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1. INTRODUCTION

In this paper the problem of identifying a linear dynamic system
from noisy input–output measurements is addressed. System
representations where both the input and output are affected
by additive errors are called errors–in–variables (EIV) models
and play an important role in several engineering applications
Van Huffel (1997), Van Huffel and Lemmerling (2002). The
identification of EIV models has been deeply investigated in
the literature, see Söderström (2007), Guidorzi et al. (2008)
Söderström (2012) and the references therein.

Many recently proposed methods belong to the class of bias-
compensated least squares (BCLS) methods or can be inter-
preted as BCLS methods. Among these approaches it is worth
recalling the bias-eliminating least squares (BELS) Zheng
(1998), Zheng (2002), the extended compensated least squares
Ekman (2005), Ekman et al. (2006) and the dynamic Frisch
scheme Beghelli et al. (1993), Diversi et al. (2003), Diversi
et al. (2004), Diversi et al. (2006), Diversi et al. (2012).

The relations between the BCLS methods have been analyzed
in Hong and Söderström (2009) whereas in Söderström (2011)
it is shown how these methods can be put into a general
framework, resulting into a Generalized Instrumental Variable
Estimator (GIVE).

In this paper, the GIVE approach is extended to EIV models
with mutually correlated input and output measurement errors.
The paper shows also how the methods that require some BCLS
equations to hold exactly can be embedded into the GIVE
framework as a limiting case, providing a detailed study of the
accuracy analysis. Note that, the case of mutually correlated
noises has been rarely treated in the literature and only with
reference to specific approaches, see e.g. Beghelli et al. (1997),
Diversi (2013), Diversi et al. (2012).

The organization of the paper is as follows. In the next section
we provide the setup and problem formulation and introduce
notations. The bias-compensation principle is reviewed in Sec-
tion 3, while Section 4 provides a general framework that can
describe many bias-compensating estimation schemes. Section
5 is devoted to illustrate how several identification methods in
the literature correspond to various special cases of the general
approach. The asymptotic distribution of the parameter esti-

mates is reviewed in Section 6, and concluding remarks are
provided in Section 7.

2. SETUP AND PROBLEM FORMULATION

Consider the linear time–invariant SISO system described in
Figure 1. The noise–free input and output u0(t), y0(t) are
linked by the difference equation

A(z−1) y0(t) = B(z−1)u0(t), (1)

where A(z−1) and B(z−1) are polynomials in the backward
shift operator z−1

A(z−1) = 1 + a1 z−1 + · · · + ana
z−na

B(z−1) = b0 + b1 z−1 + · · · + bnb
z−nb .

(2)

In the EIV environment the input and output measurements are
assumed as corrupted by additive noise so that the available
observations are

u(t) = u0(t) + ũ(t) (3)
y(t) = y0(t) + ỹ(t). (4)

In the sequel, the following assumptions will be considered as
satisfied.

A1. System (1) is asymptotically stable.
A2. A(z−1) and B(z−1) do not share any common factor.
A3. The polynomial degrees na and nb are assumed to be a

priori known.
A4. The noiseless input u0(t) is a zero–mean ergodic process

and is persistently exciting of sufficiently high order.
A5. ũ(t) and ỹ(t) are mutually correlated zero–mean ergodic

white processes with covariances

E
[

ũ(t) ũ(t − τ)
]

= λu δ(τ) (5)

E
[

ỹ(t) ỹ(t − τ)
]

= λy δ(τ) (6)

E
[

ũ(t) ỹ(t − τ)
]

= λyu δ(τ), (7)

where δ(τ) denotes the Kronecker delta function.
A6. ũ(t) and ỹ(t) are uncorrelated with the noise–free input

u0(t).

We will discuss later, see Section 5, how Assumption A5 may
be either extended or simplified.

The problem under investigation is the following.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 4644



u0(t) y0(t)B(z−1)

A(z−1)
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Fig. 1. Errors–in–variables model

Problem. Given a set of observations u(1), . . . , u(N), y(1), . . . ,
y(N), estimate the coefficients ak (k = 1, . . . , na), bk (k =
0, . . . , nb) and possibly also the noise covariances λu, λy , λyu.

Remark 1. Maximum likelihood (ML) solutions often possess
strong properties of high accuracy. However, in the present
context no ML solution exists. For an ML solution to exist
one need modified assumptions. One possibility would be to
assume λyu = 0, and known noise ratio λy/λu, see for
example Soverini and Söderström (2014). Another possibility
is to impose a parametric model of the noisefree input u0(t).
How to use an ARMA model for u0(t) and to obtain the ML
esitmates of all parameters is considered in Söderström (1981),
Söderström (2006).

2.1 Some notations

For the subsequent analysis it is useful to define the vectors

ϕ0(t) = [−y0(t − 1) . . . − y0(t − na)u0(t) . . . u0(t − nb) ]T

(8)

ϕ(t) = [−y(t − 1) . . . − y(t − na)u(t) . . . u(t − nb) ]T

(9)

ϕ̃(t) = [−ỹ(t − 1) . . . − ỹ(t − na) ũ(t) . . . ũ(t − nb) ]T

(10)
and the parameter vectors

θ =
[

a1 · · · ana
b0 · · · bnb

]T
(11)

ρ =
[

λy λu λyu

]T
. (12)

It is also convenient to define the extended vectors
φ0(t) = [−y0(t) ϕT

0 (t) ]T (13)

φ(t) = [−y(t) ϕT (t) ]T (14)

φ̃(t) = [−ỹ(t) ϕ̃T (t) ]T (15)
and the extended parameter vector

Θ =
[

1 θT
]T

. (16)

In the following, for a stationary random process x(t) we define
its covariance function rx(τ) as

rx(τ) = E [x(τ)x(t − τ)] τ = 0,±1,±2 . . . (17)
where E denotes the expectation operator. Further, the cross–
covariance matrix between two random vectors x(t) and y(t)
and the cross-covariance vector between a random vector x(t)
and a scalar random variable z(t) are denoted as

Rxy = E [x(t) yT (t)] rxz = E [x(t) z(t)] . (18)
The estimates of these covariances from measured data are
denoted as

R̂xy =
1

N

N
∑

t=1

x(t)yT (t) r̂xz =
1

N

N
∑

t=1

x(t)z(t) . (19)

For the parameter vectors θ and ρ, a subscript 0, as in θ0 and
ρ0, is included when it is emphasized that they are evaluated for
the ‘true’ parameter values.

The notation
‖x‖2

W = xT Wx (20)
is used for a weighted squared norm of a vector x, where W is
a positive definite weighting matrix.

3. BIAS-COMPENSATED LEAST SQUARES

The EIV model (1)–(4) can be rewritten in the form
y(t) = ϕ(t)T θ + ε(t) (21)

ε(t) = ỹ(t) − ϕ̃(t)T θ . (22)
When the least squares method is applied to the linear regres-
sion (21) the estimate of θ0 will be biased and non-consistent
due to the presence of the measurement noises. In fact for
N → ∞, we have

E [ϕ(t)ϕT (t)]θLS = E [ϕ(t) y(t)] (23)
i.e.

RϕϕθLS = rϕy . (24)
Since

E [ϕ(t) y(t)] = E [ϕ0(t) y0(t)] + E [ϕ̃(t) ỹ(t)] (25)
and y0(t) = ϕT

0 (t) θ0, according to Assumptions A5–A6 it
results

RϕϕθLS =
(

Rϕϕ − Rϕ̃ϕ̃

)

θ0 + rϕ̃ỹ . (26)
To get an unbiased estimate, a Bias Compensated Least Squares
(BCLS) scheme can be considered. The basic idea is to remove
the noise contributions by estimating in some way the noisy
terms Rϕ̃ϕ̃ and rϕ̃ỹ , i.e

θBCLS =
(

Rϕϕ − Rϕ̃ϕ̃(ρ)
)

−1(
rϕy − rϕ̃ỹ(ρ)

)

, (27)
where ρ is the noise parameter vector introduced in (12). In
order to estimate the noise parameters ρ, at least three more
equations are needed in addition to the na + nb relations (27).

Under Assumption A5 the terms Rϕ̃ϕ̃(ρ) and rϕ̃ỹ(ρ) have the
following structure

Rϕ̃ϕ̃(ρ) =

[

λy Ina
−λyu Ena,nb+1

−λyu ET
na,nb+1 λu Inb+1

]

(28)

rϕ̃ỹ(ρ) = [01,na
| λyu | 01,nb

]
T

. (29)

If na ≥ nb matrix Ena,nb+1 is

Ena,nb+1 =

[

0nb,1 Inb

0na−nb,1 0na−nb,nb

]

; (30)

if na < nb matrix Ena,nb+1 is
Ena,nb+1 = [0na,1 Ina

0na,nb−na
] . (31)

There are several methods proposed and analyzed in the litera-
ture that fall into the category (27). Traditionally, the case when
the noises are uncorrelated is considered, so that λyu = 0. For
such cases two more equations are needed. Here, we briefly
describe the main ideas for such additional equations, without
giving all mathematical details:

• For the bias-eliminating least squares approach, BELS,
see e. g. Zheng (1998), Zheng (2002), one of the equations
is derived by evaluating the minimal loss

VLS = E
[

(y(t) − ϕT (t)θLS)2
]

, (32)

where θLS = R−1
ϕϕ rϕy , see (24). More equations can be

obtained by considering the least squares estimation of an
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“augmented” model where additional coefficients (equal
to zero) are introduced in A(z−1) and/or B(z−1).

• For the Frisch scheme for EIV identification, Beghelli
et al. (1997), Guidorzi et al. (2008), Diversi et al. (2012),
the idea is to consider the relation

Rφ0φ0
Θ0 = 0, (33)

that can be expressed as
(

Rφφ − Rφ̃φ̃(ρ0)
)

Θ0 = 0. (34)

Note that one more equation is used as compared to (26).
Other relations can be introduced by considering aug-
mented vectors of φ(t) of different dimensions, corre-
sponding to different model orders.

4. GENERAL FRAMEWORK

The Generalized Instrumental Variable Estimator (GIVE) has
been introduced in Söderström (2011) as a class of estimators
based on the bias–eliminating principle (27) containing many
previously known methods as special cases.

Introduce the total parameter vector η as

η =

[

θ
ρ

]

. (35)

Introduce a generalized instrumental vector (IV) z(t), com-
posed of delayed values of y(t) and u(t), and of dimension nz ,
where

nz ≥ dim(η) = na + nb + 4 (36)
Correlating z(t) with the equation error ε(t) in (21) it is possi-
ble to write the following over–determined set of equations

(

Rzϕ − Rz̃ϕ̃(ρ)
)

θ =
(

rzy − rz̃ỹ(ρ)
)

, (37)

where the choice of the instrumental variable z(t) determines
the structure of Rz̃ϕ̃(ρ) and rz̃ỹ(ρ). Cf. (24) and (26). In order
to determine the parameter vectors θ and ρ, some of the entries
in z(t) must be correlated with ε(t).

When nz is chosen so that inequality applies in (36), the system
of equations in (37) is over-determined. A very common choice
for the vector z(t) is

z(t) = [ y(t) . . . y(t − na − py) u(t) . . . u(t − nb − pu) ]
T

(38)
where pu and py are user chosen variables, with py ≥ 0, pu ≥ 0
and pu + py ≥ 2.

In the general case, for the the GIVE method the parameter
estimate η̂GIV E is defined as the solution to an optimization
problem. The GIVE estimate of η is

η̂GIV E = arg min
η

VGIV E(η) (39)

VGIV E(η) = ‖r̂zy − rz̃ỹ(ρ) −
(

R̂zϕ − Rz̃ϕ̃(ρ)
)

θ‖2
W (θ)

= ‖r̂zε − rz̃ε (θ, ρ)‖2
W (θ)

∆
= ‖r̄zε(θ, ρ)‖2

W (θ) (40)

In its most general form, one uses a θ-dependent weighting
matrix W (θ), but often W (θ) is chosen as a constant matrix.

When the weighting matrix W does not depend on θ, the
minimization in (39) with respect to θ is easy, as the criterion
VGIV E is quadratic in θ. The problem is then indeed a separable
nonlinear least squares problem. This means that the estimate

(39) can be obtained as the solution of an associated problem
of lower dimension, cf Golub and Pereyra (1973), Golub and
Pereyra (2003):

θ̂GIV E =
[

R̄T
zϕWR̄zϕ

]−1
R̄T

zϕWr̄zy |ρ=ρ̂GIV E
(41)

R̄zϕ(ρ) = R̂zϕ − Rz̃ϕ̃(ρ) (42)

r̄zϕ(ρ) = r̂zy − rz̃ỹ(ρ) (43)

ρ̂GIV E = arg min
ρ

V̄GIV E(ρ) (44)

V̄GIV E(ρ) = r̄T Wr̄ − r̄T WR̄
[

R̄T WR̄
]

−1
R̄T Wr̄ (45)

The function V̄GIV E(ρ) is called a concentrated loss function.

There is one special situation that is worth discussing for the
case when the system of equations (37) is over-determined. It
is not uncommon for such cases that one chooses to require
some of the equations to hold exactly, while for the others
the difference between the left and the right hand sides is
minimized in a weighted least squares sense.

To formulate such a case, split the vector z(t) as

z(t) =

[

z1(t)
z2(t)

]

}n1 elements
}n2 elements

(46)

where we require r̄z1ε = 0 to hold exactly. For this to be
meaningful, we must have

n1 < dim(η) = na + nb + 4 (47)

n2 = nz − n1 (48)

The optimization problem for finding η̂GIV E is then

η̂GIV E = argmin
ρ,θ

‖r̄z2ε(ρ, θ)‖2
W2

such that r̄z1ε(ρ, θ) = 0
(49)

This estimate can be seen as an extreme case of the general
formulation (41)-(45), by choosing

W =

[

αIn1
0

0 W2

]

(50)

and letting α tend to infinity.

We have found, cf Hong et al. (2007), Hong and Söderström
(2009), Söderström (2011) that many bias-compensating
schemes can be formulated as the general estimator (41)-(45),
by appropriate choices of z1(t), z2(t) and W . We exemplify
such choices in the next section. This also means that these
formally different estimators are equivalent.

What does equivalence mean in this context?

(1) First, one has to distinguish between the equations (41)-
(45) defining the estimates on one hand, and the choice
of numerical algorithm employed to solve them on the
other. The properties of the estimates (the solution to the
equations), such as statistical properties of the estimation
error η̂ − η0, do not depend on the way the equations are
solved. That is, which particular algorithm that is used for
finding the solution has no importance on the properties
of the solution itself.

The choice of the algorithm may still be important from
a practical point of view. The amount of computations
needed, the robustness to rounding errors and to the initial
guesses for the nonlinear optimization in (39) or (44) can
differ considerably between different algorithms. For the
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particular problem treated in this paper, see Söderström
et al. (2005b), Söderström et al. (2005a) for some exam-
ples. According to our experiences, the use of the concen-
trated loss function formulation (41)-(45) is a preferable
and robust way to solve the optimization problem.

(2) The parameter estimates for different estimators defined
by solving the same set of equations can differ somewhat
for various reasons:
• One aspect is that different weights W (θ) may have

been chosen.
• A more subtle difference, that should be of minor im-

portance is the precise way the covariance estimates
(18) are formed from the data. For example, are the
time points where all elements of x(t) and y(t) are
not available completely discarded in (18), or are not
available data replaced by zeros?

• Another reason for minor differences is that all es-
timator algorithms include some iterative computa-
tions, and that different stopping rules may be ap-
plied.

5. EXAMPLES AND SPECIAL CASES

We first discuss some special cases as well as extensions of the
noise assumption A5. In the second subsection we give several
specific examples to show how well-known methods from the
literature fit into the GIVE framework of Section 4.

5.1 Special cases and extensions

Here we discuss various modification of the Assumption A5,
that ỹ(t), ũ(t) are mutually correlated white noise processes.

• The case of uncorrelated noises is simply obtained by
setting λyu = 0, and omitting the corresponding element
of the noise parameter vector ρ, (12). This situation is
also the most commonly treated one in the literature. This
situation also implies that the dimensions of ρ and η are
decreased by one unit, and so does the minimal number
of equations in (36). The modifications of rz̃ỹ and Rz̃ϕ̃ in
(37) are straightforward.

• One may consider the case when ỹ(t) is arbitrarily auto-
correlated, but uncorrelated with the white input noise
ũ(t). For such a case, one might add covariance elements
rỹ(τ) for a number of τ−values in the ρ vector. However,
it then turns out to be infeasible to use any delayed values
of the output y(t) in the vector z(t). For any new such
vector element added, one has also to include a further
unknown rỹ(τ). Therefore, it only makes sense in such
scenarios to use delayed input variables in the z(t) vector,
so for example

z(t) = [ u(t) . . . u(t − nb − pu) ]
T (51)

where, according to (36), pu ≥ na + 1, as ρ = λu in this
case.

• For the situation above, it is also possible to use only
further delayed inputs in the z(t) vector

z(t) = [ u(t − nb − 1) . . . u(t − nb − pu) ]
T (52)

with pu ≥ na + nb + 1. In this case there is indeed
no noise parameter vector needed, as rz̃ỹ and Rz̃ϕ̃ both
become zero. The estimate is the instrumental variable
estimate described, e.g., in Söderström (1981). It can also
be interpreted as a Yule-Walker estimate.

• A more general situation occurs when ỹ(t) consists of
two independent components, ỹ(t) = ỹ1(t) + ỹ2(t). Then
we can use ỹ1(t) to model an arbitrarily auto-correlated
process noise, and let ỹ2(t) describe white measurement
noise. Further assume that [ ỹ2(t) ũ(t) ]

T is a vector-
valued white noise. It is then possible to proceed as above
with ρ = [ λyu λu ]

T and using only delayed input values
in the vector z(t). Such a case is treated in Diversi et al.
(2010).

5.2 Various examples

We now illustrate how several methods earlier proposed in
the literature fit into the general GIVE framework. For each
method, we specify how z1(t), z2(t) and W2 are selected. Very
often the originally introduced methods are based on a model
with b0 = 0, and we make here the straightforward adjustments
in the description to treat the general case (1) - (2).

Example 5.1. The bias-eliminating least squares method was
introduced in Zheng (1998) and Zheng (2002) and proposed in
a number of variants.

The algorithm BELS-1 of Zheng (1998), corresponds to

z1(t) =
[

y(t) ϕT (t)
]T

, z2(t) = y(t − na − 1). As z2(t) is a
scalar, there is no need for any weighting matrix W2.

Simililarly, The algorithm BELS-2 of Zheng (1998), corre-

sponds to z1(t) =
[

y(t) ϕT (t)
]T

, z2(t) = u(t − nb − 1).
As z2(t) also in this case is a scalar, there is no need for any
weighting matrix W2.

Remark 2. Note that the signs of the elements in the vector z(t)
are not significant, and do not change the equations defining the
estimators. For example, one may change a negative delayed
output to its positive value, that is, to replace −y(t − i) by
y(t − i), without affecting the estimator. This property will
sometimes be used below, when deemed convenient. ✷

Example 5.2. Another variant of the bias-eliminating least
squares method is the algorithm BELS-II of Zheng (2002),
which copes with the case of arbitrarily correlated output noise.
The equations obtained by correlating past outputs, say y(t−j),
with the equation errors ε(t) = y(t) − ϕT (t)θ are then not
‘useful’, in the sense that for each further equations used, the
number of unknowns also increases by one. After eliminating
all the equations involving the unknown correlation function
rỹ(τ) of the output disturbances, the algorithm leads to the use
of

z1(t) =







u(t)
...

u(t − nb)






, z2(t) =







u(t − nb − 1)
...

u(t − nb − na − 1)







for estimating the unknowns θ and λu. (No weighting is
needed.)

Example 5.3. The Frisch scheme for EIV identification has
been proposed in several forms. One of the first appeared in
Beghelli et al. (1993). A common aspect for all these methods
is that the adjusted normal equations are used. This means
precisely that

z1(t) = [ y(t) . . . y(t − na) u(t) . . . u(t − nb) ]
T (53)

The shifted relation criterion described in Diversi et al. (2004)
is based on the following equation
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(

Rφ̄φ̄ − R ¯̃
φ

¯̃
φ
(ρ0)

)

[ v1 v2 ] = 0. (54)

where

φ̄(t) = [−y(t) . . . −y(t − na − 1)

u(t) . . . u(t − nb − 1) ]
T (55)

¯̃
φ(t) = [−ỹ(t) . . . −ỹ(t − na − 1)

ũ(t) . . . ũ(t − nb − 1) ]
T (56)

and

v1 = [ 1 a1 . . . ana
0 b0 . . . bnb

0 ]
T (57)

v2 = [ 0 1 a1 . . . ana
0 b0 . . . bnb

]
T (58)

so that four additional relations are used besides the standard
Frisch equations. The use of v1 leads to

z2(t) = [ y(t − na − 1) u(t − nb − 1) ]
T

while the use of v2 leads to

z2(t) = [ y(t + 1) u(t + 1) ]
T

.

Therefore, the use of both v1 and v2 corresponds to

z2(t) = [ y(t − na − 1) u(t − nb − 1) y(t + 1) u(t + 1) ]
T

.
(59)

Finally, in Beghelli et al. (1993) the choice W2 = I is made.

Example 5.4. Another variant of the Frisch scheme is to use
additional Yule-Walker equations, Diversi et al. (2006)

This corresponds to

z1(t) = [ y(t) . . . y(t − na) u(t) . . . u(t − nb) ]
T

,

z2(t) = [ u(t − nb − 1) . . . u(t − na − m) ]
T

Equal weighting, W2 = I is proposed in Diversi et al. (2006).
The size m of the vector z2(t) is normally chosen so that an
overdetermined system is obtained.

Adaption of this approach to the general case with cross-
correlated noise, λyu 6= 0, is treated in Diversi et al. (2012).

Example 5.5. A third variant of the Frisch scheme is based
on comparing the correlation functions of the equations errors,
using the model on one hand and using the measured data on the
other. Details are provided in Diversi et al. (2003), where this
approach was first proposed. It is shown in Söderström (2011)
that it corresponds to

z1(t) = [ y(t) . . . y(t − na) u(t) . . . u(t − nb) ]
T

z2(t) =







ε(t − 1, θ)
...

ε(t − k, θ)







=







1 a1 . . . ana
b0 . . . bnb

. . .
. . .

. . .
1 a1 . . . ana

b0 . . . bnb







×



















y(t)
...

y(t − na − k)
u(t)

...
u(t − nb − k)



















∆
= M(θ)

[

z1(t)
z̄(t)

]

= M1(θ)z1(t) + M2(θ)z̄(t) (60)

z̄(t) = [ y(t − na − 1) . . . y(t − na − k)

u(t − nb − 1) . . . u(t − nb − k) ]
T (61)

Further, as r̄z1ε = 0, the criterion to be minimized can also be
written as

‖ r̄z2ε(θ) ‖2 = ‖ M1(θ)r̄z1ε(θ) + M2(θ)r̄z̄ε(θ) ‖2

= ‖ M2(θ)r̄z̄ε(θ) ‖2 (62)

We may therefore also identify the vector z2(t) in the general
algorithm with z̄(t) in (61), and let the weighting matrix depend
on the parameter vector θ as

W2(θ) = MT
2 (θ)M2(θ) (63)

An extension of this algorithm to handle the general case with
correlated noise, λyu 6= 0, is presented in Diversi (2013).
Example 5.6. The extended compensated least squares (ECLS)
method was proposed in Ekman (2005) and analysed in Ekman
et al. (2006). It corresponds to z1(t) being absent, z2(t) as in
(38), with the weighting matrix W2 = I .

6. ASYMPTOTIC DISTRIBUTION

The asymptotic distribution of η̂GIV E was considered in
Söderström (2011) for the case λyu = 0. The modification to
include also a parameter λyu in the noise parameter vector ρ
is straightforward. The main steps in the analysis remain the
same, and are repeated here in short for convenience.

It follows from (40) that
0 = r̄T

zεW (θ)F (64)
where

F =
∂r̄zε

∂η
(65)

As for large values of N ,
r̄zε(η̂) ≈ r̄zε(η0) + F (η̂ − η0) (66)

it follows that

η̂ − η0 ≈ −
(

FT WF
)

−1
FT Wr̄zε(η0) (67)

We may then invoke the central limit theorem, see for example
Söderström and Stoica (1989), to conclude that asymptotically
in N , √

N (η̂ − η0)
dist−→ N (0, PGIVE), (68)

where the covariance matrix PGIVE is given by

PGIVE
∆
=

(

FT WF
)

−1
FT WQWF

(

FT WF
)

−1
, (69)

and

Q
∆
= lim

N→∞

Ncov (r̃zε) (70)

r̃zε =
1

N

N
∑

t=1

z(t, θ0)ε(t, θ0) − E {z(t, θ0)ε(t, θ0)} (71)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4648



For the case of Gaussian distributed data, it was shown in
Söderström (2011) that

Q =

∞
∑

τ=−∞

[

rz(τ)rε(τ) + rzε(τ)rT
zε(−τ)

]

. (72)

7. CONCLUSIONS

It has been shown how many different estimators for the errors-
in-variables problem can all be casted in a generalized instru-
mental variables framework. The setup used allows input and
output measurement noises to be mutually correlated. Various
estimators known from the literature are shown explicitly to
appear as special cases of the provided framework.
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