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Abstract: A new approach is proposed for developing a model for High Voltage (HV) Lithium-ion (Li-
Ion) battery pack using Hybrid Electrical Vehicle (HEV) drive cycles data. A variety of drive cycle’s 
data have been collected from the test vehicle at various operating conditions. The equivalent electrical 
circuit for the HV battery is formulated using mathematical equations and discrete state space equations. 
The Open Circuit Voltage (OCV), Offset Voltage at Zero Load conditions (VZL), battery pack  internal 
resistance (Rbatt) are considered as various components of the mathematical equations and battery pack 
RC filter states are represented using discrete state space  equations  at various battery temperature 
(Batt Temp) conditions (-70C to 450C). The parameter estimation problem is then considered as the 
problem of simultaneously estimating the parameters of all the coefficients formulated in the battery 
pack mathematical and state space equations. This is mathematically posed as a constrained optimization 
problem and a variant of genetic algorithm (GA) is used to solve it. Modelling is done using MATLAB®/
Simulink® tools. The developed model is validated on actual vehicle drive cycle data. The results obtained 
by the proposed approach are closely matching with the actual battery response under different drive 
cycles. The distinction of the approach is that it does not call for any lab tests, additional instrumentation 
and cell level measurements yet serves the purpose of fair fidelity model for the design, analysis and 
control of the HEV powernet. 
Keywords: Parameter Estimation, Hybrid Electrical Vehicle, Lithium-Ion Battery, HV Battery Pack, 
Dynamic Data, Genetic Algorithm

1. INTRODUCTION

Hybrid electric vehicles (HEV) and Electric vehicles (EV) 
use a large electrochemical battery as onboard electrical 
energy storage (ES). Due to the advantage of high power 
rating, high energy density, and high cycle life, the Lithium-
ion (Li-ion) batteries are used as energy storage devices in 
HEVs and EVs. To achieve the required electrical traction 
power and the range, the practice is to connect low-voltage 
lithium-ion cells in series and parallel combinations to 
construct a dedicated High Voltage (HV) battery pack. 
A Battery Management System (BMS), along with 
protective circuitry and a communication bus is provided for 
management, monitoring, and diagnosis. Measurement of 
state-of-charge (SOC) is one of the basic functions of BMS, 
which indicates the remaining charge of the battery. SOC 
is an indication for the user, which provides information on 
when the battery needs recharging.

In future, the number of hybrid vehicles on road are expected 
to increase tremendously, hence the need for dynamic models 
of various subsystems inclusive of the battery would grow 
for the development of the on-board subsystems, their control 
and monitoring. It is important to calculate the state-of-
charge (SOC), open-circuit voltage (OCV), and the terminal 

voltage with acceptable accuracy under arbitrary current 
profiles at various operating conditions of the vehicle. An 
accurate and computationally less intensive model with good 
runtime prediction and voltage response characteristics are 
crucial requirement specifications of HV battery model for 
the development and validation of various HEV/EV systems.

Several approaches are available in the literature (Jackey et 
al., 2007, Jonathan J et al., 2008, Plett, G. et al., 2004, 2006, 
RA Jackey et al., 2009) to model various types of batteries. 
In most of the approaches that are reported and used to 
develop the battery pack model, it is important to have the 
cell level data and measurements. Using this data equivalent 
battery cell model has been developed and further integrated 
to create the entire battery pack model. This requires 
additional instrumentation for the battery pack and laboratory 
set up to conduct specialised tests to extract the dynamics 
of battery cell behaviour. In this paper, the proposed battery 
model structure uses the measured parameter values by the 
available sensors on the battery pack rather than using the 
cell level data, which in-turn saves the cost of additional 
instrumentation. The specifications of HV battery pack 
installed in the considered vehicle under test (HEV) are 
provided in Table 1.
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Table 1: Specifications of HV Li-Ion Battery Pack

Operating Voltage 360 V
Number of Cells 96

Cell Network Configuration Series
Rated Capacity 4.2Ah

HV battery dynamic data has been created using Standard 
drive cycles Urban Dynamometer Driving Schedules 
(UDDS) and customized drive cycles at various operating 
conditions. The battery model parameter estimation problem 
is then considered as the problem of simultaneously 
estimating the parameters of all the coefficients formulated 
in the battery pack state space equations. The defined model 
structure parameters are optimized using Genetic Algorithm 
(GA) solver. 

The main advantages of the proposed approach are,

  i) The HV battery pack model can be developed with no 
additional instrumentation on the HV battery (which is 
expensive), except hall effect current sensor, 

 ii) Proposed methodology uses the sensor readings at battery 
pack level rather than accessing the individual cell data,

 iii) Standard and specially designed drive cycles are used to 
generate the required measurement data rather than specially 
design lab tests on the battery pack,

 iv) The use of constrained optimization formulation 
enables to use a-priori knowledge and experience during the 
parameter estimation, and 

v) The use of genetic algorithm almost ensures that the 
estimated parameters are global optima within the specified 
constraints.

The model has been implemented using MATLAB®/ 
Simulink®. The developed model is validated against various 
drive cycles data collected at various operating conditions of 
the vehicle and battery temperatures. 

2. PROPOSED MODELLING APPROACH

The proposed modelling approach was developed, in the view 
of the limitations and availability of the drive cycle data. Few 
of the limitations are given below: 

i) Fastest Sampling Time of the data available is 0.1 Seconds 
against expected sample time of 0.01 seconds,

ii) Unavailability of the test setup and access to the HV 
battery to obtain the SOC v/s Open Circuit Voltage (OCV) 
Curves,

iii) HV battery SOC is limited to around 30% to 80% of 
Maximum SOC by the Battery Control Module (BCM) of the 
HEV under test,

iv) High discharge current during the engine start condition.

The methodology adopted for data collection, description of 
the proposed algorithm and parameter estimation algorithm 
are explained in the following sections.

2.1 Data Collection

To capture the dynamics of the HV Li-ion battery, a variety 
of drive cycles has been created and the test data has been 
collected from the available HEV vehicle at various operating 
conditions. Typical operating conditions considered during 
the test data collection are

i) Various vehicle Start-up conditions (Hot Start/Cold Start)

ii) Various Vehicle Air-Conditioning (AC) operating 
conditions (AC ON/ AC OFF)

iii) Various ambient temperature conditions (-70C, 250C, 
350C, etc…) to cover the possible range of battery operating 
conditions.

2.2. Proposed Algorithm

HV battery equivalent electrical circuit (Hongwen et 
al., 2011, Jonathan et al., 2008, Min Chen. et al., 2006) 
considered in the proposed approach is shown in Figure 1. 
The equivalent electrical circuit is composed of open circuit 
voltage (OCV), series battery resistance (Rbatt) and two RC 
filters (RC1, RC2) as shown in Figure 1. 

From the equivalent circuit of HV battery pack, the terminal 
voltage is calculated using (1) given below:

                                                                                          (1)   
                                                                                          
                                        
                                                                                          

In the proposed approach, linear dynamics of the RC Filters 
are mathematically represented using discrete state space 
equations. Based on the simulations experience, it is observed 
that, at zero load conditions the OCV(k) alone is not able to 
provide desired terminal voltage. So in the proposed work 
an offset voltage function has been added to meet the desired 
terminal voltage at zero load conditions and Equation (1) is 
further modified as shown in (2).

                                                                                          (2)          

                                                                                          

OCV(k) and VZL(k) are calculated as a function of SOC and 
battery temperature at k-th instant. OCV(k) and VZL(k) are 
represented using (3). 

                                                                                              (3)

                                                                                                                     

Sequential steps to calculate each of the components given in 
(2) & (3) of the proposed model are provided in the approach 
below:                                                         
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Figure 1: Battery Equivalent Electrical Circuit

Begin
1. Inherit the SOC v/s Open Circuit Voltage (OCV) 

characteristic for the various battery temperatures 
from open literature.

2. Create the offset voltage at Zero Load conditions 
(VZL) v/s SOC 2D Look-Up-Table (LUT) for 
various battery temperatures using the drive cycle 
data.

3. Formulate the equivalent discrete state space 
equations for both the RC Filters.

4. Estimate the model parameters (Rbatt, State Space 
coefficients) using GA Optimization Techniques.

5. Validate the converged model using the data from 
the drive cycles other than that used for building the 
model.

End

As a matter of simplification and time saving measure 
the SOC v/s OCV characteristic curves for Li-Ion cell are 
inherited from the literature (R.C., Krein et al., 2008) and 
is assumed to be from real life battery under consideration. 
The OCV characteristic curves are available for constant 
ambient temperatures of 30C, 270C and 62.50C. As the data 
is available for constant ambient temperature conditions, we 
have taken an assumption that, while creating the OCV data 
the battery cell temperature and ambient temperature are 
maintained around the same value. The inherited SOC v/s 
OCV characteristic curves for HV battery pack are shown in 
Figure 2.

2.2.1 Creation of the Offset Voltage LUT

The offset voltage at Zero Load Conditions is calculated at 
zero battery current for selected battery temperatures and 
SOC.  The sequential steps of the approach for calculating 
VZL Look-Up-Table are given below:

Begin
1. From the test drive cycle data, create cluster of data 

sets, where battery current is zero. Data cluster 
contains the variable, batter temperature, battery SOC 
and battery voltage corresponding to zero battery 
current.

2. From the created data clusters, create sub-
clusters with the data samples of nearest battery 
temperature. Take the weighted average of the battery 
temperatures to create a LUT point. Sub-cluster 
contains respective battery SOC and battery voltage 
variables. 

3. For the selected sub-cluster temperature data, 
calculate the offset voltage values, which is the 

difference between actual battery voltage and the 
respective open circuit voltage across the available 
SOC data points.

4. The distributed SOC and the Offset Voltage are 
further smoothened and generalized using 2nd order 
polynomial curve fitting for the offset voltage 
values with respect to the battery SOC and battery 
temperature.

5. Repeat Step-3 and Step-4 for all the sub-clusters 
created in Step-2.

6. Create the SOC v/s VZL LUT points for the selected 
battery temperatures.

End.  
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Figure 2: SOC v/s OCV at various ambient temperatures- 3
0C, 270C and 62.50C
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Figure 3: SOC v/s Normalized Offset Voltage at Zero Load 
conditions (VZL) at selected constant battery temperatures -3
0C, 270C, and 62.50C
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The VZL 2D Look-up-Table (g(SOC, Battery Temperature)
) profile curves  for some of the selected battery temperatures 
(30C, 270C, 62.50C) are shown in Figure 3. The profile curves 
shown in Figure 3 are normalized profile data curves rather 
than the actual VZL data. The above curves are calculated 
using linear interpolation and extrapolation from the available 
battery temperature data which were little different from the 
values in Figure 2.

2.2.2 State Space representation of the Filters

In the proposed approach, linear dynamics of the RC filter 
states is represented using discrete state space equations 
(Jackey et al., 2007, Plett, G et al., 2004, RA Jackey. et al., 
2009, R.C., Krein. et al., 2008) as given below in (4):     

                                                                                                                      

                                                                                         (4)

The vector [α] has N number of filter “poles”, with | α | 
<1 for ensuring the stability (RA Jackey, et al., 2009), 
corresponding to time constants of the filter states. In this 
work, we have chosen two poles, i.e, N = 2. The vector [B] 
is the input weight matrix, [C] is output coefficients matrix 
and i(k) is the battery pack current at the k-th time instant and 
Ф(k) is the effective voltage due to RC filters.

2.3. Parameter Estimation

The battery pack model parameters estimation problem 
is posed mathematically as a constrained optimization 
(minimization) problem (Christopher, et al., 1995, S.S.Rao., 
1996). The objective function to be minimized is a function 
of the simulation error i.e. some function of error between 
model simulated output ŷ and the actual measured output y. 
The objective function selected in this work for minimization 
is Mean Square Error (MSE) between the actual and 
simulated output. Equation for MSE is mentioned below in 
(5).

                                                                                         (5) 

This constrained optimization problem can be represented as 
given in (6).

                                                                                              (6)

In (6), a set of the decision variables is actually a set of 
parameters to be estimated i.e. θ = {series battery resistance, 
filter coefficients, weight factors, output matrix coefficients}, 
whereas θlower and θupper are lower and upper constraints 
(bounds) on the parameters to be estimated. The constrained 

optimization formulation allows the user to exploit a-priori 
knowledge about the possible range of the model parameters. 

An algorithm for the parameter estimation is given below:

Inputs
1. Set of measured input-output data.
2. Constraints on the parameters: θlower, θupper

Outputs:
A set of estimated parameters θ.

Algorithm:
Begin

1. Select initial set of values for the parameters θ within 
the prescribed constraints.

2. Simulate the model output response using the input 
data set and the selected parameter set.

3. Compute the objective function using the error between 
the actual output response and the simulated model 
output.

4. If the minimum of the error function is not reached, go 
back to Step-1, otherwise, go to next step, i.e. Step-5.

5. Terminate the algorithm with the resulted parameter set 
where the minimum of the error function is obtained, 
along with the minimum value of the error function 
achieved. 

End

In the present work this constrained optimization problem 
is solved using GA (Christoper, et al., 2007, N.Chaiyaratna, 
et al., 1997, S.S.Rao 1996, Z.Zibo, et al., 1995), which is a 
most adopted and established optimization technique that is 
observed to reliably find the optimum solution.

The optimized series battery resistance (Rbatt) values show 
that they have smooth relationships with temperature. The 
optimized Rbatt values are further smoothened using 2nd 
order polynomial curve fitting. Variation of normalized Rbatt 
parameter values with respect to battery temperature is given 
in Figure 4.
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3. RESULTS AND DISCUSSIONS

As described in the previous sections, the developed model 
has been validated against various HEV test drive cycles 
data sets at various vehicle and battery temperature operating 
conditions. The performance of the HV battery pack model 
is assessed using Mean Square Error (MSE) and visual 
inspection. The validated data sets comprised of the standard 
drive cycles (UDDS, UDC, NEDC, etc...) and generic 
vehicle road trial data sets which are at difference operating 
conditions other than used for identification of the battery 
pack parameters.  The battery current and the corresponding 
battery temperature and SOC profiles of selected validation 
test drive cycle data sets (Testdataset-1 and UDC repeated 4 
times (UDC4)) considered in this paper are shown in Figure 5 
and Figure 6 . 

Figure 7 shows the comparison of actual battery voltage 
logged from the test vehicle and simulated battery pack 
model voltage for validation Testdataset-1. The Figure 8 
shows the exploded view of a section of Figure 7 for 500 
seconds data. The model output is closely matching with the 
actual battery voltage responses in both the charging and 
discharge cycle patterns and the dynamics shown are well 
captured by the model. The Figure 9 shows the comparison of 
actual battery voltage logged on the test HEV and simulated 
battery model voltage for the validation data set UDC4. The 
model responses shown are reasonably matching with the 
actual battery voltage responses. The MSE performance 
measures of Testdataset-1, UDC4 and standard drive cycles, 
UDDS and NEDC are shown in Table 2.
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Figure 5: Battery current profile of selected Validation 
Testdataset-1 with respect to corresponding battery 
temperature (Batt Temp) & % SOC

Table 2: MSE performance measure values of the selected 
test drive cycle data sets using proposed approach

Test Drive Cycle MSE
Testdataset-1 1.69

UDC4 Drive Cycle 1.05
UDDS Drive Cycle 1.60
NEDC Drive Cycle 1.65
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Figure 6: Battery current profile of selected UDC4 with 
respect to corresponding battery temperature (Batt Temp) 
& % SOC
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Figure 7: Comparison results of battery pack voltage of 
selected Testdataset-1 and simulated model output
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Figure 8: Exploded view of a section of Figure 7
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Figure 9: Comparison Results of battery pack voltage of 
selected UDC4 and simulated model output

4. CONCLUSION

The Li-ion battery pack of HEV can be modelled with 
reasonable accuracy using the proposed new approach. 
The developed model simulates the electrical dynamic 
characteristics across the operating conditions within the 
constraints of the limitations and assumptions mentioned 
in this paper. As described, HV battery pack model with 
accurate and satisfactory performance can be developed 
using dynamic drive cycle data, without any additional 
instrumentation on the HV battery. The HV battery model 

is validated using various vehicle drive cycle data (UDDS, 
UDC, NEDC) at various operating conditions (Hot, Cold 
drive cycles).The results obtained by the proposed approach 
are reasonably matching with actual HV battery responses 
measured from the HEV.
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