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Abstract: Industrial planning and scheduling decisions are often inter-dependent. For example, planning 

level capacity allocation decisions affect production scheduling. While independent decision rules fail to 

address the above mentioned inter-dependence, simultaneous consideration of all interactions leads to a 

very large problem, which is oftentimes computationally intractable. In this study, we demonstrate, in the 

context of a machine maintenance problem for a reentrant flow system, a middle-ground approach by 

recognizing paths of strong information flow and then systematically decomposing the problem to be able 

to obtain a computationally tractable problem yielding a near-optimal decision policy. In the process, we 

make combined use of rigorous probability theories, approximate dynamic programming and simulation 

based rules.   

  
 
 
 

1. INTRODUCTION 

Decision making in manufacturing takes place at multiple 

levels which differ in terms of time scales. High level 

planning decisions like capacity allocation, resource 

acquisition and maintenance, directly affect the lower level 

scheduling decisions like job release and inspection. 

Scheduling decisions also affect planning decisions by 

providing information on equipment health and capacity 

requirements. Therefore, the decisions at two levels are inter-

dependent. Furthermore, these decisions are to be taken in the 

presence of uncertainty from various operational and external 

sources and based on limited information. Despite the 

obvious inter-dependence among such decisions, they are 

mostly treated independent of one another, in the existing 

literature.  

 

One example of such complex manufacturing system is a 

semi-conductor wafer manufacturing fab where delays due to 

testing and shutdowns translate directly into huge loss in 

revenue. Besides the abovementioned features, wafer 

manufacturing comes with the added complexity of re-entrant 

flow lines, which accentuates the inter-dependence between 

machine maintenance and job release scheduling.  

 

General machine maintenance problems have been 

formulated and solved as Markov Decision Processes (MDP). 

In case of preventive maintenance, the states are not fully 

observable. This problem is discussed in (Smallwood and 

Sondik, 1973). Past researches in wafer-fabrication 

scheduling are mostly aimed at global job-shop scheduling. 

Gupta and Shivakumar (2006) provide a comprehensive 

overview of scheduling techniques in a semiconductor 

manufacturing process. Attempts have also been made to 

capture, specifically, the re-entrant flow structure of the 

problem. Shen and Leachman (2003) have proposed a 

stochastic dynamic programming model for scheduling new 

releases. They captured the re-entrant flow structure 

characteristic of wafer manufacturing by a stochastic linear 

quadratic (SLQ) model. To address the fact that, not every 

intermediate can be tested during manufacturing, many 

statistical control studies have been conducted for optimal 

sampling policies. One such work is by Nurani et al. (1994). 

They have suggested ways to develop an optimal sampling 

strategy for defect inspection in semi-conductor wafers using 

real-life data from different fabs. Their work gives useful 

insights into modeling of process drifts and defect-yield 

relationship. With the rich literature available on independent 

studies of these decisions, we adopt the objective of studying 

how these decisions affect one another. By means of a single 

machine problem with re-entrant flow, we analyze whether 

and by how much, combining the decisions would improve 

the overall performance. The rigorous application of formal 

methods such as stochastic dynamic programming soon turns 

intractable for practical size problems. This calls for a 

systematic decomposition of the combined problem.   

 

The article is organized as follows. Section 2 contains a 

detailed description of the system. Section 3 presents the 

mathematical formulation and the computational complexity 

of the resulting problem. In section 4, we address the issue of 

partial observability and introduce the formal representation 

of the same. Section 5 contains a description of various 

solution methods used and the discussion on results. In this 

section we consider some industrial policies, followed by a 

rigorous treatment of the problem and then introduce the 

decomposition scheme. The conclusions are summarized in 

section 6. 
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2.  PROBLEM DESCRIPTION 

2.1  System details 

A re-entrant flow shop is characterized by a job going 

through the same operation more than once. Thus, jobs at 

various stages of processing compete for the same resources. 

For the purpose of illustration, we use a hypothetical machine 

capable of depositing identical layers, one layer at a time (see 

Fig. 1).  It operates on a single wafer at a time. The product 

of interest is a wafer with 3 identical layers deposited. The 

wafers are fed one at a time. While one wafer is being 

operated on, the others are waiting at the entry point called 

‘queue’. The queue at any time can contain 3 types of 

intermediate/unprocessed jobs  

a0 = bare wafer or unprocessed job 

a1 = wafer with 1 layer  

a2 = wafer with 2 layers 

 

a1, a2

machine

a0

a3

test

scrap

a1, a2

machine

a0

a3

test

scrap
 

Fig. 1. Schematic representation of a single work-station 

facilitating re-entrant flow 

 

The cost of machine operation is substantial and hence, a2 is 

a more expensive intermediate than a1, which is more 

expensive than a0. We assume that there exists unlimited raw 

wafer supply and all final products are tested due to quality 

control reasons. We also assume that negligible time is 

needed to test intermediates and perform machine 

maintenance, for which some costs are incurred. 

 

2.2 Process drift 

 

The machine is prone to degradation in time and hence 

produces bad layers once in a while. The defect generation is 

random in nature and the machine in good working condition 

may also produce defects but at a much lower frequency as 

compared to when it is in a degraded state. In essence, the 

good machine state differs from bad ones in terms of rates of 

defect generation.  

 

In their statistical studies, Nurani et al. (1994) show that the 

number of defects per unit time fluctuates about a constant 

mean at the beginning and then keeps increasing with time. 

The different states of the machine health are not directly 

observable and the only information that rests with the 

operator is whether a defect has occurred or not. In this study, 

to model the time dependency of the defect rate, the machine 

performance is approximated with a Markov switching model 

containing 3 regimes of machine health as in Figure 2(a). The 

transition probabilities of the Markov Chain are as shown in 

Figure 2(b) and these switching probabilities are considered 

throughout this study. The 3 regimes differ in terms of their 

defect rate. Regime 1 is the best possible machine state with 

lowest defect rate, while regime 3 is the worst state. It is also 

the absorbing state, i.e., the system remains at regime 3 until 

a maintenance job is performed to bring it back to the best 

state.  

 

For the 3 layer product of our interest, we assume that a 

defect in any layer renders the entire product defective. No 

distinction is made between a defect in the 1
st
 layer and a 

defect in the 3
rd
 layer in this study. Since the cost of 

maintenance is high, defect generation is inevitable. 
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Fig. 2  (a) Underlying Markov Chain at the work-station;  

(b)-regime machine model with Markov switching 

 

Intuitively, it should be best to run expensive jobs (a2) when 

the machine is close to regime 1 (with a lower chance of 

making a defect). Cheaper intermediates (a0 and a1) should 

be processed when the defect rate is high. To keep defects 

from propagating, these cheaper intermediates must be tested 

and reworked/scrapped when found defective. Keeping this 

intuition in mind, we present the mathematical formulation of 

the problem in the following section. 

 

 

3. PROBLEM FORMULATION 

 

System State  

The system at any time is fully characterized by the following  

x = [n1 n2 d1 d2 regime] 

 

n1 - number of a1 in the queue  

n2 - number of a2 in the queue  

d1 - number of defective a1’s in the queue 

d2 - number of defective a2’s in the queue   

regime – integer representing the regime of machine health 

  

The state space would consist of all possible combinations of 

the above parameters. For instance, if the queue length is 

limited to 5 for n1 and 5 for n2, then n1 can have 6 possible 

values (0, 1, 2..,5). Similarly, n2 can have 6 possible values. 

For a particular value of n1 say 3, d1 can hold 4 possible 

values from 0,1,2,3. For the given queue lengths then, the 

number of possible combinations for [n1 n2 d1 d2] is 441. 

With 3 regimes for the machine, the size of state space is 

1323 (441 x 3). If there is a common queue with length 10, 

the size of the state space becomes 3003 states (1001 x 3). In 

all future analyses we have considered a combined queue 

length of 10 unless otherwise mentioned.  
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Action/ decisions   

u = [schedule  test  maintain] 

schedule - job scheduling decision (admit a0 ,a1 or a2) 

test – binary, test (1) the processed wafer or not (0)  

maintain – binary, run a maintenance job on the machine(1) 

or not (0) 

Assuming all final products are tested  

Size of action space = ((3 x 2)-1) x 2 = 10 

 

Uncertainty 

a). Machine regime switching - As shown in Figure 3, the 

machine can switch between regimes with certain 

probabilities in a non-deterministic manner. 

 

b). Defect generation - Defect generation is probabilistic and 

the defect probability is set by the regime in which the 

machine is operating.  

 

c). Error propagation- Since not all intermediates are tested, 

the queue can contain defective intermediates, designated as 

d1 and d2 in the state description. Probability that a defective 

intermediate is picked and operated upon is given by q: 

1

1

n

d
q =                 For a1 being operated 

2

2

n

d
q =                 For a2 being operated 

 

Objective 

A profit measure is maximized. In this study we look to 

maximize infinite horizon discounted profit/ reward: 

0 0
, 0 2

, ,
1

max ( )
mt T t a t a t

t

p pt oi m mt T Tt a a t
I I I I

t

C I C C I C I C Iγ
∞

=

− − − −∑                                                                               

(1) 

where, 

γ = discounting factor           (0.99)  

Cp = product price                 (1000)  

Cm = cost of maintenance     (10Cp) 
CT = cost of test                      (0.1Cp) 

Ca0 = cost of raw material     (0.1Cp) 

Co1 = cost of processing a0   (0.05Cp) 

Co2 = cost of processing a1   (0.1Cp)  

Co3 = cost of processing a2   (0.2Cp) 

 

The values indicated in the parenthesis are parameter values 

for all simulation purposes throughout this work unless 

otherwise mentioned. These values are reasonably chosen to 

represent the trade-offs between different cost heads in a 

typical manufacturing environment. Since the queue length is 

constrained, holding cost/ WIP cost is not considered. 

 

All I’s (Ipt, Imt, ITt, Ia0t) are binary and are equal to 1 when a 

non-defective product is produced, when a maintenance job is 

run, when a finished job is tested and when a0 is run at time t, 

respectively. Coi is the processing cost when ai is processed.  

Different values of Coi are considered for various policies to 

analyze the associated tradeoffs. Since scheduling, testing, 

and maintenance are part of the combined decision making, 

they should be chosen so that the overall profit is maximized.  

 

The abovementioned problem falls under the vast domain of 

Markov Decision Processes and can be solved as a 

discounted infinite horizon problem using value iteration 

proposed by Bellman (Bertsekas, 1995), for reasonable size 

problems. Problem size is mostly governed by the queue 

length. The Bellman equation is as shown below,  

'

( ) max{ ( , ) ( ' | , ) ( ')}
a A

s S

V s r s a p s s a V sγ
∈

∈

= + ∑                             (2)                                                                                                     

where, V(s) is the optimal value function for starting at state 

s, r(s,a) is the reward when action a is taken in state s and  

p(s’|s,a) is the transition probability from s to s’. For finite 

queue sizes, the optimal value function would give an 

optimal stationary policy for each state. However, the use of 

such a policy requires that the states be fully known to the 

decision- maker, which is not realistic. For this reason, we 

refer to the policy that results from solving (2) as Fully 

Observable Markov Decision Process (FOMDP) policy. The 

performance of the FOMDP policy for the queue length of 10 

derived via value iteration is reported in figure 3. However, 

the challenge arises from the fact that a part of the state is not 

exactly known to the decision-maker. This is discussed in the 

following section. 

 

 

 4. THE PARTIAL OBSERVABILITY 

 

As mentioned earlier the decision-maker does not see the 

regime that the machine is in, at any time other than when the 

machine is just serviced. Also, a part of the state is not known 

to the decision-maker since d1 and d2 are the undetected 

defects accumulated in the system. To sum up, the elements 

that are directly observed are n1, n2 and defect status of each 

tested product (1 if a defect occurred, 0 otherwise).  

 

Due to the mentioned partial observability, the FOMDP 

solution is not applicable. The lack of full observability in 

MDPs is handled rigorously by the formulation of Partially 

Observable Markov Decision Processes (POMDPs), which 

are briefly described in the following section.  

 

4.1 POMDP description 

 

A partially observable Markov decision process (POMDP) 

describes a stochastic control process with partially 

observable (hidden) states. Formally, it corresponds to a tuple 

(S, A, Θ, T, O, R, Π): 
 

• S – set of Markov states / state space 

• A – set of actions / action space 

• Θ – set of observations / observation space 

• T – p(s’|s,a)  transition probability  

    Probability of being in s’ at t+1, when action a is taken 

from state s at time t 

• O-  p(o|s’,a) observation probability 

    Probability of getting observation o at time t+1, when 

action a is taken at time t and state s’ is reached at time 

t+1 

• R – r(s,a) Reward when action a is taken in state s at time 

t   

• Π – p(s) Initial probability distribution at t=0  

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

942



     

Concept of Information state MDP 

The POMDP problem shown above can be represented as an 

equivalent information state MDP where the information 

state contains   

• a prior belief b0 on states S at time 0 

• a complete history of actions and observations starting 

from time 0 

Due to the Markov property, it turns out that a belief state 

b(s), i.e., the conditional probability of being in state s at time 

t, is a sufficient information state for our problem. The 

conditions for a sufficient information state can be found in 

(Hauskrecht, 2000). Therefore, the Bellman equation (2) of 

section 3.1 becomes  
 

( ) max{ ( , ) ( ) ( | , ) ( ) ( ')}
a A

s S o s S

V b r s a b s p o s a b s V b
θ

γ
∈

∈ ∈ ∈

= +∑ ∑∑        (3)                                                                          

 

Belief-states can be updated via the following recursive 

equation obtained by applying Baye’s rule:  
 

),|(

)(),|'(),'|(

)'('
abop

sbasspasop

sb Ss

∑
∈=                                       (4) 

 

The partial observability, thus converts the original problem 

into a continuous state Fully Observable MDP (FOMDP), 

where the state dimension is one less than the size of the 

original state space. The belief-states are continuous since 

they contain the probability values, which are continuous 

numbers between 0 and 1. In the following section we extend 

the problem formulation to accommodate the partial 

observability.  

 

4.2 Formulation 

 

The state space, action space, objective and the reward vector 

are the same as that in section 3.1 where the fully observable 

problem was introduced. The POMDP problem definition is 

continued below: 
 

• Observation space Θ  

[n1 n2 defect (if tested)]  

For n1 + n2 <=10 , and three values for defect (0,1,2)  

where,   0 - no defect occurred  

  1 - defect occurred 

  2 – no information 

and size of the observation space is 198 

 

• Observation probability matrix p(o|s,a) 

p(o|s,a) is a matrix that maps a state-action pair to the 

probabilities of various possible observation comes. For 

example,  for s = [1 0 1 0 1], possible observations are [1 0 

defect], [1 0 no_defect] and [1 0 no_test].  

 

• State transition probability matrix  p(s’|s,a) 

For a queue length of 10, p(s’|s,a) is a 3003 x 3003 matrix 

incorporating the 3 sources of uncertainty mentioned in 

section 3. There would be ten matrices corresponding to ten 

actions.  

 

 

 

• Stage- wise reward R(s,a)  

Includes product price, processing cost, raw material cost, 

inspection cost, maintenance cost and holding cost  

  

Computational complexity 

As seen above, the continuous state MDP for the problem 

described in section 3.1 would have a state dimension of 

3003 with 10 actions. A problem of this magnitude is 

difficult to solve using exact POMDP solution methods. 

Furthermore, the problem size would increase exponentially 

with increase in queue length and so will the complexity. 

Presented below are some intuition based practical policies 

which serve as a good starting point for the analysis of the 

above problem. 

 

5. SOLUTION METHODS 
 

5.1 Solution using intuition based heuristics 

 

5.1.1 Maintenance and inspection policies  

 

• Periodic maintenance and inspection   

The simplest industrial policy is to run machine maintenance 

every m runs and run a job inspection after every t 

jobs/machine runs, where m and t are parameters. This policy 

is completely oblivious to the information about machine 

health that the job inspection provides. Therefore a better 

policy based on the obtained information is as follows.    
 

• Information based maintenance and inspection  

Since the defect probabilities change with the machine 

regime, results of testing intermediates or finished products 

gives some information about the machine health. Therefore, 

at any time we can maintain conditional probability 

distribution over machine regimes and updating it using 

Baye’s rule, whenever a new observation is made. If the 

‘maintenance and inspection only’ problem is defined as 

below 

 

State s – integer, machine regime                                 

S= {1,2,3}                                                    

Action a – binary; maintain (1), do not maintain (0)                 

A= {0, 1} 

Observation – binary; defect (1) , no defect (0)                      

Θ ={0,1} 

then the probability distribution over the machine regimes 

(p(s)) is updated as below:  

 

















=

100

01.099.00

0025.00075.099.0

)0,|'( ssp
         
















=

001

001

001

)1,|'( ssp
 

 

[ ]5.01.005.0),'|( =asop  

 

( ') ( ) ( ' | , )
s S

p s p s p s s a if not inspected
∈

=∑  

Use equation 4 if inspected. 

  

Then, one candidate for information based maintenance and 

inspection policy can be stated as: 
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inspecttppmax if

maintainmppif

s _)(

_)1(

<

<  

 

The above emphasizes the fact that once the knowledge of 

machine regime falls below a certain limit (p_t), we should 

run an inspection and if the probability of being in the best 

regime goes below p_m, maintenance should be performed.  

 

5.1.2 Job release policies  

 

• Sequential feeding 

In order to avoid building up intermediates in the system and 

reaping early rewards, a greedy policy would be to have only 

one job in the system and process it until completion.  

 

• Information based job release scheduling 

Due to the difference in the values and processing costs of the 

intermediates, a better policy would recommend running a2 

when the machine is just serviced followed by a1 and a0. The 

policy is summarized below: 

 

0

1

2

a run                                                                              else

a runtptif

a runtptif

21

32

)1(

)1(

≤<

≤<
 

 

where t1, t2 and t3 are parameters. The queue length constraint 

is resolved by picking the next best option.  

 

We apply this heuristic policy to the following three cases 

having different defect probability values corresponding to 

the three machine regimes show in Table 1. 

 

Case Defect probabilities 

 

[p(1|1)  p(1|2) p(1|3)] 

1 [0.05 0.1 0.5] 

2 [0.05 0.25 0.75] 

3 [0.05 0.5 1] 
 

Table 1. Different cases pertaining to different defect 

probabilities in three machine regimes 

 

The performance of some of the above policies is shown in 

figure 3 and the best parameter values for the policies are 

reported in table 2. The profit values are an average over 200 

experiments using the optimal policy or policy corresponding 

to best parameter values. The computations were carried out 

in MATLAB (version R2007a) environment on a 3.00 GHz 

PC.      

 

As is seen from the results, different cost and model 

parameters lead to different trade-offs in view of the 

decisions in question. The most notable result is that the 

difference in processing costs has higher impact on overall 

performance than the defect probabilities (as seen in figure 

3(b)). The first series corresponds to the FOMDP solution. It 

is the theoretical upper bound, which cannot be achieved. The 

periodic policy generally performs very poorly stressing the 

need for using the information for decision-making. The 

improvement made by using the information increases with 

increasing difference in the defect probabilities of the 

machine regimes, i.e. from cases 1 through 3. This is because 

of the fact that the more different the regimes are the better 

the conditional probability estimates.  

 

The best parameter values generally show a trend toward 

increased service runs and inspection with increasing defect 

probabilities. This number reduces with increasing processing 

costs, which is intuitive since the profit margins are lower to 

make up for the maintenance and inspections costs. A few 

anomalies are attributed to the stochastic outliers. For most of 

the policies, a sequential feeding schedule is optimal.  
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Fig. 3(a) 
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Fig. 3(b) 

 

    (a)  Comparison of performances of different policies for 

three sets of processing costs as mentioned in table 1 and 

processing costs [Co1 Co2 Co3 ] = [0.01 0.05 0.1]Cp 

    (b) For processing costs [Co1 Co2 Co3 ] = [0.05 0.1 0.2]Cp 

  

5.2 Solution using a decomposition scheme 

 

Given the large computational complexity, we propose to 

decompose the problem by exploiting the basic problem 

structure. The machine maintenance decision is affected by 

testing, since the results of testing give information about 

machine regime, which is not directly observable. Also, 

testing and maintenance decisions directly affect job 

scheduling, while the reverse is not true. Job scheduling does 

not have a direct impact on machine maintenance in this 

particular problem setup. In addition, test decisions are only 

weakly dependent on the job being processed, the 

dependence coming from the need for picking out defective 

intermediates.  Therefore, we aim at optimizing the 

maintenance and test decisions independent of job scheduling 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

944



     

decision. The optimal policy thus obtained may then be used 

for good job release schedules and superimposing additional 

inspection.   

 

The POMDP sub-problem involving the maintenance and 

inspection decisions, which is formally presented in section 

5.1.1, is solved using value iteration in (Agrawal et al, 2007) . 

This sub-problem does not contain the re-entrant structure of 

the problem. Therefore, every non-defective layer reaps a 

reward, while in the overall problem a3 reaps a reward Cp if 

and only if all three layers are defect free. Therefore, we need 

the real value of one non-defective layer to solve the sub-

problem. It is obvious that the value will be less than 0.33Cp, 

since good layers are wasted on defective products. To be 

able to calculate the average value of a good layer, we use the 

information based policy and calculated the average value as 

below:  

)9(. pC
layersdefectivenonofnumbertotal

productsdefectivenonofnumbertotal
layergoodaofvalueavg

−

−
=

 

The average value for various cases was between 267.8 and 

294.7. The average value is taken to be 280 for the 

decomposition scheme. After obtaining a sub-optimal 

maintenance and test schedule independent of job scheduling, 

a heuristic rule can be employed for the job scheduling and 

additional inspection. As mentioned earlier in section 2.1, the 

expensive intermediates must be processed, when the 

machine is close to a good regime. Therefore, the information 

based job release schedule and inspection (section 5.1.2) is 

used. The results are reported in figure 3. The decomposition 

performs well in most scenarios. The performance gap 

increases with the increase in the value of information, i.e., 

the better quality of information.   

 

Case Periodic 

maintenance 

and inspection 

Information based 

maintenance and 

inspection 

 Service 

every 

m runs 

Inspect 

every 

n runs 

Service 

if p(1) 

< p_m 

Inspect if 

max(p)<p_t 

[Co1 Co2 Co3 ] = [0.01 0.05 0.1]*Cp 

1 1050 300 0.2 0.4 

2 600 1050 0.5 0.5 

3 500 400 0.7 0.6 

[Co1 Co2 Co3 ] = [0.05 0.1 0.2]*Cp 

1 250 200 0.5 0.6 

2 500 800 0.3 0.5 

3 1000 250 0.5 0.9 
 

Table 2. Best parameter values for the heuristics 

 

5.3 Rigorous Solution of the POMDP for the Coupled 

Problem usingPERSEUS 

 

PERSEUS (Spaan & Vlassis, 2005) is a randomized point 

based value iteration algorithm, which falls under the 

umbrella of point based methods for solving POMDPs. The 

key concept is that the value function for discounted infinite 

horizon POMDPs can be approximated well with a piecewise 

linear and convex function (Sondik ,1978). The details are 

omitted due to the space limitation.  

 

We applied PERSEUS to the fully coupled inspection / 

maintenance / scheduling problem.  The performance of 

PERSEUS using sample belief sizes |B| of 2500 belief points 

and 10,000 belief points are shown in figure 4. The problem 

was solved for cases 2 and 3 in plot 3(b). The results show 

that the decomposition scheme compares well with the results 

obtained using the rigorous method. It must be noted that 

improvement can be made in PERSEUS using bigger |B| and 

smaller convergence tolerances. The results reported in figure 

4 are those obtained for reasonable computational expense.    
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Fig. 4.  Comparison with performance using PERSEUS 
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