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Abstract: The flow shop scheduling with the no-wait constraint is a typical NP-hard combinatorial 
optimization problem and represents an important area in production scheduling. In this paper, a class of 
particle swarm optimization (PSO) approach with simulated annealing (SA) and hypothesis test (HT), 
namely PSOSAHT is proposed for the stochastic flow shop scheduling with no-wait constraint to 
minimize the maximum completion time (makespan). The developed algorithm not only applies 
evolutionary search guided by the mechanism of PSO, but it also applies the local search guided by the 
jumping mechanism of SA. Thus, both global exploration and local exploitation are balanced. Meanwhile, 
it applies HT to perform a statistical comparison to avoid some repeated search to some extent. Simulation 
results and comparisons demonstrate the feasibility, effectiveness and robustness of the proposed hybrid 
PSO-based algorithm. 

 

1. INTRODUCTION 

Flow shop scheduling problem (FSSP) is a class of widely 
studied scheduling problems with a strong engineering 
background, which represents nearly a quarter of 
manufacturing systems, assembly lines, and information 
service facilities in use nowadays (Pinedo, 2002). In this 
paper, the no-wait FSSP is considered, which arises from 
specific requirements of the production process or from the 
absence of adequate storage capacity between the operations 
of a job. In the no-wait FSSP, a job must be processed from 
start to completion, without any interruption either on or 
between machines. According to the research (Rock, 1984), 
the no-wait FSSP with more than two machines is NP-hard. 

As we know, in many real manufacturing environments, 
uncertainty is so prevalent that it is more important and 
practical to study stochastic scheduling problems than 
deterministic ones. In this paper, the no-wait FSSP with 
stochastic processing time is considered where the processing 
time is assumed as a randomly distributed value. In such a 
case, the expected makespan is often used to evaluate the 
performance of the solutions (Pinedo, 2002). Currently, 
mathematical programming (Luh et al., 1999), constructive 
methods (Kouvelis et al., 2000), and tabu-search (Yang et al., 
2004) have been investigated in scheduling problems with 
stochastic time. 

During recent years, particle swarm optimization (Kennedy 
and Eberhart, 1995) has gained wide research, which is 
developed based on observations of the social behaviour of 
animals, such as bird flocking and swarm theory. PSO is 
initialized with a swarm of random solutions, where each 

individual is assigned with a random velocity. According to 
its own and its companions' flying experiences, each 
individual (particle) flies through hyperspace. Due to the 
simple concept, easy implementation, and quick convergence, 
nowadays, PSO has gained many applications in a variety of 
fields. However, most studies on PSO are for continuous 
optimization problems, while little research can be found for 
combinatorial problems, especially for scheduling problems. 
Obviously, it is a challenge to employ the algorithm in 
different areas of problems other than those areas that the 
inventors originally focused on. 

To the best of our knowledge, there is no published work to 
solve stochastic FSSP with no-wait constraint by using PSO. 
In this paper, a class of PSO approach with simulated 
annealing (SA) and hypothesis test (HT), namely PSOSAHT 
is proposed for no-wait FSSP with stochastic processing time 
to minimize makespan. Firstly, to make PSO suitable for 
solving flow shop scheduling, an encoding rule based on 
random key representation, called ranked-order-value (ROV) 
rule, is presented to convert the continuous position values of 
a particle to job permutation. Secondly, the evolutionary 
searching mechanism of PSO characterized by individual 
improvement plus population cooperation and competition is 
utilized to perform the exploration effectively. Thirdly, 
jumping probability of SA is employed to reduce the 
probability to be trapped in local minima and to perform the 
exploitation as well. Moreover, HT is incorporated into the 
approach to reasonably estimate the solution performance and 
to reliably identify solution quality so that the repeated search 
can be reduced to some extent. Simulation results and 
comparisons demonstrate the feasibility, effectiveness and 
robustness of the proposed hybrid algorithm.  
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The remaining contents are organized as follows. In Section 2, 
the stochastic FSSP with no-wait constraint is introduced. In 
Section 3, the PSO and HT are introduced respectively. In 
Section 4, the PSOSAHT is proposed after presenting 
solution representation, PSO-based search combining HT, 
and SA-based local search combining HT. In Section 5, 
experimental results and the effects of some parameters on 
optimization performance are presented and analysed. Finally, 
in Section 6, we end the paper with some conclusions and 
future work. 

2. STOCHASTIC FSSP WITH NO-WAIT 

The stochastic FSSP with no-wait constraint can be described 
as follows. Each of n  jobs is to be sequentially processed on 
machine 1, …, m . The processing time jip ,  of job i  on 
machine j  is supposed to be subjected to a uniform 
distribution ))1(,)1(( ,, jiji PPU ηη +− , where jiP ,  is the 
expected processing time, e.g. data provided by the standard 
benchmarks (Carlier, 1978; Reeves, 1995), and η  denotes 
noise magnitude. At any time, each machine can process at 
most one job and each job can be processed on at most one 
machine. The sequence in which the jobs are to be processed 
is the same for each machine. To satisfy the no-wait 
restrictions, the completion time of a job on given machine 
must be equal to the starting time of the job on the next 
machine. The objective is to find a sequence for processing 
all the jobs on the machines so that a given criterion is 
optimized. In the literature, the criterion widely used is the 
minimization of the maximum completion time, i.e. 
makespan ( maxC ). 

Let },...,,{ 21 njjj=π  denote a permutation of all jobs, and 
),( kjC i  denote the completion time of job ij  on machine k , 

then the completion time ),( kjC i  can be calculated as 
follows: 
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Thus, the makespan can be defined as follows: 

),()(max mjCC n=π                                 (5) 
The stochastic FSSP with no-wait constraint is then to find a 
permutation *π  in the set of all permutation Π  such that, 

Π∈∀→== πππ min)},()(arg{* max mjCC n        (6) 

3. INTRODUCTION TO PSO AND HT 

3.1  PSO 

Particle swarm optimization (PSO) is an evolutionary 
computation technique through individual improvement plus 
population cooperation and competition, which is based on 
the simulation of simplified social models, such as bird 
flocking and the swarm theory. In a PSO system, multiple 
candidate solutions coexist and collaborate simultaneously. 
Each solution, called a particle, flies in the searching space to 
search for the optimal position. A particle, as time passes 
through its quest, adjusts its position according to its own 
“experience,” as well as the “experience” of its neighbours. 
Tracking and memorizing the best position encountered, it 
builds particles’ experience. Thus, PSO possesses memory 
(i.e. every particle remembers the best position that 
encountered during the past). 

The status of each particle in the search space is characterized 
by two factors: its position and its velocity. The position and 
the velocity of the ith particle in the d-dimensional search 
space are represented as ],...,,[ ,2,1, diiii xxxX =  and 

],...,,[ ,2,1, diiii vvvV =  respectively. Each particle has its own 
best position ( pbest ) ),...,,( ,2,1, diiii pppP =  corresponding 
to the personal best objective value obtained so far at time t. 
The global best particle ( gbest ) is denoted by gP , which 
represents the best particle found so far at time t in the entire 
swarm. The new velocity of each particle is calculated as 
follows: 

djtxprc
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where 1c  and 2c  are constants called acceleration 
coefficients, w  is called the inertia factor, and 1r  and 2r  are 
two independent random numbers uniformly distributed in 
the range [0, 1]. 

Thus, the position of each particle is updated in each 
generation according to the following equation: 

djtvtxtx jijiji ,...,2,1),1()()1( ,,, =++=+            (8) 

The particle flies towards a new position according to (7) and 
(8). This process is repeated until a pre-defined stopping 
criterion is reached. In addition, the value of each component 
in iV  can be clamped to the range ],[ maxmax vv−  to control 
the excessive roaming of particles outside the search space. 

3.2  HT 

Generally, a stochastic optimization problem can be 
described as follows: 

)],([)(min ξXLEXJ
X

=                         (9) 

where X  is a feasible solution of the problem in a finite set 
and J  is the expectation of L , the sample performance as a 
function of X  and ξ  (noise or uncertain factors). 
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Hypothesis test (HT) is an important statistical method that is 
used to make test for predefined hypothesis based on 
experiment data (Liu, 1998). To perform HT for two different 
solutions, it needs multiple independent evaluations to 
provide suitable performance estimation for decision 
solutions. If in  independent simulations are carried out for 
solution iX , then its unbiased estimated mean value iJ  and 

variance 2
is  can be calculated as follows: 

∑
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Considering two different solutions 1X  and 2X , whose 

estimated performances )(ˆ
1XJ  and )(ˆ

2XJ  are two 
independent random variables. According to the law of large 
number and central limit theorem, the estimation )(ˆ

iXJ  

subjects to )/,( 2
iii nsJN  when in  approaches to ∞ . 
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the unbiased estimation values of 1μ , 2μ  and 2
1s , 2

2s  are 
given by (10) and (11), and let the null hypothesis 0H  be 
“ 21 μμ = ” and the alternative hypothesis 1H  be “ 21 μμ ≠ ”. 

When 22
2

2
1 σσσ ==  and 2σ  is unknown, the critical region 

of 0H  is described as follows: 
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Thus, if ,21 τ<− JJ  i.e. the null hypothesis holds, then it 
can be regarded that the performances of the two solutions 
have no significant difference in statistical sense; otherwise, 
they are significantly different. Furthermore, for uncertain 
minimization problem it is assumed that 2X  is better than 

1X  if ,21 τ≥− JJ  while 1X  is better than 2X  if 
.21 τ−≤− JJ  In addition, for a specific problem it often 

supposes that the theoretical performance variances of all 
solutions are the same (Liu, 1998), so the hypothesis test can 
be made according to (12). For a multi-modal stochastic 
optimization problem, the blind searching with a comparison 
under HT can often be trapped into local optima. So, it 
motivates us to propose a hybrid approach by incorporating 
HT into PSO together with simulated annealing strategy.  

4. PSOSAHT FOR STOCHASTIC FSSP WITH NO-WAIT  

4.1  Solution representation 

Due to the continuous character of the position of particles in 
PSO, a standard encoding scheme of PSO cannot be directly 
adopted for the no-wait FSSP. So, the most important issue to 
apply PSO for the FSSP with no-wait constraint is to find a 
suitable mapping between the job sequence and the position 
of particles in PSO. In this paper, a ranked-order-value (ROV) 
rule based on random key representation (Bean, 1994) is 
presented to convert the continuous position of particles in 
PSO ],...,,[ ,2,1, niiii xxxX =  to the permutations of jobs 

},...,,{ 21 njjj=π , thus, the performance of a particle can be 
evaluated. In our ROV rule, the smallest position value of a 
particle is firstly handled and assigned a smallest rank value 1. 
Then, the second smallest position value will be assigned 
rank value 2. In the same way, all the position values will be 
dealt with so as to convert the position information of a 
particle to a job permutation. 

For example, consider an instance with 6 jobs, and the 
position information is ]67.0,88.1,73.3,86.1,99.2,06.0[=iX . 
Because 06.01, =ix  is the smallest position value of the 
particle, 1,ix  is handled first and assigned the rank value of 1, 
then the second smallest value 67.06, =ix  is assigned the 
rank value of 2. In the same way, 3,ix , 5,ix , 2,ix , and 4,ix  
are assigned the rank values 3, 4, 5, and 6, respectively. Thus, 
the job permutation is obtained, i.e, ]2,4,6,3,5,1[=π . 

In our PSOSAHT, a SA-based local search is not directly 
applied to the position information, but to job permutation. 
So, when a local search is completed, the particle’s position 
information should be adjusted to guarantee that the 
permutation converted by the ROV rule for the new position 
is the same as the permutation obtained by the local search. 
That is to say, applying the local search approach to job 
permutation, the position information should be adjusted 
correspondingly. Fortunately, it is very simple because the 
process based on some local search methods to position 
information can be the same as the process to permutation. 
For example, in Fig. 1, if the SWAP operator is used as a 
local search operator for job permutation, obviously, the 
swap of job 5 and job 6 corresponds to the swap of the 
position values 2.99 and 3.73.  

Dimension j 1 2 3 4 5 6 
Position value 0.06 2.99 1.86 3.73 1.88 0.67

Job permutation 1 5 3 6 4 2 

Fig. 1. Swap-based local search for job permutation and the corresponding 
adjustment for position information 

4.2  Population initialization  

In the standard PSO, the initial swarm is often generated 
randomly. To guarantee an initial population with a certain 
quality and diversity, a population initialization procedure is 
proposed based on the NEH heuristic (Nawaz et al., 1983). 

We propose the following initialization procedure: the NEH 
heuristic is applied to generate the first solution, and then the 
modified NEH heuristic is used to generate %B  solutions of 
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the initial swarm, while the rest of particles are randomly 
generated in a certain continuous interval. The modified NEH 
heuristic works as follows: randomly choose two elements of 
the job permutation generated by NEH and insert the back 
one before the front one. 

Since the NEH heuristic and its modification result in job 
permutations, they should be converted to the position values 
of certain initial particles to perform the PSO-based search. 
The conversion is performed as follows: 

( )
 ,...,2,1       

,1,
min,max,

min,,

nj

rands
n

xx
xx jNEH

jj
jjNEH

=

+−⋅
−

+=    (13) 

where jNEHx ,  is the position value in the jth dimension of the 

particle, jNEHs ,  is the job index in the jth dimension of the 

permutation by NEH or its modification, jxmax,  and jxmin,  
are the upper and lower bounds of the position value, 
respectively, rand  demotes a random number uniformly 
distributed in interval [0, 1], and n  represents the number of 
dimensions of a position which is equal to the number of jobs. 
Fig. 2 provides an example of the above conversion from job 
permutation to position information. Obviously, such a 
conversion obeys the ROV rule. That is, the permutation can 
be obtained with the position by using the ROV rule. 

Dimension j 1 2 3 4 5 6 
Permutation by 

NEH 
2 4 3 6 5 1 

Position value 0.97 2.01 1.88 3.63 3.08 0.53

Fig.2. Conversion of NEH solution (job permutation) to particle position 

4.3  PSO-based search with HT  

In this paper, PSO-based search, i.e. (7) and (8), is applied for 
exploration. That is, the position values of particles in current 
swarm are adjusted by using PSO-based searching operator. 
Note that, PSO-based evolution is performed on continuous 
space. So, when evaluating the performance of a particle, the 
position information should be converted to job permutation 
by using the ROV rule. On the other hand, aimed at the 
uncertainty in stochastic optimization problems, multiple 
independent evaluations should be used to provide a 
reasonable estimation for the solution. Meanwhile, 
hypothesis test is added into the PSO to identify the quality 
of different solutions when updating pbest  and gbest . 

4.4  SA-based local search with HT  

Simulated annealing (Kirkpatrick et al., 1983) is a famous 
meta-heuristic, which is of the ability to avoid being trapped 
in local minima by probabilistic jumping. Starting from an 
initial state, the system is perturbed at random to a new state 
in the neighborhood of the original one, for which a change 
of EΔ  in the objective function value takes place. For 
minimization problems, the new state is accepted with 

probability )}/exp(,1min{ TEΔ− , where T  is a control 
parameter corresponding to the temperature in the analogy. 

In this paper, we design a SA-based local search to enrich the 
local searching behaviour and to avoid premature 
convergence. Meanwhile, the HT is applied to identify the 
quality of solution and to reduce repeated search to some 
extent. The procedure of SA-based Local Search combining 
HT can be described as follows: 

Step 1: Let the permutation of jobs 1π  be the initial solution, 
and calculate its performance 1J  and variance 

estimation 2
1s  through certain times of independent 

evaluations. And set 1π  be the best initial solution, i.e. 

1
* ππ = , and denote the performance estimation and 

variance estimation of *π  as 1
* JJ =  and 2

1
2* ss =  

respectively. 
Step 2: Generate a neighbor 2π  of 1π , and estimate its 

performance 2J  and variance 2
2s  by certain times of 

independent evaluations. 
Step 3: Perform HT for 1π  and 2π . If the null hypothesis 

holds, then go back to step 2 to generate another 
neighbor; otherwise, continue the following steps. 

Step 4: Replace the current solution 1π  by 2π  with 
probability ]}/)(exp[,1min{ 12 tJJ −− , and update 

*π , *J  and 2*s  if possible.  
Step 5: If 1M  neighbors have been sampled at current 

temperature, then output the best solution *π ; 
otherwise, go to step 2. 

In this paper, the SWAP operator is utilized in SA-based 
local search as the neighbor generator. And we set an initial 
temperature by trail and error. Moreover, exponential cooling 
schedule, 1−= kk tt λ  (where 10 << λ ), is applied, which is 
often believed to be an excellent cooling recipe. To provide a 
rather good compromise between solution quality and search 
efficiency, the step of Metropolis sampling process is set to 

)1(1 −⋅= nnM , where n  denotes the number of jobs. In 
addition, SA-based local search is only applied to the best 
solution found so far, i.e. gbest . 

4.5  PSOSAHT  

Based on the proposed ROV rule, population initialization, 
PSO-based search with HT, and SA-based local search with 
HT, the framework of PSOSAHT for the stochastic FSSP 
with the no-wait constraint is proposed. The procedure of the 
PSOSAHT is described as follows: 

Step 1 (Initialization)  
Step 1.1: Generate %Bps ×  permutations by NEH and 

convert them to position values of particles iX , 
( %,...,1 Bpi s ×= ) according to (13); 
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Step 1.2: Generate the rest %)1( Bps −×  particles iX  
with random position values, and determine the 
corresponding job permutations by ROV rule; 

Step 1.3: Evaluate initial population and determine pbest  
and gbest , set initial temperature 0t , and let 

1=g . 
Step 2: Repeat until the evaluation value of gbest  keeps 

fixed at consecutive L  iterations: 
Step 2.1: For each particle i , Perform PSO-based search 

with HT to update the pbest  of each particle and 
gbest ; 

Step 2.2: For gbest , perform the SA-based local search 
with HT and then update the gbest  by using HT; 

Step 2.3: Update the temperature and set 1+= gg ; 
Step 3: Output the best solution related to gbest  particles. 

It can be seen that the PSOSAHT not only applies the PSO-
based search to effectively perform exploration within the 
entire region, but it also applies problem-dependent local 
search to perform exploitation in sub-regions. Meanwhile, 
HT is applied to identify the quality of solution and to help to 
reduce repeated search. 

5. SIMULATION RESULTS AND COMPARISONS 

5.1  Experimental setup  

To test the performance of the proposed PSOSAHT for the 
stochastic no-wait FSSP, 10 well-studied problems that 
contributed to the OR-Library are selected. The first eight 
problems are called car1, car2 through car8 by (Carlier, 1978). 
The other 2 problems are called rec01, and rec03 by (Reeves, 
1995), who used them to compare some meta-heuristics and 
found them particularly difficult. Thus far, these problems 
have been used as benchmarks for study with different 
methods by many researchers. Here, the processing time is 
supposed to be subjected to a uniform distribution 

))1(,)1(( ,, jiji PPU ηη +− , where jiP ,  is the expected 
processing time provided by the above benchmarks, and η  
denotes noise magnitude. 

The PSOSAHT was coded in MATLAB 7.0 and the 
experiments were executed on a Mobile Pentium IV 2.2 GHz 
processor with 512MB RAM. In our PSOSAHT, we use the 
following parameters: the swarm size 20=sp , 25=B , 

0.1=w , 0.221 == cc , 0min =x , 0.4max =x , 0.4min −=v , 
0.4max =v , initial temperature 0.30 =t , annealing rate 

9.0=λ , stopping parameter 5=L , and 10-evaluation is 
used for solution performance estimation. 

5.2  Simulation results and comparisons  

To show the effectiveness of PSOSAHT, we carry out 
simulations to compare our PSOSAHT with PSOSA1 
(PSOSAHT without HT element and only one-evaluation is 

used for solution performance estimation) and PSOSA2 
(PSOSAHT without HT element and 10-evaluation is used 
for solution performance estimation). The noise magnitude is 

%5=η  for all the problems. Each approach is independently 
run 20 times for every problem, and the statistical results are 
listed in Table 1. The values of C* for car1 through car8 are 
the optimal makespans or the lower bounds, while the values 
of C* for rec01 and rec03 are provided by the RAJ heuristic 
(Rajendran, 1994). Besides, BEM and AEM denote the 
relative percentage error of the best and average expected 
makespan (calculated with the expected processing time for 
those solutions obtained by the algorithm with estimated 
performances) with respect to the value C*, respectively. 

From Table 1, it is shown that PSOSAHT is very effective 
for solving stochastic flow shop scheduling problems. For the 
10 benchmark problems, the solutions resulted by PSOSAHT 
are always the best among the three methods, while PSOSA1 
performs the worst. The effectiveness of PSOSAHT is due to 
the statistical comparison based on hypothesis test to reduce 
repeated search, reliable performance estimation based on 
multiple evaluations, and the reasonable combination of 
global search and local search. 

Table 1. Comparisons between PSOSAHT, PSOSA1, and PSOSA2 

n, m PSOSAHT PSOSA1 PSOSA2 Problem
 BEM AEM BEM AEM BEM AEM

car1 11, 5 0 0.11 0 0.51 0 0.18
car2 13, 4 0 0.56 0 0.71 0 0.59
car3 12, 5 0.27 0.66 0.27 1.38 0.27 0.66
car4 14, 4 0.79 5.11 1.02 4.11 1.86 3.52
car5 10, 6 0 1.62 0 1.86 0 1.82
car6 8, 9 0 0 0 0 0 0
car7 7, 7 0 0.17 0 0.28 0 0.10
car8 8, 8 0 0.02 0 0.54 0 0.27

rec01 20, 5 -3.58
-

1.82 -3.21 -1.70 -3.71
-

1.88

rec03 20, 5 -5.28
-

3.55 -4.19 -2.07 -4.19
-

1.84

 

In addition, the estimation accuracy of objective value is 
relative to two aspects, i.e., evaluations times for 
performance estimation and uncertainty magnitude. So, we 
carry out some simulations on different noise magnitude and 
different evaluation times. The statistical results are listed in 
Table 2. 

It can be concluded from Table 2 that the more evaluation 
times are used for performance estimation, the better results 
can be obtained. Secondly, under the same evaluation times 
used, PSOSAHT can find better solutions as the uncertainty 
magnitude decreases. This phenomenon is due to the fact that 
hypothesis test can work more effectively if estimation is 
more accurate and performance estimation can be more 
accurate if uncertainty is smaller. However, more evaluation 
times may increase the computational effort of the algorithm. 
Thus, a trade off should be made between the computational 
effort and the solution quality. 

6. CONCLUSIONS 
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To the best of our knowledge, this is the first report on the 
application of particle swarm optimization (PSO) approach to 
the stochastic flow shop scheduling problem (FSSP) with the 
no-wait constrain with the objective to minimize the 
maximum completion time. In this paper, a class of PSO 
approach combining simulated annealing and hypothesis test 
was proposed for the stochastic flow shop scheduling with 
no-wait constraint. The developed algorithm not only applied 
evolutionary search guided by the mechanism of PSO, but it 
also applied the local search guided by the jumping 
mechanism of SA. Thus, both global exploration and local 
exploitation were balanced. Meanwhile, it also utilized HT to 
perform a statistical comparison to reasonably estimate 
solution performance and to reliably identify solution quality. 
By using statistical comparisons guided by HT, some 
repeated search could be reduced. Simulation results and 
comparisons demonstrated the effectiveness of the proposed 
hybrid approach. The future work is to investigate the 
applications of PSO for other kinds of stochastic scheduling 
problems as well as multi-objective scheduling problems.  

Table 2. Effect of estimation accuracy on PSOSAHT 

C* 05.0=η  10.0=η  Probl
em  10-

eval. 
20-

eval. 
30-

eval. 
10-

eval. 
20-

eval. 
30-

eval. 
car1 8142 0.11 0.13 0 0.12 0.12 0.12
car2 8242 0.56 1.07 0.46 1.43 1.36 0.67
car3 8866 0.66 0.49 0.48 1.50 1.46 1.49
car4 9195 5.11 4.76 4.36 7.02 5.18 5.41
car5 9159 1.62 1.47 1.50 3.42 1.98 2.04
car6 9690 0 0 0 0.77 0 0.08
car7 7705 0.17 0.24 0.08 0.49 0.20 0.17
car8 9372 0.02 0.38 0 0.58 0.84 0.48
rec01 1590 -1.82 -2.08 -2.64 0.27 -0.13 -1.07
rec03 1457 -3.55 -3.19 -3.32 -1.32 -0.22 -2.24

 

ACKNOWLEDGEMENTS 

This paper is based on my PhD thesis in Tsinghua University 
“Study on Optimization and Scheduling Theory and 
Algorithms Based on PSO for Complex Systems”. I am full 
gratitude of my supervisors, Professor Jin YH and Wang L. I 
also want to express my sincere gratitude to Professor Keyzer 
M.A (SOW-VU) and Professor Huang JK (CCAP-CAS) for 
their support. This research is partially supported by National 
Natural Science Foundation of China (60774082). 

REFERENCES 

Bean, J.C. (1994). Genetic algorithms and random keys for 
sequencing and optimization. ORSA Journal on 
Computing, 6, 154-160. 

Carlier, J. (1978). Ordonnancements a Contraintes 
Disjonctives. R.A.I.R.O. Recherche operationelle / 
Operations Research, 12, 333-351. 

Kennedy, J. and R.C. Eberhart (1995). Particle swarm 
optimization. In: Proceedings of the IEEE International 
Conference on Neural Networks, pp. 1942-1948. 

Kirkpatrick, S., C.D. Gelat, Jr. and M.P. Vecchi (1983). 
Optimization by simulated annealing. Science, 220, 671-
680. 

Kouvelis, P., R.L. Daniels and G. Vairaktarakis (2000). 
Robust scheduling of a two-machine flow shop with 
uncertain processing times. IIE Transactions, 32, 421-
432. 

Liu, X. (1998). Introduction to Statistics, Tsinghua university 
Press, Beijing. 

Luh, P.B., C. Dong and L.S. Thaku (1999). An effective 
approach for job-shop scheduling with uncertain 
processing requirements. IEEE Transactions on Robotics 
and Automation, 15, 328-339. 

Nawaz, M., E. Enscore and I. Ham (1983). A heuristic 
algorithm for the m-machine, n-job flow-shop 
sequencing problem. Omega, 11, 91-95. 

Pinedo, M. (2002). Scheduling: Theory, Algorithms and 
Systems, Prentice-Hall, New Jersey. 

Rajendran, C. (1994). A no-wait flowshop scheduling 
heuristic to minimize makespan. Journal of The 
Operational Research Society, 45, 472-478. 

Reeves, C.R. (1995). A genetic algorithm for flowshop 
sequencing. Computers and Operations Research, 22, 5-
13. 

Rock, H. (1984). The three-machine no-wait flowshop 
problem is NP-complete. Journal of The Association for 
Computing Machinery, 31, 336-345. 

Yang, T., Y. Kuo and I. Chang (2004). Tabu-search 
simulation optimization approach for flow-shop 
scheduling with multiple processors -- a case study. 
International Journal of Production Research, 42, 4015-
4030. 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15860


