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Abstract: An intelligent service robot helps human users with providing various services such
as bringing a newspaper, recommending TV programs, and preparing meals. Each service can be
accomplished by coordinating various motion actuations that are activated based on sensory data.
Due to the limitation of robot computing-resources such as CPU usage and memory, the software
components that implement such motion actuations can not be loaded and executed at the same time
as the complexity of the service increases. That is, those components may compete with each other
for the limited computing-resources, and this may result an unexpected behavior of the robot. In this
paper, we propose a software architecture-based approach for self-adaptive function that optimizes
the use of computing resources by supporting dynamic re-deployment of software components.
Organizations of motion actuations for providing services are modeled by software architecture that
describes required components and their configurations. In our approach, when a resource problem
is detected, components are re-deployed across single-board computers (SBCs) in the robot while
maintaining the functional and quality requirements of the components and configuration among
them represented in the software architecture. We designed the self-adaptive software framework
and implemented a prototype of it. We also had an experiment of our approach on an infotainment
robot, and successfully proved the effectiveness of the architecture-based self-adaptive function.
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1. INTRODUCTION

Robots are incrementally replacing humans’ jobs in differ-
ent areas, for example, industrial robots in assembly lines,
UAV(Unmanned Air Vehicles)/UGV(Unmanned Ground
Vehicles) in military, and vacuum cleaner robots in houses.
But these robots are only dedicated one specific service not
like general purpose desktop PCs, e.g. an industrial robot as-
semblies only one component repeatedly for its whole life-
cycle, an UAV is designed only for scouting, and a vacuum
cleaner robot cannot help other chores. People, however,
expect robots can assist soon our everyday life as a servant,
for example, dishwashing, laundry, cooking, and sweeping.
In addition, they expect the robots will enrich our life by
playing or chatting with them. In other words, people want
‘Home Service Robots’.

CIR(Center for Intelligent Robots) in KIST(Korea Insti-
tute of Science and Technology) is developing home ser-
vice robots for elderly people. The goal of CIR is to pro-
vide home service robots which can support chores to help
handicapped elderly people and entertain them to prevent
Alzheimer’s disease. CIR’s robot systems include diverse
software functions that realize services, for example, a laser
range funder based navigator and a face recognizer to sup-
port a human following service. CIR expects that the com-
mercial version of home service robots can be released by
2015.

* This research was performed for the Intelligent Robotics Development
Program, one of the 21st Century Frontier R&D Programs funded by the
Ministry of Commerce, Industry and Energy of Korea.

5297

Unfortunately, home service robots are still on a basic stage
which is unstable to provide above useful services because
of two major problems: maturity and cost. Yet home ser-
vice robots cannot provide stable services like typical word
processors. For example, it is hard to guarantee for a robot
to recognize a cup correctly every time, and to classify a
refrigerator and and air conditioner by vision because of
their similar shapes. However, This problem is not a soft-
ware engineering issue and should be solved by improving
each technologies.

Another problem is cost to build a robot. CIR’s home service
robot is still expensive to be a home appliance ! . Sensors
and actuators are mandatory facilities in a robot, threrfore,
CIR tried to reduce computing devices. But reducing cost on
computing devices inevitably leads to reducing computing
power. To realize above useful services within low cost and
low computing power, CIR needs to exploit computing
power of a robot efficiently. We investigated how a robot
uses computing power and proposed how the robot can use
limited computing power effectively and efficiently.

This paper is organized as follows. Section 2 describes
background knowledge to understand our robot software
system and software architecture-based adaptation. Section
3 explains how to formulate dynamic software architecture
management in robot software systems at run-time. In Sec-
tion 4 we propose an approach to dynamic software archi-
tecture management in our robot software systems by using

1 T-Rot which is a robot being developed by CIR has full facilities such
as laser range finders and arm manipulators and other necessary divices.
T-Rot costs over $200,000
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software architecture-based adaptation at run-time. Section
5 presents the conclusions.

2. BACKGROUND

For more than three years, CIR is developing “T-Rot(Kim
et al. [2006b])’ which is a home service robot to support
chores and to help elderly people. T-Rot can provide lots
of services like a servant, for example, preparing a lunch,
following a person, and delivering an object. Services also
include care and entertainment services such as checking
blood pressure, playing a game and chatting with a person
to take care of physical and mental status of elderly people.
Each service requires a collection of software functions.
For example, to serve a cup of beverage, it needs a speech
recognizer(to recognize a command from a user), a dialog
processor(to find out what kind of beverage the user wants),
a text-to-speech module(to speak), a navigator(to move to
a kitchen or to the user), and an arm manipulator(to grasp
a cup). This indicates a robot must execute a set of soft-
ware functions simultaneously and inevitably suffer from
resource contention.

Until developing a prototype of T-Rot, CIR assumed that T-
Rot starts and executes all software functions at run-time at
simultaneously because they thought three or four SBCs are
enough. However, CIR has developed over twelve software
functions(still increasing) in the last stage of prototyping
and has soon realized that it is nearly impossible to execute
all software functions simultaneously because of limited
resources in the robot and increasing numbers of software
functions. Moreover, CIR will reduce the number of SBCs
due to high cost of the robot.

Another problem is that every software function is designed
and implemented to be executed in one specific SBC. Most
groups of developers thought it is more efficient that the
location of a software function they are developing because
their software function can exploit robot computing re-
sources independently without interference at development
time and does not cause communication overhead between
SBCs. But this may cause inflexibility and starvation when
a set of software functions which were designed to be ex-
ecuted in one specific and fixed SBC is executed simul-
taneously. In this situation, the software functions cannot
exploit enough resources(e.g. CPU usage, memory and net-
work bandwidth) due to competition, even other SBCs have
enough resources. Consequently, this fact leads to malfunc-
tion of their functionalities. For example, when a collection
of software functions including a laser range finder based
navigator is executed in one SBC simultaneously in T-Rot,
we have seen the navigator cannot move the robot suc-
cessfully because the navigator cannot exploit enough CPU
usage from the SBC.

Moreover, every software function cannot be divided into
detail and smaller modules. This problem leads to inefficient
robot resource usage. We, for instance, have experienced
the following situation: when a set of software functions
consume 70% of CPU usage of SBC-A and another set of
software functions consume 80% of CPU usage of SBC-B, a
new software function that may consume 50% of CPU usage
cannot be executed even though 50% of free CPU usage is
available.

If every software function can be executed in any SBC
and divided into smaller modules, a robot can exploit its
computing resources more efficiently. But It is not applica-
ble to examine and record all possible combinations of the
locations(SBCs) of software functions to solve this problem
because there are a number of combinations and the number
of software function is increasing rapidly.

One possible solution to the above problems is dynamic
software architecture-based adaptation(Oreizy et al. [1999]).
This approach enables software to change its structure and
behavior based on its architecture. A software architec-
ture(Shaw and Garlan [1996]) consists of a set of com-
ponents which is computing units and a set of connectors
which enables communication between components. Also a
software architecture defines organization of those compo-
nents and connectors so that software can execute its behav-
ior. We have adopted dynamic software architecture-based
adaptation to refine software function into components and
to manage(i.e. to deploy) those components efficiently and
dynamically on SBCs in a robot.

The rest of this section explains structure of CIR’s robot
software systems that defines scope of dynamic software
architecture management, and illustrates more details on dy-
namic software architecture-based adaptation. Based on this
section, section 3 formulates dynamic software architecture
management in home service robot software and section
4 proposes how to realize dynamic software architecture
management by using dynamic software architecture-based
adaptation.

2.1 Software Architecture-based Adaptation

Software architecture-based adaptation(Oreizy et al. [1999])
is an approach to dynamic software evolution at run-time.
This approach basically assumes that the software system
which is the target of adaptation must be designed by well-
defined software architecture(Shaw and Garlan [1996]).
Software architecture consists of components which execute
software functionalities and connectors which connect com-
ponents. A component has executable code which carries
out a specific functionalities. A connector links two or more
components and relays messages between components. A
software architecture organizes structure of software func-
tions which defines connections between components and
connectors.

Many researchers proposed software architecture-based adap-
tation approaches. Garlan proposed the Rainbow frame-
work(Garlan et al. [2004]) that reconfigures the architec-
ture of networked systems based on a modified version of
Acme language(Garlan et al. [2000]) which can describe
software architectures. Taylor proposed the C2-architecture
style based(Taylor et al. [1996]) dynamic adaptation ap-
proach(Oreizy et al. [1998]) which can reconfigure ar-
chitectures of desktop applications designed by the C2-
architecture style. In addition to above two approaches, a
couple of approaches(Hillman and Warren [2004], Hall-
steinsen et al. [2004]) was examined. All the approaches
provide how to organize(model) software architecture and
how to implement components and connectors to be recon-
figured dynamically.

5298



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Based on the examination, the process for CIR’s robot soft-
ware system development which enables dynamic adap-
tation at run-time was designed. Briefly two activities
are needed; 1) architecture modeling(Kim et al. [2006b])
and 2) components and connectors implementation(Kim
and Park [2006]). Software architectures of software func-
tions of the robot software system were modeled by the
COMET(Concurrent Object Modeling and architectural de-
sign mEThod) method already(Gomma [2000]). The previ-
ously examined approaches to dynamic adaptation proposed
implementation methods and guidelines for each domain but
not for robot software systems. Hence we have proposed
the SHAGE framework(Kim et al. [2006a], Kim and Park
[2006]) and this research adopts its implementation guide-
lines.

3. PROBLEM FORMULATION

As explained in section 2, the robot software system needs
dynamic software architecture management to handle re-
source contention. Before explaining the proposed approach
we need to define software architecture-based adaptation
in the robot software system which has limited resources.
Hence we will introduce sub-architectures, components, and
their relationship to help understanding.

As explained before, to support a service, T-Rot has a set
of software functions such as navigation, object recogni-
tion, automatic speech recognition, and etc. In CIR’s robot
software system, each software function is designed as a
sub-architecture that carries out an independent function-
ality. A sub-architecture defines how the functionality of
sub-architecture interacts with a task that the deliberative
layer plans and how the functionality is implemented by
a set of components(i.e. composition of components). A
component has executable code fragments to implement the
(partial) functionality the sub-architecture provides and has
interfaces to communicate with other components. A task
needs more than one sub-architecture and a sub-architecture
needs more than one component.

The problem is that every component consumes robot re-
sources such as CPU usage, memory, sensors, actuators and
network bandwidth. This fact incurs each sub-architecture
occupies a amount of robot resources and consequently each
task needs a large portion of robot resources, sometimes,
even more than entire robot resources. If a task is executed
without dynamic software architecture management, it may
cause malfunction as explained in section 2. To handle this
problem, two perspectives of dynamic software architecture
management must be considered; temporal and spatial ar-
chitecture management. Temporal architecture management
deals with architectural evolution as a task proceeds. This
management is related to prefetch. Spatial architecture man-
agement deals with architecture deployment at a specific
moment. This paper only deals with spatial architecture
management and leaves temporal architecture management
as future work.

Spatial architecture management can be modeled by the 0-1
multidimensional, multiple knapsack problem. For example,
at some moment, a task needs a set of sub-architectures
when a user requests a service. Each sub-architecture re-
quires a collection of components and these will consume

Arch;

Fig. 1. Examples of sub-architectures in a robot

robot resources. In CIR’s current robot systems, one specific
sub-architecture is executed in one SBC(e.g. object recog-
nizer is executed in the vision SBC in which cameras are in-
stalled) but the task may require too many sub-architectures
in one SBC and it may lead to over consumption of comput-
ing resources of the SBC. At this moment the robot needs
efficient deployment of sub-architectures. Consequently, it
indicates efficient deployment of components.

Let N be the number of SBCs(i.e. multiple knapsacks) and n
be the number of components. Let C = {Cy,Cs, -+ ,Cp}
be a component set that will be deployed in a set of
SBCs SBC = {SBC4,SBC5,--- ,SBCy} at a moment.
CPUspc, and Memgpc, are computing resources(i.e.
multidimensional knapsacks), which the component set will
use, for each SBC; where i = 1,2,--- ,N. CPU¢; and
Memg, are computing resources that each component C;
consumes where j = 1,2, ---  n. A sub-architecture Archy,
is comprised of a subset of C' as depicted in figure 1 where
k = 1,2,3,---. Each sub-architecture defines connection
between components in the sub-architecture. The following
matrix depicts connection information(connectors) of sub-
architecture Archs in figure 1:

(Cs — C7) (C7 —C3g) (Cg —Cy)
Overhead 1 .5 2.5

Each element in the above matrix indicates communication
overhead of each connection. For example, zero means there
is no connection between two components and a real num-
bered element larger than zero means there is a connection.
Each real numbered element indicates an amount of relative
communication overhead in a robot software system. These
real numbered values are transformed by using system-
dependant values, for example, ‘MB/s’.

The goal is to deploy the component set C' into the SBC set
S BC under the constraint which minimizes the distribution
of residue resources of SBCs as shown in figure 2. This
goal is needed to absorb resource overconsumption when
some components overuse resources due to some particular
reasons(errors or unpredicted situations). Assuming x; ; has
1 if a component C; is deployed in a SBC SBC; and
otherwise 0, the goal can be formulated as follows:

n n

minimize F = wq Z Z(Q —Cj) +wV(SBC)
i=1 j=1

where 0 < wy,ws < land 0 < wy 4wy <1
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subject to

n
ZCPUCJ-”?M < CPUgpg, foreveryi =1,2,-+- ,n
j=1
ZMeijzm' < Memgpc, foreveryi =1,2,--- . n
j=1

2

F' in the equation (1) is the object function of this prob-
lem, V(SBC) is the distribution of residue resources of
SBCs, and wq, wo are weight values of the sum of commu-
nication overhead and the distribution for each. (C; — C})
is the communication overhead value between C; and Cj.
If we can find an matrix of z; ; which minimizes I’ and
satisfies constraints in equation (2), every component can
be deployed into SBCs using computing resources in the
robot efficiently. The next section describes the proposed
approach to obtain an possible matrix of x; ;.

4. APPROACH

This section explains processes to realize the formulated
problem in section 3. It needs following steps:

(1) Analyzing and modeling sub-architectures,

(2) Designing and implementing components in
sub-architectures,

(3) Evaluating resources that each component uses, and

(4) Deploying components into SBCs.

The rest of this section provides brief processes to achieve
the above steps.

4.1 Sub-architecture Analysis and Modeling

The COMET methodology(Gomma [2000]) is adopted
to construct sub-architectures of software functions in
CIR’s robot software systems. We have already applied the
methodology to a navigator as a pilot(Kim et al. [2006b]).
In this methodology, each software function is analyzed by
various perspectives such as static and dynamic views and
modeled by UML(the Unified Modeling Language)(Booch
et al. [2005]).

4.2 Component Design and Implementation

After analyzing and modeling sub-architectures, compo-
nents that constitute sub-architectures are implemented.
These components should follow specific implementation
guidelines proposed by our previous work(Kim and Park
[2006]). By these guidelines, those components can be de-
ployed dynamically at run-time. For example, if Cs and C
are deployed in the same SBC(e.g. SBC,), the SHAGE
Framework(Kim et al. [2006a]) automatically connects two
component by a connector which uses direct invocation.
When C3 moves to S BCs, the framework automatically re-
connect two components by a connector which uses remote
invocation(e.g. RMI). This dynamic adaptation can be done
by implementation guidelines that the framework provides.

4.3 Resource Usage Estimation

To support spatial architecture management at run-time, sta-
tistical resource usage information of every component must
be estimated. Although the best way to estimate resource
usage is on-line estimation that evaluates resource usage
of components at run-time after deployment, but this way
needs a lot of computation power. One alternative way is
off-line estimation that evaluates resource usage at run-time
before deployment for each sub-architecture. Even though
this way cannot estimate real execution of sub-architectures,
it can estimate meaningful data without overhead after de-
ployment time. In off-line estimation, each sub-architecture
is executed independently in a robot system and resource
usage of each component is estimated. These estimation data
of components will be used in component deployment step.

4.4 Component Deployment

When the task manager in the deliberative layer requests a
sequence of actions to the sequencing layer, the SHAGE
framework searches a set of appropriate sub-architectures.
Every component in the set of sub-architectures must be
deployed in SBCs to be executed. Also the deployment
should not violate resource constraints in each SBC. As
explained in section 3 this deployment problem is a 0-1 mul-
tidimensional, multiple knapsack problem. Unfortunately,
finding an optimal solution of a knapsack problem is NP-
complete(Pisinger [1999]). Hence we proposed an greedy
algorithm to solve the problem as follows:

(1) Compute weighted sums of CPU and memory usage
estimation values of every component,

(2) Deploy a component from the component which con-
sumes most resources,

(3) Select a SBC to minimize the object function F', and

(4) Repeat 2)~ 3) until all components are deployed.

For example, let a component set C' has three components,
C1, Cy, Cs(their resource usage is shown in table 1) and
assume that there are two SBCs which can execute those
components. Suppose that weight values in the object func-
tion F' are w; = 5 and wy = 1. The architecture for those
components defines connections (Cy — Cs), (C1 — C3), and
(Cy — C3) and their connection overhead data are (C; —
Cy) = 1.5, (C1 — C3) = 1, and (Cy — C3) = 2. Assume
that the weight of CPU usage is equal to 1 and the weight of
memory usage is equal to 3. Then, calculate overall resource
usage of each component is C; = 35,Cs = 70,C5 = 27.
After calculating resource usage of components, select the
component that consumes the largest resources, in this case
Cs. When deploying just one component, the value of object
function F' is same wherever the component is deployed.
Assume (' is deployed in S BC;. Select Cy as a component
to be deployed in the next step. If C is deployed in SBCY,
F = 60, and if in SBCs, F = 27.5. Hence (1 is deployed
in SBC5. In this manner Cj is deployed in SBC}.

Although the above greedy algorithm cannot guarantee to
generate an optimal solution, but it can produce an reason-
able solution in linear time. The next section gives a case
study that applies the above approach to a simple situation.
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Fig. 2. An Example of component deployment

Table 1. Resource usage of components in sec-

tion 4.4
C1 | C2 | C3
CPU 20 | 40 15
Memory 5 10 4

5. CONCLUSIONS

In this paper we have described an approach to dynamic
software architecture-based adaptation in robot software
systems. Based on the given three layer robot architec-
ture and software functions, this approach determines the
location of software units(components) and deploys them
into SBCs dynamically. To realize the approach, we have
defined our robot software system, sub-architectures, and
componenets. Then, we have formulated the deployment
problem to a 0-1 multidimensional, multiple knapsack prob-
lem. The proposed approach has four steps; sub-architecture
analysis and modeling, component design and implementa-
tion, resource usage estimation, and component deployment.

This work suggests a number of important future directions.
First is the lack of sub-architectures and components. Ev-
ery participating researcher(or team) in CIR has enough
technologies to implement the software function which they
are responsible for and has own implementation. But most
of implementations don’t have well-designed architectures
and components. This fact may restrict opportunities for dy-
namic robot software adaptation. Further study needs more
effective education and reengineering researches. Second is
need for more effective resource usage estimation. More
precise resource usage estimation is an important technol-
ogy for efficient dynamic adaptation but the proposed ap-
proach provides an estimation method before deployment
time. An efficient on-line resource estimation method that
has less overhead at run-time will support more effective
dynamic adaptation.
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