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Abstract: For the start-up control of tension and looper system, an off-line design method
of the control law is considered based on model predictive control approach. By employing a
multi-parametric programming for the posed problem, a piecewise affine state feedback control
law, which inherits the advantage of the model predictive control, is constructively given. The
feature of resulting control system is illustrated with numerical examples.

1. INTRODUCTION

Tension and looper control is the key to successful opera-
tions in the hot strip finishing mill and the various control
strategies have been applied to improve the performance in
the mutual interaction and the transient. For the control of
the mutual interaction between the tension and the looper
angle, several modern control schemes have been applied
and the resulting performance around the equilibrium po-
sition has been investigated (Imanari et al. (1997); Seki
et al. (1991)). While, a model predictive control (MPC) is
newly applied to the start-up control of the tension and
looper system (Imura et al. (2004); Asano et al. (2005))
and it is reported that the on-line model predictive control
has efficient potential for attenuating the bump against
the strip and attaining favorable transient. In the model
predictive control, the essential strategy is that the optimal
control problem is solved, in the discrete-time setting, on-
line over a finite-horizon and the first value of the resulting
control sequence is applied. Thus, in the MPC approach to
the tension and looper systems, it must be also recognized
that the implementation is limited by the complexity of the
optimization procedure which is performed in the sample
period.

In this paper, we focus on the start-up control of the
tension and looper system (Imura et al. (2004); Asano
et al. (2005)) and discuss a design method of state feedback
control law, which inherits the advantage of the MPC ap-
proach. By employing the multi-parametric programming
(Bemporad et al. (2002a)) to the start-up control problem,
we will show that the MPC law is constructively given by
a piecewise affine state feedback control law.

The paper is organized as follows. In Section 2, the tension
and looper system is reviewed based on (Imura et al.
(2004); Asano et al. (2005)) and a simplified model is
newly formulated, which enables us to apply the multi-
parametric programming approach in the off-line con-
troller design. In Section 3, a model predictive control
problem with LQ cost-functional is posed and the pre-
liminary results are summarized. In Section 4, the calcu-

lation method of piecewise affine state feedback control
law is proposed by employing multi-parametric quadratic
programming (mp-QP). In Section 5, the proposed de-
sign method is evaluated with a numerical example. It
is illustrated that the control law attenuates the bump
against the strip and inherits the advantage of the control
scheme for the mutual interaction between the strip and
the looper.

2. MODELING

Based on the fundamental results reported by (Imura et al.
(2004); Asano et al. (2005)), we first summarize a piecewise
affine model for the tension and looper system. The tension
and the looper systems are separately modeled and, with
account of the interaction which depends on the looper
angle, a unified model is obtained.

2.1 Dynamic equations

Based on Fig.1 and Table 1, the dynamic equation of the
looper system is described as follows:

Jθ̈ = TLref − δ{K1(θ)σ + K2(θ)} − K3(θ) − Dθ̇ (1)

K1(θ) = 2Hbr cos θ sin β (2)

K2(θ) = 2pHbgr
l

cos β
cos θ (3)

K3(θ) = WLgrL cos(θ + θG) (4)

where K1, K2, K3 denote the looper load torque by the
tension, the strip weight and the looper weight, respec-
tively. In the equation (1), δ is a binary variable (δ ∈
{0, 1}) and included for describing the behavior both in
the contact mode (C-mode) and in the noncontact mode
(N-mode). The case δ = 1 corresponds to the C-mode
which considers the interaction with the tension system.
While the case δ = 0 corresponds to the N-mode as the
interaction with the tension system is neglected.

The mode transition rule is given as follows:
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Table 1. Notation and parameters

Sign Value Unit Description

θ - [rad] Looper angle
σ - [MPa] Interstand tension

VR - [m/s] Roll velocity
TLref - [rad] Looper torque

J 2.16× 103 [Nm2] Looper inertia
H 3.1× 10−3 [m] Strip thickness
b 1.0 [m] Strip width
p 7.85× 103 [kg/m3] Strip density
r 0.6 [m] Looper arm length

WL 2.5× 103 [kg] Looper weight
l 2.8 [m] Half of length between stands

rL 0.125 [m] Distance between looper axis
and center of gravity of looper

D 49.0 [Nms] Looper damping factor
θG 5.0 [deg] Offset angle between looper

angle and center of gravity of
looper

β 1.16 [deg] Strip angle with passline
g 9.8 [m/s2] Acceleration of gravity

f(σ) 0.2154 Forward slip
E 1.96 [GPa] Young’s modulus of strip
L 23.448 [m] Interstand strip length

TASR 0.2 [s] Time constant of mill motor
ASR

θmin 10π/180 [rad] Looper angle when the looper
is raised to the passline

Table 2. Operating point at C and N modes

Sign Value Unit

θc 20π/180 [rad]
σc 9.8 [MPa]
TLrefc 4.2× 103 [Nm]
VRc 9.29 [m/s]

θn 10π/180 [rad]

δ =

{

0 if θ < θmin

1 if θ ≥ θmin
(5)

where θmin is the looper angle when the looper is raised to
the pass line (Table 2).

The tension system is described by

σ̇ =
E

2l

{

−(1 + f(σ))VR +
∂L

∂θ
θ̇

}

(6)

V̇R =−
1

TASR

(VR − VRref ) (7)

and the state transition from the N-mode to the C-mode
is assumed by

θ̇(t) = ǫ1θ̇(t−) (8)

σ(t) = σ(t−) + ǫ2θ̇(t−) (9)

where ǫ1, ǫ2 are appropriately estimated constants.

2.2 Piecewise Affine Model

Linearizing the dynamic equations around the operating
point (Table 2), a unified model for the tension and looper
system is elaborated. In the following, we first linearize
the dynamic equation in each mode and derive a unified
discrete-time piecewise affine model.

Fig. 1. Tension and looper system (start-up control)

C-mode: Let (θc, σc, VRc
, TLrefc, VRrefc) be the operat-

ing point such that the equalities

TLrefc = K1(θc)σc + K2(θc) + K3(θc) (10)

VRrefc = VRc (11)

are preserved (Table 2). Denoting the variarion by
(θ̄, σ̄, V̄R, T̄Lref , V̄Rref ) = (θ−θc, σ−σc, VR −VRc, TLref −
TLrefc, VRref −VRrefc), then linearizing the equations (1)-
(4), (6), (7) with δ = 1, the following equation is obtained.

˙̃x(t) = Ac
cx̃(t) + Bc

c ũ(t) (12)

x̃ = [ θ̄ ˙̄θ σ̄ V̄R ]T , ũ = [ T̄Lref T̄Rref ]T

N-mode: Let (θn, TLrefn) be the operating point which
preserves

TLrefn = K3(θn), VRn = VRrefn. (13)

Denoting the variation by (θ̌, ŤLref ) = (θ − θn, TLref −
TLrefn), then linearizing the equations (1)-(4) with δ = 0,
the equation

˙̌x(t) = Ac
nx̌(t) + Bc

nǔ(t) (14)

x̌ = [ θ̌ ˙̌
θ ]T , ũ = ŤLref

is obtained. Finally, substituting the coordinate defined for
the C-mode: θ̌ = θ̄ + (θc − θn), ŤLref = T̄Lref + (TLrefc −
TLrefn), the following affine system is obtained.

ẋ(t) = Ac
nx(t) + Bc

nu(t) + ac
n (15)

x = [ θ̄ ˙̄θ ]T , ũ = T̄Lref

Based on the system descriptions (5), (8), (9), (12), (15),
a piecewise affine model is derived as follows.

PWA-model: Discretizing the systems (12),(15) with the
sample period h, the following model is obtained:
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N-mode







xk+1 = Anxk + Bnuk + an

Ik+1 = Ik

if Cxk + c < 0, Ik = 0

(16)

NC-mode















x̃k = Encxk + enc

x̃k+1 = Acx̃k + Bcũk

Ik+1 = 1

if Cxk + c ≥ 0, Ik = 0

(17)

C-mode











x̃k+1 = Acx̃k + Bcũk

Ik+1 = Ik

if C̃x̃k + c ≥ 0, Ik = 1

(18)

where

xk = [ θ̄(kh) ˙̄θ(kh) ]T (19)

x̃k = [ θ̄(kh) ˙̄θ(kh) σ̄(kh) V̄R(kh) ]T (20)

C = [ 1 0 ], C̃ = [ 1 0 0 0 ], c = θc − θmin, (21)

An = eAc

n
h, Bn =

∫ h

0

eAc

n
τdτBc

n, an =

∫ h

0

eAc

n
τdτac

n,

Ac = eAc

c
h, Bc =

∫ h

0

eAc

c
τdτBc

c . (22)

In (16)-(18), it is noted that the NC-mode is newly
included in order to describe the state-transition (8), (9)
at the first sample time which holds the condition Cxk +
c ≥ 0. The state xk and the control uk in the N-mode are
regarded as

x̃k = [ xT
k 0 0 ]T , ũk = [ uk 0 ]T (23)

in the coordinate of the C-mode. Following notations are
prepared for describing the state regions for N and NC, C
modes.

N := {xk : Cxk + c < 0} (24)

C := {xk : Cxk + c ≥ 0} (25)

C̃ := {x̃k : C̃x̃k + c ≥ 0} (26)

In highlight with the hybrid system model reported by
(Imura et al. (2004); Asano et al. (2005)), it is noted that
the model adopted here is further simplified in the sense
that the time constant of looper motor ACR is neglected.
Based on the simplified N-mode model, which feature is
characterized on the 2-dimensional state-space, we will
discuss a design method of piecewise affine state feedback
control law.

3. MODEL PREDICTIVE CONTROL

For the start-up control from the initial position (N-mode)
to the operating point (C-mode), we focus on a model
predictive control (MPC) problem, which attains the fa-
vorable transient over mode-transition. In this section, we
formulate the MPC problem for the system (16)-(18) and
provide preliminaries for the off-line controller design.

Consider an MPC problem defined as follows.

min
U

J, J :=
∞
∑

i=0

{x̃T
i Q̃x̃i + ũT

i R̃ũi} (27)

subj. to (16)-(18)

U := {ũ0, ũ1, ũ2, · · · }, Q̃ > 0, R̃ > 0

In the C-mode, the MPC problem (27) coincides with a
standard LQ control problem and, if the system response
stays in the state region C̃, the control law is expressed as
follows:

ũk = KLQx̃k, KLQ = −(R̃ + BT
c PBc)

−1BT
c PAc (28)

where P > 0 is a stabilizing solution to

P = Q̃ + AT
c PAc − AT

c P (R̃ + BT
c PBc)

−1BT
c PAc. (29)

In the sequel, we impose the following assumption and
clarify the control law which is formulated by the MPC
problem (27).

(A) For the resulting system obtained by (27), the state

region C̃ is positively invariant; i.e.

(Ac + BcKLQ)x̃ ∈ C̃ if x̃ ∈ C̃ (30)

holds. 2

Under the condition (A), it is noted that the MPC problem
(27) is expressed by

min
UNs

JNs
, JNs

:=

Ns−1
∑

i=0

{xT
i Qxi + uT

i Rui} (31)

+(EncxNs
+ enc)

T P (EncxNs
+ enc)

subj. to (16)-(18)

U := {ũ0, ũ1, ũ2, · · · },

Q := [ I2 02×2 ]T Q̃[ I2 02×2 ] > 0

R := [ 1 0 ]T R̃[ 1 0 ] > 0

where Ns is the sample time when the transition to
the NC-mode arise (see also Chmielewski et al. (1996);
Scokaert et al. (1998)). Furthermore, the solution to (31)
is represented by

ũk =

{

[ uk 0 ]T , k = 0, 1, · · · , Ns − 1 (N-mode)

KLQx̃k k = Ns, Ns + 1, · · · (C-mode)
(32)

and the control law is obtained explicitly if the N-mode
control sequence {uk : k = 0, 1, · · · , Ns − 1} is parameter-
ized in terms of the state xk.

In the next section, we will derive an explicit representa-
tion of the control law for the MPC problem (31).

4. OFF-LINE CONTROLLER DESIGN

Employing the multi-parametric programming approach
(Bemporad et al. (2002a)), we derive a piecewise affine
state feedback control law in the N-mode. The multi-
parametric programming approach has been applied to
typical control problems with system constraints (e.g.
Bemporad et al. (2002a,b); Borrelli (2003); Kojima et al.
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Fig. 2. Partition of region N (Ns = 1)

Fig. 3. Partition of region N (Ns = 2)

(2004)), and it enables us to obtain an explicit represen-
tation of the control law via off-line optimization.

In this section, we introduce a following result on the
multi-parametric quadratic programming (mp-QP) prob-
lem and construct a piecewise affine state-feedback control
law for the MPC problem (31).

Lemma 1. (Bemporad et al. (2002a)). For a QP-problem

min
w∈Rs

1

2
wT Ĥw subj.to Ĝw ≤ Ŵ + Ŝx0, (33)

let w = w∗ be the optimal solution for a given x0 = x∗

0

and (G̃, W̃ , S̃) be the rows of active constraints such that

G̃w∗ = W̃ + S̃x∗

0 holds. Under the assumption such

that the rows of G̃ are linearly independent, the optimal
solution of (33) is expressed by

w = Ĥ−1G̃T (G̃Ĥ−1G̃T )−1(W̃ + S̃x0) (34)

in the polyhedral region

ĜĤ−1G̃T (G̃Ĥ−1G̃T )−1(W̃ + S̃x0) ≤ Ŵ + Ŝx∗

0, (35)

−(G̃Ĥ−1G̃T )−1(W̃ + S̃x0) ≤ 0. (36)

2

Investigating the relation between the state and the initial
value of the control signal, the calculation method of the
control law is summarized as follows.

Algorithm:

[Step 1]

Let Ns = 1 and parameterize the optimal solution in terms
of the initial state x0 ∈ N . Then specify the initial state
region such that the resulting control causes the transition
to NC-mode at Ns = 1.

For Ns = 1, the MPC problem (31) is rewritten by

min
u0

J1, J1 = xT
0 Qx0 + uT

0 Ru0

+ (Encx1 + enc)
T P (Encx1 + enc) (37)

subj.to x1 = Anx0 + Bnu0 + an

and, applying Lemma 1, the optimal control for (37) is
expressed as follows.

u0 := F1x0 + f1, x0 ∈ N (38)

Since the control (38) yields the transition

x1 = Anx0 + Bn(F1x0 + f1) + an =: G1x0 + g1 (39)

at Ns = 1, the state-region such that (37) coincides with
the solution of (31) is represented as follows (Fig. 2).

V1 = {x0 : G1x0 + g1 ∈ C} (40)

[Step 2]

Let Ns = 2 and parameterize the optimal solution in terms
of the initial state x0 ∈ N \ V1. Then specify the subset
of state region such that the resulting control causes the
transition to V1 at 1 unit-time later.

For Ns = 2, the MPC problem (31) is rewritten by

min
U2

J2, J2 =
1

∑

i=0

xT
i Qxi + uT

i Rui

+ (Encx2 + enc)
T P (Encx2 + enc) (41)

subj.to xk+1 = Anxk + Bnuk + an, k = 1, 2

U2 = {u0, u1}

and, applying Lemma 1, the initial value of the optimal
control sequence is expressed as follows.

u0 := F2x0 + f2, x0 ∈ N \ V1 (42)

Since (42) yields the transition

x1 = Anx0 + Bn(F2x0 + f2) + an =: G2x0 + g2 (43)

at 1 unit-time later, the state-region such that (41) co-
incides with the solution of (31) is represented as follows
(Fig. 3).

V2 = {x0 : G2x0 + g2 ∈ V1} (44)

[Step 3]

Let Ns = k (k = 2, 3, · · · ) in the MPC problem (31) and
parameterize the optimal control u0 in terms of the initial

state x0 ∈ N \ (
⋃k−1

i=1 Vi). Applying Lemma 1, the initial
value of the resulting control sequence is parameterized by
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u0 := Fkx0 + fk, x0 ∈ N \ (
k−1
⋃

i=1

Vi) (45)

and, further, the state region such that the state moves to
Vk−1 at 1 unit-time later is obtained as follows:

Vk = {x0 : Gkx0 + gk ∈ Vk−1} (46)

where Gk := An + BnFk, gk := Bnfk holds the equality:

x1 = Anx0 + Bn(Fkx0 + fk) + an =: Gkx0 + gk. (47)

[Step 4]

Repeat Step 3 until the initial position of the start-up
control is covered by the region (46).

Based on the algorithm (Step 1)-(Step 4), the control law
in the N-mode of (32) is explicitly given in the following
form.

uk =































F1xk + f1 xk ∈ V1

F2xk + f2 xk ∈ V2

F3xk + f3 xk ∈ V3

...

Fℓxk + fℓ xk ∈ Vℓ

(48)

Thus, a piecewise affine state feedback control law is
constructively given based on (32) and (48),

5. SIMULATION

The feature of the resulting control system is discussed
based on a discrete-time system (16)-(18) which is ob-
tained with the sampling time h = 0.02[s]. For the MPC
problem (31) with

Q̃ = I4, R̃ = I2, (49)

the LQ control in the C-mode is obtained by

ũk =

[

3110 3602 −0.003 0.0002
−4.511 1.885 0.966 0.422

]

x̃k, xk ∈ C̃ (50)

and, further, it is verified that the condition (A) holds in
this case.

Applying the calculation procedure summarized in Section
4, the control law is obtained as follows.

uk =



































[−340.90 −46.234 ] xk − 0.5467 xk ∈ V1

[−395.19 −61.415 ] xk − 1.3667 xk ∈ V2

[−449.60 −78.740 ] xk − 2.5010 xk ∈ V3

...

[−2142.7 −1703.3 ] xk − 458.75 xk ∈ V38

(51)

For the state xk = (θ̄(kh), ˙̄θ(kh)) (k = 0, 1, · · · ), the
relation between the state regions and the control laws
in (51) are summarized by Fig. 4 1 . The state-trajectory
is depicted by Fig. 5 and it is observed that the control
is switched to the standard LQ control (50) at 38 unit-
time. While the control input and the state responses are
1 In Fig. 4, original coordinate of the looper system (1) is adopted:

(θ, θ̇) = (θ̄ + θc, ˙̄θ).

Fig. 4. Feedback control law: Q̃ = I4, R̃ = I2

Fig. 5. State trajectory: θ = 0 [deg], θ̇ = 0 [deg/s]
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•

Fig. 6. Time response: θ = 0 [deg], θ̇ = 0 [deg/s]

summarized by Fig. 6. In this case, the solution of the MPC
problem yields a control strategy such that the magnitude
of control input is attenuated before the mode transition
to C-mode.

Fig. 7, 8 are the system responses calculated with a
fictitious state perturbation θ = 9 [deg], θ̇ = −25 [deg/s].
In this design example, the response is recovered from
the perturbation and the appropriate mode transition is
attained by the proposed state feedback control.
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Fig. 7. State trajectory: θ = 9 [deg], θ̇ = −25 [deg/s]
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Fig. 8. Time response: θ = 9 [deg], θ̇ = −25 [deg/s]

6. CONCLUSION

For the start-up control of tension and looper system,
an off-line design method of the control law is discussed
based on a linear-quadratic model predictive control. By
employing a multi-parametric programming, a piecewise
affine state feedback control law is obtained and the
feature of the resulting system is evaluated with numerical
examples.
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