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Abstract: A new solution to nonlinear systems identification of MISO Hammerstein and/or Wiener 
models is developed using tools from Evolutionary Computation based optimization. A hybrid genetic and 
swarming intelligence based Hierarchical Cultural Algorithm is used to adapt the structure of the bad less 
suited model and to estimate the parameters of its dynamics and nonlinearities representation. 
Performances of such solution, illustrated through a real life application show how this class of tools can 
be very helpful to solve complex nonlinear problems such as the ozone phenomenon identification. 

 

1. INTRODUCTION 

There has been concern of System Evolutionary 
Identification in several previous investigations. In 1992, 
Genetic Algorithms (GA) have been successfully applied to 
off and on-line parameters parametric and non-parametric 
identification approaches by Kristinson and Dumont [1], to 
nonlinear model structure selection for NARMAX models 
using mono objective by Fonseca et al in 1993 [2], to multi 
objective optimization strategy by Rodriguez-Vasquez et al 
in 1997 [3] and to rational nonlinear structure and parameters 
identification by Billings and Mao in 1998 [4]. Also, in 1998 
Genetic Programming (GP), a generic class for GAs, where 
genes and subsequently, genetic operations are generalized to 
any abstracted class objects others than alphanumerical types 
[5], were applied by Gray et al to nonlinear system structure 
and parameters identification,  and this by considering 
differential and integral equations as well as Simulink 
elementary blocks as genes [6]. Nevertheless, their robustness 
is not without draw back: their unclear distinction between 
genotypic and phenotypic properties which make difficult 
real life reproduction operations transposition and their high 
implementation and computation complexities, especially 
when dealing with high number of real parameters. 
Fortunately, a few years ago, an emerging class of 
evolutionary computation methods, namely Particle Swarm 
Optimizers (PSO), has been shown to be efficient to 
continuous optimization problems, and has been successfully 
applied in 2005 to the combined Hammerstein-Wiener 
nonlinear model parameters identification Naitali and Giri 
[7]. These methods involve social behaviour and cognitive 
knowledge of individuals namely particles within a swarm. 
Such a class of optimization tools was introduced in 1995 by 
Kennedy and Eberhart [8] as an alternative to GAs and where 
both computation and implementation complexities are 
strongly reduced.  

Here, the identification problem for systems that can be 
represented by a series of elementary nonlinear blocks such 

as Wiener and Hammerstein plants is considered. More 
specifically, a hybrid Evolutionary Identification Algorithm 
inspired from both biologic adaptation and social learning 
Meta heuristics is designed to simultaneously select the 
model type, to adapt its structure and to find consistent 
parameters estimates; and this in the cultural evolution 
computing model framework. In this approach, artificial 
microbiologic operations are resorted to select the model and 
to adapt its structure, while an artificial intelligence learning 
metaphor is used for behavioural parameters estimation. For 
lecture convenience, the content of this paper is organized as 
follows. In Section II, the considered system identification 
problem is defined. Section III, is devoted to the introduction 
to culture (or cultural) algorithms computing model, while 
section IV is dedicated to the proposed biosocial culture 
based optimization algorithm for block oriented Nonlinear 
Systems Identification and which constitutes the aim of the 
paper theoretical contributions; which algorithm is validated 
in section V through an ecological real life application and 
which is in occurrence, the ozone identification of the Basse 
Normandie region (France). Finally, some concluding 
remarks end the paper. 

2. THE CONSIDERED IDENTIFICATION PROBLEM 
AND THE PROPOSED APPROACH 

2.1. The Considered Plant 

As depicted in figure 1.a, we are considering nonlinear 
systems that can be modeled by a series of Hammerstein 
and/or Wiener nonlinear plants given in figure 1.b and 1.c, 
and which are considered here as elementary nonlinear 
subsystems namely blocks. 
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In such plant, by defining Θ as the concatenation of all blocks 
parameters (2), the Θ-parameterized system output y(t, Θ) 
can be defined as the noisy sum of all blocks output 
sequences, where each one is defined by equations (3) and 
(4), where Hi and Wi defined by (5-6) respectively denote the 
Hammerstein and Wiener nonlinear operators assumed to be 
real functions parameterized by a real vector θi concatenating 
the set of unknown block parameters to be identified.  

)())1(),(,(),( tttuty iiiiiii ηϕθθ +−= N  (3) 
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{vi(t)} and {yi(t)} being internal immeasurable real 
sequences. The sequence ηi(t) accounts for modeling errors 
and external zero-mean and bounded disturbances. 

2.2. The Identification Problem Statement 

Let Gi be the transfer function of the ith block dynamical part  
(7) where Ai(q-1)and Bi(q-1) respectively designate the 
denominator and the numerator real polynomials in the 
backward shift operator q-1of its dynamical part transfer 
function, expressed in the canonical form and where Di, nAi, 
and nBi respectively denote the pure delay and degrees of 
Ai(q-1) and Bi(q-1) respectively; and Let Fi(v) be the function 
approximating the nonlinear input or output static gains, and 
which is supposed to be di degree polynomial (8).  
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Then, Under the assumptions that for each block, 
(i){vi(t)} and {yi(t)} are bounded; (ii) ηi(t) zero-mean and 
bounded disturbances; (iii) Fi(v) is  continuous and not 
identically zero,  bounded for any real v and satisfy the zero 
equilibrium condition (Fi(0) =0); (iv) there is a known 
integer ni that  majors nAi, and nBi ; (v) Ai(q-1) and Bi(q-1) are 
co prime; (vi) all zeroes of qnAiAi(q-1) are strictly inside the 
complex plan unit circle, and (vii) the input multivariable 
sequence ({ui(t)})i=1,..,m is persistently exciting in the sense of 
the considered identification approach, The identification 
problem at hand can be stated as follows.  

Given a consistent measurement data set containing the 
inputs ({ui (t)}) i=1,..,m and output {y(t)} sequences,  

Find for each elementary nonlinear block NLi , the less 
complex plant structures (degrees), and parameters estimates 
θi corresponding to the coefficients of polynomials Ai, Bi and 
Fi that minimize the predicted output least mean square 
weighted error (8) in the time domain (LMSE). 
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2.3. The Proposed Evolutionary Identification Approach 

To solve this identification problem, here we propose a new 
evolutionary optimization algorithm for which the key idea 
was inspired from the following statement usually confirmed 
by observations made on living species such as bacterial, 
animal or human ones: To

 be competitive in doing something, in addition to (i) 
sufficient skill and ability, a subject must not only (ii) be 
structurally adapted to the desired task, but also (iii) 
adapted to the environment where this task should be 
performed. Similarly, in addition to a sufficient knowledge, 
search agent’s genotypic and phenotypic properties must be 
well adapted; and this by using socially motivated operators 
such as reproduction and learning. Morality, knowing that on 
one hand, genetic adaptation based algorithms are well suited 
to combinatorial optimization problems, and in the other hand 
that swarming intelligence based learning seems to be actually 
as one of most powerful evolutionary solution to continuous 
optimization problems, an hybridizing scheme based on a 
collaborative association, between Genetic adaptation and 
Particle Swarming intelligence computing models, seems to 

be a good solution to the problem at hand. It is for these 
reasons that here we propose a new evolutionary Computing 
model based identification algorithm for MISO block oriented 
Nonlinear Systems; and this in a Biosocial Culture based 
evolution framework. 

3. CULTURAL ALGORITHM: A BREIF OVERVIEW 

3.1. Algorithm Structure and Components 

A Cultural Algorithm (CuA) is a population based algorithm 
which has been introduced in the mid nineties by Robert G. 
Reynolds as a complement to evolutionary algorithms 
metaphor [9]. In such computing model, inspired from 
theoretical elements proposed in sociology and archaeology, 

u1 

um 

y1 
 NL1 

η1 

 NLm y

. 

. 

η 

+

ηm

. 

. 
ym 

y 

(a) 

ηi 

 Gi(q-1)  Fi 
yi(t) 

v(t) 

 
 Gi(q-1)  Fi 

v(t) ui(t) 

(b) 

(c) yi(t) 

ui(t) 

Figure 1 Miso nonlinear system Block sOriented 
Modelling: (a) the considered MISO Nonlinear plant 
and the retained elementary nonlinear block models (b) 
Hammerstein, and  (c) Wiener. 
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culture is seen as an inheritance process, through which 
genotypic (structural) and phenotypic (traits) properties as 
well as behavioural (skill) methods are exchanged between 
collaborative societies (or nations) and transmitted through 
generations. This cultural process occurs in two evolutionary 
spaces. At one hand, the population space where individuals 
are evolved at the micro evolutionary level by using socially 
motivated operations such as reproduction and learning, and 
on the other hand, the belief space where socially accepted 
individuals are evolved at the macro evolutionary level, and 
this by using macro evolutionary operations based on current 
and archived best experiences exchanging and recombining. 

 

These two spaces are linked together through two main 
relations: the Acceptance function which dictates some 
selection rules in the population space and the Influence one 
through which individuals in the population space are 
influenced by their neighbours accepted in the belief space. 
Which influence is conditioned by five knowledge sources 
stored in the belief space, namely the situational, normative, 
topological, historical and the domain ones and which will be 
briefly summarized here after. Topics related to system 
identification will be detailed in section 4. 

3.2. Knowledge Sources involved in cultural evolution 

The situational knowledge, This knowledge source or at 
least a part of it is implicitly used in all evolutionary 
computation algorithms. As indicated by its name, it is used to 
relatively situate individuals in the fitness (or objective) 
landscape. Basically, for mono objective optimization 
problems, it is constituted by a set containing a small 
proportion of the fittest individuals in the population space, 
for e.g. 20%. When a multi objective optimization problem is 
considered, this set turns out to be a set including the non 
dominated individuals in the sense of Pareto Dominance. This 
source of knowledge is mainly used to select individuals in 
the belief space to whom influence roles should be assigned. 
For genetic and swarming intelligence evolutionary processes, 
these roles correspond to genitors and learning guides 
respectively. 

The normative knowledge, This knowledge source is an 
intelligent version of boundary constraints used to delimit the 
search space in evolutionary computation based constrained 
optimization. But rather than being static, these boundaries are 
dynamically updated to delimit progressively promising zones 
within the search space. Among others, the search subspace 
delimited by these boundaries, namely the normative space, is 
used to spars individuals encoding unfeasible solution instead 
of uniformly randomizing them anywhere in the whole search 
space.   

The topological knowledge, In its general form, this 
knowledge source corresponds to the set of parameters and 
relations characterizing individuals in both population and 
belief spaces. It is used to situate individuals in the search 
space, and thus to allow the selection of the nearest or similar 
best actor for the considered evolutionary operations such as 
guides for learning or partner for matting. 

The historical knowledge, This source of knowledge is 
generally used to predict slowly time varying shifts in the 
objective landscape. It is usually extracted via statistical 
analysis of archived similar situations the algorithm was 
previously faced with. As one can suspect, such source may 
be very helpful when dealing with adaptive systems. 

The Domain Knowledge, This knowledge is constituted 
by all domain oriented rules sets ensuring normal operating 
conditions of the system under optimization. Nevertheless, for 
robustness reasons, this knowledge is generally not used in the 
scope of constrained optimization. 

4. BIOSOCIAL CULTURE BASED BLOCK-ORIENTED 
NONLINEAR SYSTEM IDENTIFICATION 

In constrained optimization, the choice of the decision 
variable and subsequently the definition of the search space 
play a major role in the convergence properties of the 
computing model based search algorithm. This choice must be 
well adapted to the nature of the model used for the system 
representation especially in System Evolutionary 
Identification due to the damping nature of dynamical 
processes.  Once this choice is made, and as it should be 
shown later, all design elements of the optimization algorithm 
implementation are subsequently developed. 

4.1. Search Space and decision Variable Definitions 

In block oriented nonlinear system identification, and with 
decreasing level of abstraction, a plant can be modelled by (i) 
a model type with unknown topology and unknown structure, 
(ii) a model type with   unknown topology but known 
structure, or (iii) a model Type, with known topology and 
structure. In the present study, since block types and 
structures dimensions are also to be identified, the 
construction of an appropriate alphabet to describe elementary 
components of the system becomes necessary. Depending on 
the complexity of the considered model, several alphabets can 
be considered. For system identification, the most likely ones 
are the transfer function and polygonal functions for linear 
time invariant systems and static nonlinearities respectively. 
Here, for some duality reasons, we adopt the Hammerstein 
and the Wiener nonlinear plants (figures 1.b and 1.c), as 
elementary nonlinear blocks and which can be both 
represented by two natural numbers designating the 
polynomial degree di and the dynamic order ni, and by the 
nonlinearity and dynamic polynomials coefficients. 
Nevertheless, this representation is not practice. It may lead to 
strongly irregular objective landscape and non compact search 
domain. To avoid this problem, here the search space is 
defined as the union set of subspaces that respectively 
contains the zeros, and the stable poles of the dynamics, and 

The Population space  
(micro evolution level)  

The Belief space  
(macro evolution level) 

Acceptance Influence 

Figure 2 Cultural Algorithm evolutionary Meta model 
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the roots of the static nonlinear function rather than the 
parameters of the canonical forms given in equations 7 and 8. 
Doing so, feasibility conditions such as stability and 
realization ones can be formulated as boundary constraints 
and subsequently be simply handled by standard boundary 
operators such as saturation or randomization commonly used 
in evolutionary optimization algorithms. In our point of view, 
this choice is the key idea which highly improves 
evolutionary Algorithms for automatic control problems. With 
this attention, polynomials Fi(v), Ai(q-1), and Bi(q-1) 
previously introduced in equations (7) and (8)  are rewritten in 
their roots forms as in (10), where σk(X), ρk(X) and γk (X) 
denote the functions that retrieve the kth real roots and 
imaginary and real parts of complex roots of the polynomial X 
respectively (X is any of Fi, Ai, and Bi ) and where nXRR and 
nXCR respectively stand for their numbers; the symbol )(•  is 
used to denote the considered polynomial variable. 
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With respect to this representation, the searched parameters 
vector Θ given in equation (2) corresponds to the 
concatenation of all nonzero real roots, and real and imaginary 
parts of nonzero complex roots of the polynomials Fi, Ai, and 
Bi’ of all blocks constituting the system under identification; 
while zero roots, when they exist, are merged in a unique 
entry in Θ and which corresponds to the product (fi1.bi1) of 
polynomials Fi and Bi first coefficients.  

Subsequently, and as encoded in equations (11-17), a decision 
variable which fully describe the considered model (fig1) is 
composed by three fields: (i) the Karytype, a short binary 
string encoding all block types constituting the plants, (ii) the 
Genotype, a long binary string encoding the concatenation of 
the structural properties of all blocks, and finally (iii) the 
Skill, a real vector or Array corresponding to the behavioural 
parameters (static and dynamic).  
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where iRRiCRPiRZiCZPiRPiCPP nnnnnn ,,,,,  respectively 
designate complex poles pairs, real poles, complex zeros 
pairs, real zeros, complex roots pairs and real roots numbers, 
which lead to the following search space definition (18). 
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4.2. Biosocial Culture Based System Identification  

In the considered optimization problem, the task of finding 
both structural and behavioral properties by using a unique 
evolutionary operator based algorithm is not without posing 
some uncontainable problems, due at one hand to the 
numerical heterogeneity of structural and behavioral 
parameters, and at the other hand, to their strong interactions. 
Here, in order to separate evolution processes of 
heterogeneous properties, an interesting feature then is to 
divide optimization efforts and complexity on several 
evolutionary operators, by customizing each one for a 
particular optimization task; and this in a culture framework. 

4.2.1. Evolutionary Operations For Biosocial Culture  

Knowing that at one hand genetic adaptation based 
optimization approaches are well suited for combinatorial 
search problems and at the other hand that swarming 
intelligence is well adapted for continuous ones, here we use 
three evolutionary computing model: (i) a genetic 
programming algorithm which is used to adapt karitypic 
properties of the plant, (ii) a genetic algorithm to adapt its 
structure and finally (iii) a Particle swarm optimizer for 
behavioral parameters learning; and this according to diversity 
guided culture strategy depicted in figure 3. 

 

4.2.2. Decision Variable Encoding and Implementation 

According to the considered evolutionary operators karitypic 
properties representing block types are encoded as logic states 
string in a single 8 bit word length. Block genotypic 
properties (numbers of real and complex roots of 
polynomials) are concatenated in a single 32 bit word length, 
which make possible to attempt degrees and orders up to 45, 
while real parameters are encoded as a real array of size 
m(2nMax+dMax+1)  in an object class namely Particle.  

 
Further more, to allow individuals learning from guides of 
different genotype, parameters or skill elements having the 
same sense must be located in the same entry, with this 
attention the roots of each polynomial are encoded in a 
formatted array (19) where all entries corresponding to non 
existing roots are filled with zero after each evolution (X is 
any of polynomials Ri, Pi and Zi). 
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Figure 3 Diversity-guided Biosocial Culture 

Skill learning rate 

Type and structure adaptation rate 100% 

Similarity 
between 
neighboring 
individuals 

100% 

degree order delay nRoots nZeros nPoles 
g31..g28 g27 ..g22 g21..g16 g15 ..g12 g11 .. g 6 g5 ..g0 

TABLE I. Genotypic properties binary encoding  
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subsequently, block types and structural (block dimensions) 
and behavioral (static and dynamical) parameters of the hole 
system, can be reorganized in a global decision variable as 
defined in table II and where the ki’s, si’s and ri’s respectively 
designate logic, integer and real numbers. 

 
Object classes developed for the implementation of this 
decision variable are given in table III. 

Here, Genetic adaption is implemented by the well known 
Uniform binary mutation and the uniform crossover. The 
mutation operator associated with genetic programming 
adaption corresponds to a block type swapping from 
Hammerstein to Wiener and vice-versa. The Swarming 
intelligence based learning operator is the stochastic 
movement developed by psychological and social back 
motion forces applied to each particle exactly as the one used 
in standard particle swarm optimization. 

4.2.3. The Considered Knowledge Sources 

It is worth noting that all the five sources of knowledge 
introduced above can be used to solve the considered system 
identification problem. Here we use only the three main 
sources of knowledge and which are, with decreasing 
importance, the situational, the topological and the normative 
knowledge. For robustness ends the domain knowledge is not 
used; and since the plant is supposed to be stationary, the 
historical knowledge is also not considered. 

The situational knowledge, In system identification, we are 
interested in finding an estimated model for which the 
predicted output match as well as possible the real (measured) 
one. This is generally achieved by minimizing the least mean 
weighted square error (9). In addition, since block structures 
are also to be adapted and the block type to be selected, 
optimization objectives turn to be a multiple one.  In this 
situation, a commonly used concept for comparison between 
decision variables is the Pareto dominance. In practice, due to 
binary explosion problem, the e-dominance concept is used 
instead. Subsequently, the situational knowledge is 
implemented here as an archive or a collection containing the 
non dominated set. 

The Normative Knowledge, The Normative knowledge is 
represented by a set of four real vectors indicating the lower 
and upper bounds of the considered search Space as well as 
the corresponding valued objectives. 

The Topologic Knowledge, To distinguish solutions, many 
similarity or dissimilarity metrics are to be introduced 
according to the nature of the considered models and their 
complexity. Two solutions to the considered optimization 
problem, or simply individuals are said to be similar in certain 
view point if and only if the corresponding distance is less 
than a critical value. Here dissimilarity metrics are introduced 
in the mean of genetic adaptation and swarming intelligence 
based learning i.e. they constitutes a base criteria for selecting 
partner for matting and guide for learning.  Subsequently, 
two classes of distances are to be considered for similarity 
evaluation, the Hamming (20-21), and the Euclidian (22) 
distances for structural (Kari types and genotypes), and 
behavioural (skill) properties and 
where )( xK , )( xG and )(xS denote functions that retrieve 
Karitypic, genotypic and skill properties of an individual x.  

.
( ) 


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Based on modelling approaches, the whole set of nonlinear 
models dedicated to represent nonlinear systems can be seen 
as a universe constituted by a collection of worlds where each 
one is corresponding to a given nonlinear system modeling 
approach. Among these worlds, here we are interesting in the 
one containing the set of block oriented nonlinear models 
based on Hammerstein and Wiener nonlinear plants.  

 
Based on similarity metrics indicated by karitypic, genotypic 
and skill distances (20-22), and as depicted in figure 4, one 
can organize the world of Hammerstein and Wiener Block 
oriented nonlinear models as a set of populations where each 
one is composed by models or equivalently individuals having 
similar Karitypes, and where each population is divided into 
subsets of individuals having similar structures and forming 
species, themselves organized as swarms containing 
individuals with similar skills. Such hierarchical organization 
which finally constitutes the topological knowledge is 
implemented as a dynamic clustering multi-nary tree (figure 
5). 

Blocks types 
(Karitype) 

Structural properties 
(Genotype) 

Behavioral properties 
(Skill) 

km-1 km-2 …k1 s32m-1 s32m-2 … s1 s0 rmx(2nMax+dMax)-1…r1r0 

 Logic  String Binary encoded integers Real Array 

TABLE II. Kari type, Genotype and skill encoding 

Figure 4 Ecological/Governmental Evolutionary 
computations Meta Model  

World 

Population Pi 

Specie Spj 

Swarm Swk 

Pop2 

Pop3 

Pop1 

Sp1 

Sp2 

Sw2 
Sw1 

Object Operations Property Class 
System Identification Decision  Agent 

Types Genetic Programming 
 based Adaptation  Kari type Kari type 

Structures Genetic Algorithm   
based Adaptation  

Genotype  
 Chromosome 

Parameters Swarming Intelligence  
Based  Learning Skill Particle  

TABLE III. Search Agents: Object Types and 
Related Operations  
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4.2.4. Algorithm Structure, Components and Statement 

Algorithm structure, To support the considered sources of 
knowledge, and especially the topological one, the proposed 
algorithm is implemented as a 4-level multi-nary tree.  

  

In such tree, each node is itself a cultural algorithm where 
population and belief spaces are dynamically managed 
according to karitypic, genotypic and skill clustering 
properties of all individuals. Collection object classes 
designed for the purpose of this study as well as their main 
operations and methods are given in table IV.  

 

 

Algorithm statement, In the initial state, all individual are 
grouped in the population space of the root algorithm, 
population spaces of child algorithms are then obtained by 
hierarchical clustering according respectively to block types, 
genotype and skill properties. Once clustering properties are 
evaluated, all individuals in the population and belief spaces 
are bio sociologically evolved. These operations are 
sequentially launched until the meeting of the considered 
optimization objective. 

4. APPLICATION TO OZONE IDENTIFICATION 

We seek a block oriented nonlinear modelling of the ozone 
process based only on inputs and output data measurements. 
The used data has been collected by AIRCOM at different 
measurement sites of the French city Caen. The input 
variables that showed the highest correlation with the output 
are [10]: NO2, NO, Temperature, Wind speed, Humidity, and 
Solar radiation. The used model is the one depicted in figure 
1. Only swarming intelligence based learning culture has been 
activated. Karitypic and genotypic properties were manually 
selected after some try runs. The model is a Wiener with one 
poles pair, one real zero, 7 complex root pairs and 7 real roots, 
which corresponds to a second order dynamic and a 21 degree 
polynomial nonlinearity, and the all initial niching radius for 
clustering were set to 0.135. The model obtained with 3000 
generation and only 64 agents turned out to be quite 
satisfactory, [11].  
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1. Refer to the root algorithm; 
2.  switch (clustering level){ 
 
3. case WORLD: Update feasibility and objectives of each 

 individual in the world, update knowledge sources,  
select an evolution Strategy and update its parameters; break; 

 
4. case POP: if (genetic computation is retained by the  

selected strategy) execute a genetic programming operation 
step and update .. , if necessary; break; 

 
5.  case SPECIE: if genetic evolution is retained by the  

selected strategy) execute a genetic algorithm operation step  
and update, if necessary; break; 

 
6. case SWARM: Swarming( nS);  break; 
} 
7. For each child algorithm, execute the sequences 2 to 7; 

Figure 6 Hierarchical Cultural Algorithm Statements 

TABLE IV  COLLECTIONS OBJECTS AND METHODS  
Collection Objects Class Operations 
nonlinear Models  Universe selection 
Block oriented nonlinear models World selection  
Group of models, within a world, with 
similar karitype 

Population karitype 
Adaptation  

Group of models, within a population, 
with  similar structures 

Specie structures 
Adaptation 

Group of models, within a Specie, with 
the same structure and similar  skills 

Swarm Skill 
learning  

Parent 
Right 

Last 
Child 

Left First 
Child 

Figure 5 hierarchical cultural Algorithm  
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