the similar properties of the policy
iteration, such as the fast convergence speed in most of
the situations.
Theorem 3. When the reward function r remains unvaried
under different policies, Algorithm 1 converges to a policy
with a local minimal variance in the randomized policy
space.

The proof of this theorem is also omitted for the limit of
space.

Remark 4. Algorithm 1 can find the global optimal solu-
tion of the optimization problem (13). This is because that
the output policy of Algorithm 1 satisfies the necessary and
sufficient condition of the optimal policy, as indicated by
Remark 3.

For a general variance minimization problem unlike (13),
although Algorithm 1 cannot be guaranteed to find the
global optimal policy, Theorem 3 indicates that it con-
verges to a local optimum when r is independent of poli-
cies. In the literature, there are some studies using the
gradient-based approach to minimize the variance of MDP

[12, 19]. The gradient-based approach also converges to
a local optimum. However, compared with the gradient-
based approach in the literature, the policy iteration type
approach in Algorithm 1 usually has a much faster con-
vergence speed, which is demonstrated by the numerical
experiment in the next section.

4. NUMERICAL EXPERIMENT

In this section, we use a toy example to demonstrate the
effectiveness of our approach for the variance minimization
problem of Markov chains.

Consider a small Markov chain with 3 states, i.e., S =
{1, 2, 3}. The action space is A = {a1, a2, a3}. At every
state, we can choose an action from the action space. A
policy is represented as a 3-element row vector, such as
L = [a2, a3, a1] which selects action a2, a3, and a1 at
state 1, 2, and 3, respectively. Obviously, the size of the
policy space is |Ψ| = |A||S| = 33 = 27. Different actions
induce different state transition probabilities. For state 1,
we have pa1(1, :) = (0.8, 0.1, 0.1), pa2(1, :) = (0.1, 0.7, 0.2),
pa3(1, :) = (0.1, 0.3, 0.6). For state 2, we have pa1(2, :
) = (0.7, 0.1, 0.2), pa2(2, :) = (0.1, 0.8, 0.1), pa3(2, :) =
(0.1, 0.1, 0.8). For state 3, we have pa1(3, :) = (0.6, 0.3, 0.1),
pa2(3, :) = (0.2, 0.6, 0.2), pa3(3, :) = (0, 0.1, 0.9). The
reward function is r = (10, 1, 2)T which is unvaried under
different policies.

We use the policy iteration type algorithm to minimize
the variance of this Markov chain. We arbitrarily choose an
initial policy from the policy space and use Algorithm 1 to
reduce the variance of Markov chain. As Theorem 3 states,
Algorithm 1 converges to a local optimum. For different
initial policy, Algorithm 1 may converge to different local
optimum. Since the policy space is small, we enumerate
every initial policy and find that Algorithm 1 truly con-
verges to two possible local optima, one is L̂∗ = [a1, a1, a1]
and the other is L∗ = [a3, a3, a3]. Policy L̂∗ indicates
that the actions at all the states are a1 and the corre-
sponding average performance and variance are η̂∗ = 8
and η̂∗var = 13.1020, respectively. Policy L∗ indicates that
the actions at all the states are a3 and the corresponding
average performance and variance are η∗ = 1.988 and
η∗var = 0.8294, respectively. We can see that the average
performance of L∗ is worsen than that of L̂∗, while the
variance of L∗ is less than that of L̂∗. Therefore, L∗ is the
global optimal policy of Markov chain under the variance
criterion.

From the experiment results, we observe that Algorithm 1
converges to the local optimum L̂∗ under three initial
policies, as listed in Table 1. For all the other initial
policies, Algorithm 1 will converge to the other local
optimum L∗ (it is also the global optimum), where some
of the optimization processes are listed in Table 2. From
these tables, we observe that the variance of Markov
chain is strictly reduced during the optimization process,
while the average performance has no regular trends. This
demonstrates the effectiveness of Algorithm 1 for reducing
the variance of Markov chains. From the experiment
results, we observe that Algorithm 1 needs only 1 or 2
iterations to converge in most of the situations (the worst
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Table 1. The optimization process of Algorithm 1 with different initial policy, which converges
to the local optimum.

l L(l) η ηvar l L(l) η ηvar l L(l) η ηvar

0 [a1, a1, a1] 8.0000 13.1020 0 [a1, a1, a2] 7.4824 15.2850 0 [a1, a3, a1] 7.1628 15.9037

1 [a1, a1, a1] 8.0000 13.1020 1 [a1, a1, a1] 8.0000 13.1020 1 [a1, a1, a1] 8.0000 13.1020

2 [a1, a1, a1] 8.0000 13.1020 2 [a1, a1, a1] 8.0000 13.1020

Table 2. The optimization process of Algorithm 1 with different initial policy, which converges
to the global optimum.

l L(l) η ηvar l L(l) η ηvar l L(l) η ηvar

0 [a1, a2, a3] 3.0000 10.0000 0 [a2, a3, a1] 3.9350 14.8408 0 [a2, a2, a1] 2.5368 10.5434

1 [a3, a3, a3] 1.9886 0.8294 1 [a2, a2, a3] 1.9524 3.4739 1 [a2, a2, a2] 2.1348 7.9369

2 [a3, a3, a3] 1.9886 0.8294 2 [a3, a3, a3] 1.9886 0.8294 2 [a2, a2, a3] 1.9524 3.4739

3 [a3, a3, a3] 1.9886 0.8294 3 [a3, a3, a3] 1.9886 0.8294

4 [a3, a3, a3] 1.9886 0.8294

case is 3 iterations). This demonstrates the efficiency of
Algorithm 1.

5. DISCUSSION AND CONCLUSION

The variance minimization problem of MDP does not fit
the standard model of MDP. The traditional approaches
of MDP theory, such as the policy iteration, cannot be
directly applied to this problem. In this paper, we derive
a variance difference equation to study this problem from
a viewpoint of direct comparison. By directly comparing
the reward variance and the policies or parameters of
MDP, we propose a policy iteration type approach for this
variance minimization problem. The optimality properties
and related theorems are also derived. Compared with the
traditional gradient-based approaches which are often used
in the literature, our approach is more efficient.

In the future work, it is valuable to further study the
policy iteration type approach to optimize the performance
of MDP, considering both the average performance and
the variance of system rewards. Our approach provides a
promising research direction for the study of the mean-
variance optimization problem. Moreover, the policy iter-
ation type approach in this paper converges to the local
optimum. How to identify the conditions with which our
approach can converge to the global optimum is another
future research topic.
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