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Abstract: The Lyapunov, Bohl and Perron exponents belong to the most important numerical
characteristics of dynamical systems used in control theory. Properties of the first two
characteristics are well described in the literature. Properties of the Perron exponents are much
less investigated. In this paper we show an example of two-dimensional discrete-time linear
system with bounded coefficients for which the set of Perron exponents constitutes an interval.
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1. INTRODUCTION

Consider the discrete-time linear system of the form

x(n+ 1) = A(n)x(n), x(0) = x0, n ≥ 0 (1)

where A(n) are s-by-s real matrices. For the system (1)
the transition matrix is defined as

Φ(m) = A(m− 1)...A(0)

and Φ(0) = I, where I is the identity matrix. For an initial
condition x0 the solution of (1) is denoted by x(n, x0), so

x(n, x0) = Φ(n)x0.

By ‖·‖ denote the Euclidean norm in Rs and the induced
operator norm. Many properties of dynamical system (1)
can be successfully characterised by certain numerical
characteristics. If we are interested in exponential stability,
we may use Lyapunov exponents (Barreira and Pesin
(2002)) defined as follows

λ(x0) = lim sup
n→∞

‖x(n, x0)‖1/n . (2)

The system (1) is exponentially stable if and only if for all
x0 ∈ Rs we have λ(x0) < 1. Moreover, Lyapunov exponent
describes an upper estimation of the norm of solution.
More precisely, for all ε > 0 and x0 ∈ Rs there exists
N > 0 such that

‖x(n, x0)‖ ≤ N (λ(x0) + ε)
n

(3)

for all n ≥ 0. Properties of Lyapunov exponents have been
investigated in depth (Arnold (1991), Czornik and Nawrat
(2010), Czornik (2012)). These numerical characteristics
are universally applied tool in control theory. If we want
to achieve a lower estimation similar to (3), we may replace
the upper limit in definition (2) by lower one. In this way
we obtained a definition of Perron exponent
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π(x0) = lim inf
n→∞

‖x(n, x0)‖1/n ,

that was firstly introduced for continuous-time systems in
(Perron (1930)).

A very important property is that the number of Lyapunov
exponents of (1) is finite, not greater than size s (Barreira
and Pesin (2002)). Moreover, the maximal one λmax is
defined in the following way

λmax = lim sup
n→∞

‖Φ(n)‖1/n .

In spite of Perron exponents are defined similarly to
Lyapunov exponents, they have very different properties,
which by contrast with Lyapunov characteristics are not
so thoroughly investigated. Some properties of Perron ex-
ponents for continuous-time systems have been established
in (Bylov et al. (1966)) and (Izobov (1965)-Izobov (1968)).
Perron exponents for discrete-time systems have been in-
vestigated in (Czornik (2008)) (see also Czornik (2012)).
In (Czornik (2008)) it has been shown that for each
natural numbers l there exists two-dimensional system
with exactly l Perron exponents. This example establishes
principal distinction between the structure of the sets of
Lyapunov characteristic exponents and Perron exponents.
Also in (Czornik (2008)) it has been shown that in the set
{π(x0) : x0 ∈ Rs} there is a maximal element πmax, the
function π : Rs → R is almost every where, in the sense of
Lebesgue measure, equal to πmax and

πmax = lim inf
n→∞

‖Φ(n)‖1/n .

The two-dimensional system system constructed in (Czornik
(2008)) has unbounded coefficients. The main contribution
of the present paper is to give an example of a two-
dimensional system with bounded coefficients for which
the set of Perron exponents constitutes an interval. Such
an example in continuous-time has been given in (Izobov
(2006)).
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2. PRELIMINARY CONSTRUCTIONS.
CANTOR-TYPE SET AND CANTOR-TYPE

FUNCTION

Let

εn = exp

(
− exp

(
n∑
i=1

2i

))
.

For this sequence we define a Cantor-type set and denote
it by P0. Take closed interval ∆ = [0, 1]. Let C1 be the set
consisting of two disjoint closed subintervals of ∆ of length

ε1, the left one ∆
(1)
1 (for which the left endpoint coincides

with the left endpoint of ∆) and the right one ∆
(2)
1 (for

which the right endpoint coincides with the right endpoint
of ∆). Now continue recursively, if J ∈ Cn, then include in
the set Cn+1 its left-and-right-closed subintervals of length

εn+1. Denote ∆
(m)
n , m = 1, ..., 2n the elements of Cn and

by α
(m)
n their middle points. Moreover α

(0)
n := α

(2n−1)
n for

n > 1 and α
(0)
1 = 0. We define the set P0 as follows

P0 =

∞⋂
n=1

2n⋃
i=1

∆(i)
n .

On the closed interval ∆ = [0, 1] we have shown the sets

C1 =
{

∆
(1)
1 ,∆

(2)
1

}
, C2 =

{
∆

(1)
2 ,∆

(2)
2 ,∆

(3)
2 ,∆

(4)
2

}
with

middle points of their elements in the Figure (1).

Fig. 1. Sets C1, C2 with middle points of their elements.

Now we construct a Cantor-type function corresponding
to the Cantor-type set defined above. Define the function
f1 : ∆→ ∆ so that it has values:

• 0 at the left endpoint of the interval ∆,
• 1 at the right endpoint of the interval ∆,
• 1/2 on ∆\C1 and interpolate linearly on the intervals

in C1.

Recursively, construct the function fn+1 so that:

(1) for every interval J = [s, t] ∈ Cn, the function fn+1

agrees with fn at s and t,
(2) it has value equal to [fn(s) + fn(t)] /2 on J\Cn+1 and

interpolate linearly on the intervals in Cn+1.

The functions f1 and f2 are shown in the Figure (2).

The sequence of continuous functions fn converges uni-
formly on ∆. We define Cantor-type function Φ as the
limit. For any n and all n ≤ m the functions Φ and fn
agree at the endpoints of intervals J ∈ Cm.

Fig. 2. Functions f1 and f2.

3. MAIN RESULT

In this section we will construct an example of two-
dimensional system with bounded coefficient for which the
set {π(x0) : x0 ∈ Rs} is an interval.

Let start the construction with definition of two auxiliary
sequences f(n) and F (n). Let divide the halfline [0,∞) by

the points Tk = ek, k ≥ 0 into left-closed intervals s
(m)
n in

the following way (presented also in the Figure (3)):

• for any natural n ≥ 1 values of m varies from 1 to 2n,

• the right endpoint s
(m)
n coincides with left endpoint of

s
(m+1)
n (for m = 2n the right endpoint s

(2n)
n coincides

with left endpoint of the next interval s
(1)
n+1).

Fig. 3. Halfline [0,∞) divided by the points Tk = ek, k ≥ 0

into left-closed intervals s
(m)
n .

Set
F (1) = 0, F (k) = α(m)

n if k ∈ s(m)
n , k ≥ 2

and

f(k) =

{
0 if k ∈ s(m)

n \s̃(m)
n

−Φ
(
α(m)
n

)
if k ∈ s̃(m)

n

,

where s̃
(m)
n is the open righthalf of the interval s

(m)
n . Define

the matrices A(n) for system (1) in the following way

A(n) =

[
a(n) 0
b(n) 1

]
, n ≥ 0

where

a(0) = 1, a(n) = exp ((n+ 1) f(n+ 1)− nf(n)) , n ≥ 1

b(0) = 0, b(n) = (F (n+ 1)− F (n)) exp (−nf(n)) , n ≥ 1.

From the definition of f(n) and F (n) it is clear that A(n)
is a bounded sequence. It is easy to check, that solution
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x(n, x0) = [ x1(n) x2(n) ]
T

of (1) with initial condition

x0 = [ x01 x02 ]
T

is given by

x1(n) = exp (nf(n))x01,

x2(n) = F (n)x01 + x02. (4)

We will calculate Perron exponent p(α) for x0 = [ 1 −α ]
T

for α ∈ P0, α 6= 0. We have

p(α) = lim inf
n→∞

[
exp (2nf(n)) + (F (n)− α)

2
] 1

2n

(5)

According to the definition of P0 for all α ∈ P0, α 6= 0 and
n ≥ 1 there exists mn (α) ≤ 2n such that∣∣∣α(mn(α))

n − α
∣∣∣ ≤ εn

2
. (6)

Denote by τn the integer part of the number in the middle

of s̃
(mn(α))
n . With this notation we have τn →∞ and

exp (−Φ (γ) τn) > εn, γ ∈ ∆. (7)

From the last two inequalities we obtain

2 ln p(α) ≤ lim inf
n→∞

1

τn
ln
(

2 exp
(
−2Φ

(
α(mn(α))
n

)
τn

))
.

The last limit is equal to −2Φ (α) since Φ is continuous.
Therefore

ln p(α) ≤ −Φ (α) < 0.

Now we show the opposite inequality. Let nk be the
sequence for which

p(α) = lim
k→∞

[
exp (2nkf(nk)) + (F (nk)− α)

2
] 1

2nk .

Because ln p(α) < 0, then

lim sup
k→∞

1

nk
ln |F (nk)− α| < 0 (8)

and
lim sup
k→∞

f(nk) < 0. (9)

From the inequality (8) we have

lim
k→∞

F (nk) = α,

which together with (9) implies that F (nk) = α
(mk)
nk for

large enough k and therefore

lim
k→∞

α(mk)
nk

= α.

Finally

ln p (α) ≥ lim inf
k→∞

f(nk) ≥ lim inf
k→∞

(
−Φ

(
α(mk)
nk

))
= −Φ (α)

and we have proved, that{
π(x0) : x0 = [ 1 −α ]

T
, α ∈ P0, α 6= 0

}
=
(
e−1, 1

)
.

4. CONCLUSION

In this paper we have shown that the set of Perron
exponents of two-dimensional discrete linear systems with
bounded coefficients may be an interval. The constructed
example strongly motivates investigation of the range
structure for the Perron exponents of the system (1).
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