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Abstract: The paper presents a problem statement of guaranteed control of production output by use of a 
probabilistic criterion that requires presence of the product output within specified limits with a given 
probability. Within the problem statement, the existence of the controls is considered in the form of suffi-
cient mutual conditions which the initial problem characteristics are to meet to. Deriving the conditions is 
based on applying corresponding probabilistic inequalities enabling one to establish a connection between 
the limits for the production output, the amount of the mean square deviation of the production output, 
and the required probability of presence of the production output within the specified limits. The proba-
bilistic conditions obtained are also shown to be applicable within a distribution free input/output system 
identification problem statement with a probabilistic criterion. The paper has been supported by a grant 
of the Russian Foundation for Basic Researches (RFBR): project 12-08-01205-a. 
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1. PROBLEM STATEMENT 

Numerous of papers are devoted to modeling production out-
put control and, correspondingly, to modeling output produc-
tion, e.g. (Chen et al., 1998, Danziger, 2008, Elmaghraby, 
2011, Frohling at al., ( ), Rentz, 2009, Fuping and Min, 2005, 
Geist et al., (2008), Humphreys et al., 2001, Jahanshahloo 
and Khodabakhshi, 2003, Jun, 2004, Kraines and Yoshikuni, 
2004, Percoco, 2006, Proietti et al., 2007, Wiendahl and 
Springer, (1988), Zegordi and Nia, (2009), Zofo and Prieto, 
2007). Within the present paper, a probabilistic approach to 
such a problem is considered within the following problem 
statement. 

Let us consider a problem statement of guaranteed control of 
production output of a manufacturing process within which 
the output variable v is modeled by use of the conditional 
mathematical expectation 

   nuuhvy ,,, 10UZ  ZZUE . (1) 

In expression (1) U=(u1,…,un)
T represents a vector of control 

variables, Z=(z1, …, zm)T represents a vector of input con-
trolled variables, and E{./.} stands for the conditional the 
mathematical expectation. The essence of the approach pro-
posed is to apply a hypothesis concerned with the assumption 
that the probability distribution density of the product output 
v is to belong to a class CPr of admissible probability distri-
bution densities. Meanwhile, the make-up of the class CPr 
may be a priory arbitrary, but formally the class may involve 
all reasonable probability distribution densities known in the 
probability theory. Regarding the present problem statement 
members of the class CPr are considered as conditional prob-
ability distribution densities 

Nkyvpk ,,1),,,( 2
UZUZ   (2) 

(the number N is, of course, finite but not specifically lim-

ited). Parameters 2
UZUZ,y  of the densities are determined 

at the each stage (time interval of forming the control) by use 

of observation data. In densities (2) 2
UZ  is the conditional 

variance. 

The performance index of the production output control is 
expressed in the form of meeting the following condition of a 
probabilistic form 

  ,, *
*

* pv 











 P  (3) 

In inequality (3), p* stands for the desired probability value, 











 *
* ,   denotes the required production output interval 

within which the production output v is to be with a probabil-
ity being not less than preset probability value p*. Within the 
probabilistic problem statement, the probability distribution 
density of the output variable v belongs to the above intro-
duced class CPr of admissible probability distribution densi-
ties. 

For each one representative Nkyvpk ,,1),,,( 2
UZUZ   of 

the class CPr, the required domain of admissible controls 
meeting, finally, to probabilistic criterion (3) is determined as 
follows. For each member of the probability distribution den-
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sity class CPr considered, solution of the algebraic equation 
with respect to UZy  

.,,1,),,( *
2
UZUZ

*

*

Nkpdvyvpk 




  (4) 

is obtained (within assumptions, that 2
UZ  is constant). Any 

unimodal probability distribution density (both symmetric 
and non-symmetric ones) of the class CPr provides a pair of 
roots y1k < y2k, Nk ,,1  of equation (4). Each of these 
pairs of the roots forms corresponding interval [y1k, y2k], 

Nk ,,1  of admissible values of the conditional mathe-

matical expectation UZy . Inside each of the intervals, for the 

corresponding k-th member of the class CPr probabilistic cri-
terion (3) is met. 

Again, the intersection of these intervals is built,  

 .,
1

21
N

k
kk yyI



  (5) 

Mapping intersection (5) by use of regression (1) into the 
space of controls forms in this space a domain of guaranteed 
controls SGC. In other words, 












 min

2
max
1 , yyI . (6) 

In (6) 

 k
Nk

yy 2
,,1

max
1 max


 , (7) 

 k
Ni

yy 2
,,1

min
2 min


 . (8) 

Within such a problem statement, the guaranteed controls 
domain SGC existence is equivalent to the intersection I exist-
ence in formula (5). Meanwhile, intersection (5) (defined by 
(6)-(8)) may be empty. Indeed, let )( UZyk , Nk ,,1  be 

a set of functions in the variable UZy  for particular condition 

probability distribution densities ),,( 2
UZUZ yvpk  

Nk ,,1  under a fixed 2
UZ : 

.,,1,),,()(

*

*

2
UZUZUZ Nkdvyvpy kk  





  (9) 

Figure 1 displays plots of the functions )( UZyk  in formula 

(9), obtained for the Gaussian (the black line) and the log-
normal (the cyan line) probability distribution densities under 

the following data: 3
* 10 , 5.0*  , 01.02

UZ  . One 

can easily be seen that for, say, the probability level 
p*=0.980, the intersection of the corresponding (two) inter-
vals I in formula (5) exists (being non-empty). For the proba-

bility level p*=0.985, the same intersection I in formula (5) is 
not exist (empty) under non-emptiness of each of the two 
intervals [y1k, y2k], 2,1k , and a solution of the problem of 

the existence of guaranteed controls does not exist. For the 
probability level p*=0.990 one of two intervals [y1k, y2k], 

2,1k , is empty, while for the probability level p*=0.995 

both the intervals [y1k, y2k], 2,1k  are empty. 
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Figure 1: Towards the possible non-existence of the 
intersection I in formula (5) for the Gaussian (the black line) 
and log-normal (the cyan line) distributions calculated for 

3
* 10 , 5.0*  , 01.02

UZ  . 

Also, let in (5) the intersection I exist. As well as above, 
Figures 2 and 3 present plots of the functions )( UZyk , 

3,2,1k  calculated for the Gaussian (the black line), 

logistic (the blue dotted line), and Student (the cyan line) 

distributions for the following data: 10*  , 20*  . In 

these figures, 22
UZ   for Figure 2, and 52

UZ   for Figure 

3. Meanwhile, Figure 2b presents a refined scale 
representation of changing the density choice in the 
“neighborhood” of the level of 980.0* p . These figures 

evidently demonstrate that for a constant variance the choice 
of suitable probability distribution densities considerably 
depends on the required level of the probability p* in (3), and 
it is by no means universal or trivial. Here, as the admissible 
probability distribution densities, those ones are assumed 
which provide the maximal amount for the root y1k in 
accordance to expression (7) and the minimal amount of the 
root y2k in accordance to expression (8). 

All these and many others examples evidently demonstrates 
that the problem of investigation of conditions of existence of 
intersection (5) is vital and in the present paper it is solved by 
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applying corresponding probabilistic inequalities, e.g. (Lin 
and Bai, 2011). 

12 14 16 18
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

xd

 

– a – 

12.4 12.6 12.8 13
0.96

0.963

0.966

0.969

0.972

0.975

0.978

0.981

0.984

0.987

0.99

xd

 

– b – 

Figure 2: Forming intersection (5) for the Gaussian (the black 
line), logistic (the blue dotted line) and Student (the cyan 

line) distributions for 10*  , 20*  , 22
UZ  . 

12 14 16 18
0.9

0.908

0.916

0.924

0.932

0.94

0.948

0.956

0.964

0.972

0.98

xd

 

Figure 3: Forming intersection (5) for the Gaussian (the black 
line), logistic (the blue dotted line) and Student (the cyan 

line) distributions at 10*  , 20*  , 52
UZ  . 

2. SUFFICIENT CONDITIONS FOR GENERAL TYPE 
DENSITIES 

In the present Section, sufficient conditions that provides the 
existence of the intersection I in formula (5) for probability 
distribution densities of a general type are derived. Within the 
problem consideration, one may initially note that the length 
of the intervals [y1k, y2k] in formula (5) and, as a consequence, 
the existence of their intersection depend on values of two 
“parameters” of the general problem statement. In other 
words, these parameters are the desired probability p* and the 

variance 2
UZ . As the above examples evidently demon-

strate, increasing the probability p* and/or increasing the var-

iance 2
UZ  give rise to the non-existence of the intersection I 

in formula (5). Then, one may naturally assume that there 
should exist a certain relationship (dependence) between the 

values of amounts of p* and 2
UZ , meanwhile maintaining 

such a relationship at an appropriate level is to guarantee the 
existence of the intersection I in formula (5). 

First of all, let us consider a particular case when the class 
CPr of probability distribution densities is formed by all 
available symmetric unimodal ones. Within the case, apply-
ing the Tchebychev inequality by virtue of performance in-
dex (3) gives rise to the following relationship  
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  
.

2
1

2
*

*

2
UZ

*





 p  (10) 

Meanwhile, the present paper problem statement motivates to 
consider just achieving the equality formula (10) as the main 
subject of interest. Thus the value 

    *
2

*
*2

UZ 12 p   (11) 

defines the maximally admissible value of the variance that 
may guarantee the existence of the intervals [y1k, y2k] in for-
mula (5) for the desired probability p* and the desired mar-

gins of the interval 










 *
* , . For any variance 2

UZ
2
UZ   

(equality (11)) the existence of the intersection I in formula 
(5) is guaranteed. Meanwhile the existence is valid not for 
symmetric probability distribution densities only, but for non-
symmetric ones as well. Figure 4 displays a corresponding 
example involving the Gumbel distribution density (Johnson 

et al., 1995) ,expexp
1

)( 














 












vv

vp  where   

and   are the distribution parameters. 
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Figure 4: “Embedding” of the intervals [y1k, y2k] in formula 

(4) under decreasing the variance 2
UZ  for the Gumbel dis-

tribution (at 10*  , 20*  , 42
UZ  . (the cyan line), 

25.62
UZ   (the dotted blue line), 92

UZ   (the black line)). 

 

Above, general type probability distribution densities (not 
necessary unimodal ones) were considered. The consideration 
below is concerned with symmetric and non-symmetric 
unimodal probability distribution densities involved into the 

class CPr. For the present case, by virtue of the Tchebychev 
inequality the following inequality may be written  

 
  

.
,min

1
2*

*

2

*









v
p

E
 (12) 

The inequality is formally even more strict the one presented 
by formula (10)). In inequality (12), E(.) is the symbol of the 
the mathematical expectation, and   is an arbitrary point 

belonging to the interval 










 *
* , . In turn, in complete anal-

ogy to the reasoning presented above, one may affirm that 
reaching the marginal case (equality) in formula (12) is the 
basic subject of the investigation. Meanwhile, minimization 
of the function that is formed by the right-hand side of rela-
tionship (12) is just to help to reach the equality. In turn, the 

function   2*
*,min)(    properties and the rela-

tionship      ,22
UZ

2   vv EE  imply the following 

inequality 

 
    

.

2
,min

2

*
*

2
UZ

2*
*

2








 












vE
 (13) 

Meanwhile, the equality in non-strict inequality (13) is 
reached under the conditions 

  2*
*    and   vE , (14) 

and conditions (14) are necessary and sufficient ones. 

As a direct consequence from the presented considerations, 
the relationships 

   *
2

*
*2

UZ 1
4

1
p  , (15) 

determine the sufficient conditions to provide the existence of 
the intersection I in formula (5) for arbitrary unimodal proba-
bility distribution density as a member of the class CPr. (The 
sufficiency is guaranteed by condition (15), since meeting it 
ensures that all intervals [y1k, y2k] will involve the center of 

the interval 










 *
* , , the point   2*

*   ). 

Also, if condition (15) is met, the center point of the interval 











 *
* ,  always belongs each interval [y1k, y2k]. Thus, the 

condition of the unimodality may be disregarded. Meanwhile, 
it is natural that for a multimodal probability distribution 
density two roots of equation (4) are to be chose only, namely 

those ones being nearest to the point   2*
*   , one of 

which located to the left, and the second one, to the right of 
this point. 
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The example presented of the preceding Section (Figure 1) 
evidently demonstrates that a violation of condition (15) 

gives rise to the case, when the center the interval 










 *
* ,  

may not belong to all intervals [y1k, y2k] in formula (5). Under 
the data of this example, condition (15) implies the following 
(upper) bound for the variance: 

    0.0093441 *
2

*
*2

UZ 





  p  under p*=0.985, and 

    0.00031141 *
2

*
*2

UZ 





  p  under p*=0.995, 

what contradicts to the considered amount of the mean square 

deviation 01.02
UZ  . 

Thus, condition (15) derived by no means limits (even taking 
into account the unimodality condition) forming the class of 
probability distribution densities which may be involved in 
deriving the required intersection in formula (5) to form the 
domain of admissible guaranteed controls, since a numerical 
solution of equations (4) is not hard for any given specific 

probability distribution density Nkyvpk ,,1),,,( 2
UZUZ  . 

(One may be noted within this context that an analytical solu-
tion of equations (4) is of course not mandatory). 

3. SUFFICIENT CONDITIONS FOR UNIMODAL 
DISTRIBUTIONS  

Condition (15) obtained in the preceding Section is universal 
within the present problem statement, but its applicability to 
all (general) types of probability distribution densities (mul-
timodal ones) may be exhaustive, if the class CPr is restricted 
by involvement of unimodal densities only. For unimodal 
distributions, condition (15) may be specified using the above 
presented general approach under applying some generaliza-
tions relating to probabilistic inequalities (Lin and Bai, 2011). 
Specifically, one may apply the Gauss inequality (in its gen-
eralized form): 

 
20

9

4


  xP  0 . (16) 

In (16),  20
2 x  E , x0 represents any arbitrary real 

number, and   stands for a unimodally distributed (arbitrary) 

random value. Worthwhile to note that in the conventional 
Gauss inequality the real above number x0 is assumed to be 
the mode of the probability distribution of the random value 
 . Inequality (16) was in the fullness of time derived by So-

viet mathematicians D.F. Vysochanskij and Yu.I. Petunin and 
referred with their names. 

Again, similarly to expression (12),   is considered as an 

arbitrary point belonging to the interval 










 *
* , . Setting in 

inequality (16) 

 0, xv , and 

 
 

,
,min

2

*
*









vE
 

enables one to obtain directly from (16) the following ine-
quality 

 
  

.
,min9

4
1

2*
*

2

*









v
p

E
 (17) 

Meanwhile, analogously to the considerations of the preced-
ing Section, one may affirm that reaching the marginal case 
(equality) in formula (17) is the basic subject of the investiga-
tion. Namely, to reach the equality in non-strict inequality 
(17), since just this condition is the main point of interest, it 
is enough to minimize the function (in η) 

 
  

.
,min

)(
2*

*

2









vE
 (18) 

Again, following to the considerations of the preceding Sec-
tion, the minimum of function (in η) (18) is easily seen to be 

reached under the conditions   2*
*    and   .vE  

Meanwhile, these conditions are necessary and sufficient 
ones. 

As a direct consequence, relationship (17) and the above con-
siderations give rise to the following sufficient condition for 

the maximally admissible value of the variance 2
UZ  in the 

event of unimodal distributions: 

   *
2

*
*2

UZ 1
16

9
p  . (19) 

One again, appeal to the numerical conditions displayed in 
Figure 1 shows that in the event of mismatching condition 

(19), the center of the interval 










 *
* ,  will not mandatory 

be available in all intervals [y1k, y2k], Nk ,,1  in formula 
(5). Condition (19) implies the following upper bound for the 

variance: 0.0021012
UZ   under p*=0.985, and 

0.00072
UZ   under p*=0.995, what also contradicts to the 

considered amount 01.02
UZ  . 

4. SYSTEM IDENTIFICATION WITH A PROBABILISTIC 
CRITERION: APPLICATION OF THE RESULTS 

In the section, probabilistic conditions (15) and (19) are 
shown to be applicable within a distribution free input/output 
system identification problem statement with a probabilistic 
criterion. 

For a single output discrete time ( ,2,1t ) system process 

)(ty , given a model structure );(ˆ ty , the identification error 

);(ˆ)();(  tytyte   may be considered subject to the fol-

lowing  
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  *);( pte  P  t  for a certain required 0 . (20) 

Condition (20) is, thus, a probabilistic identification criterion 
with respect to   standing for the parameter vector subject to 
identification by virtue of observation of input and output 
processes of the system. Within the problem statement, all 
random processes are assumed to be stationary and joint sta-
tionary in the strict sense. Obviously, criterion (20) is com-
pletely equivalent to performance index (3) with  *  

and  * . Thus, conditions (15) or (19) may be directly 
applied to obtain the parameter vector   as one providing the 
corresponding value of the variance of the identification error 

 );( tevar  by use of observation of the input and output 

processes of the system subject to identification. Namely, 

   *
2 1);( pte  var  (for the hypothesis of general type 

probabilistic distribution of the identification error ;(te )) 

and      *
2 149);( pte  var  (for the hypothesis of a 

unimodal probabilistic distribution of the identification error 
;(te )). 

5. CONCLUSIONS 

Conditions (15) and (19) obtained provide, thus, a possibility 
of maximal restriction of selection of admissible probability 
distribution densities within a given class CPr. Specifically, 
one may select not more than two (in the case of applying 
non-symmetric distributions) or one (in the case of applying 
symmetric distributions only) admissible probability distribu-
tion densities of the production output and corresponding to 
these (this) representatives (representative) domain of admis-
sible guaranteed controls. Thus, the class CPr may be prelim-
inary selected as broad as required by use of, say, any proba-
bility distribution density from, for instance, the books of 
Johnson et al. (1994, 1995). 

Besides that, conditions (15) and (19) may evidently be re-
written in the forms, determining the appropriate maxi-

mal/minimal admissible values max
*p  and mind  of the prob-

ability p* and length *
*  d  of the interval 











 *
* ,  

correspondingly:  dp ,2
UZ1

max
*  ,  *

2
UZ2min , pd  . 

Meeting one of such a variable under given two resting ones 
provides also the sufficient condition of existence of intersec-
tion (5). 

Also, conditions (15) and (19) obtained are also shown to be 
applicable within a distribution free input/output system iden-
tification problem statement with a probabilistic criterion. 
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