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Abstract: This note concerns the delay-dependent robust stability analysis for uncertain
singular time-delay systems. The parameter uncertainty is assumed to be norm-bounded and
possibly time-varying, while the time delay considered here is assumed to be constant but
unknown. By using a new Lyapunov-krasovskii functional which splits the whole delay interval
into two subintervals and defines a different energy function on each subinterval, some delay-
dependent conditions are presented for the singular time-delay system to be regular, impulse free
and robustly stable. The obtained delay-dependent criteria are effective and less conservative
than previous ones, which are illustrated by numerical examples.

1. INTRODUCTION

Singular time-delay systems, which are also referred to
as generalized differential-difference equations, descriptor
time-delay systems, implicit time-delay systems and semi-
state time-delay systems, have been extensively studied
in the past years [4], [5]. Singular system model is a
natural presentation of dynamic systems and can better
describe a large class of systems than regular ones, such
as large-scale systems, power systems and constrained
control systems [4]. For a long time, the problems of
stability analysis for such systems have been the subject
of considerable research efforts [1], [2], [3], [13], [17].

Recently, it is known that when the stability problem
for singular systems is investigated, the regularity and
absence of impulses for continuous systems and causality
for discrete systems are required to be considered simulta-
neously [4], [5], [16], [17]. This make the problems of sta-
bility analysis for singular time-delay systems much more
complicated than those for state-space ones. For uncertain
singular time-delay systems, robust stability problem was
discussed in [7] and the H∞ control as well as filter
design problems were also investigated [8], [9]. It should
be pointed out that most of the existing results in the
literature are delay-independent. When the time-delay is
small, these results are often quite conservative. The work
of [10], [11], [12], [13], [6] presented some delay-dependent
stability condition for singular time-delay systems based
on the assumption that the considered system is regular
and impulse free. Especially, in [10], a matrix describing
the relationship between fast and slow subsystems should
? This work was supported by the National Creative Research
Groups Science Foundation of China under grant (60721062) and the
National High Technology Research and Development Program of
China under grant 863 Program (2006AA04 Z182) and the National
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be chosen, which is difficult and sometimes impossible.
While the stability conditions in [11], [12], [13] need de-
compose the system matrices, which makes the computa-
tion relatively intricate and unreliable. Nevertheless, all
these delay-independent or delay-dependent criteria are
obtained formulated by linear matrix inequality (LMI)
that is based on a fixed Lyapunov-krasovskii functional. In
this note, a different idea is that the time delay is divided
into even subintervals. Then a new Lyapunov-krasovskii
functional which splits the whole delay interval into two
even subintervals are used to obtain some new stability
conditions based on Lyapunov second method.

The delay-dependent robust stability problem for uncer-
tain singular time-delay systems in this note is investi-
gated. First, we present a new delay-dependent criterion
which provides a sufficient condition for a unforced nomi-
nal singular time-delay system to be regular, impulse free
and stable. Based on this result, the robust stability prob-
lem is studied. The obtained results can be regarded as an
extension of the results of [3], [15] to their counterparts for
uncertain singular time-delay systems.

Throughout this paper, Rn denotes the n-dimensional
Euclidean space, Rm×n is the set of real matrices with
m rows and n columns. In is an n × n identity matrix.
λmax(P ) and λmin(P ) refer to the maximal and minimal
eigenvalues of the matrix P respectively. ‖x‖ denotes the
Euclidean norm of the vector x, that is, ‖x‖ =

√
xT x.

diag{· · · } denotes a block-diagonal matrix. For symmetric
matrices X and Y , the notation X > Y (respectively,
X ≥ Y ) means that X−Y is positive-definite (respectively,
positive-semidefinite).
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2. PROBLEM FORMULATION

Consider an uncertain singular time-delay system de-
scribed by

Eẋ(t) = Āx(t) + Ādx(t− d)
x(t) = φ(t),−d ≤ t ≤ 0

(1)

where x(t) ∈ Rn is the state vector. d is a constant
time delay, φ(t) is any given initial condition specified
on [−d 0 ]. The matrix E may be singular and we shall
assume that rank E = r ≤ n. Ā = (A + ∆A), Ād = (Ad +
∆Ad), A and Ad are constant matrices with appropriate
dimensions. ∆A, ∆Ad are unknown matrices representing
the admissible uncertainties in the system matrices and
can be described as the form of

[∆A ∆Ad] = MF (t) [Na Nd] (2)
where M , Na, Nd are real constant matrices with appropri-
ate dimensions, and F (t) is an unknown, real, and possibly
time-varying matrix with Lebesgue-measurable elements
satisfying

FT (t)F (t) ≤ I (3)

The nominal unforced counterpart of the system (1) can
be written as

Eẋ(t) = Ax(t) + Adx(t− d) (4)

To fascinate the following discussion, we introduce some
definitions and lemmas, which are essential for the devel-
opment of our main results.
Definition 1. (Dai. [4]).

1. The pair (E, A) is said to be regular if det(sE − A) is
not identically zero.

2. The pair (E, A) is said to be impulse free if deg(det(sE−
A)) = rank E.
Lemma 1. For a given scalar d∗ > 0, the solution to the
system (4) exists and is unique and impulse free on [ 0,∞)
for any constant time delay d satisfying 0 ≤ d ≤ d∗, if the
pairs (E, A) and (E, A+Ad) are regular and impulse free.

Proof: If d > 0, the desired result follows immediately
from the regularity and absence of impulses of the pair
(E, A) and by employing the decomposition method [4].

If d = 0, the system (4) reduces to the linear singular
system

Eẋ(t) = (A + Ad)x(t) (5)
Noting that the pair (E, A + Ad) is regular and impulse
free, we can also obtain the desired result. ¤
Lemma 2. (Masubuchi [14]). The linear singular system

Eẋ(t) = Ax(t)
is regular, impulse free and stable if and only if there exists
a matrix P with appropriate dimensions such that

PT E = ET P ≥ 0, PT A + AT P < 0
Definition 2. For a given scalar d∗ > 0, the singular time-
delay system (4) is said to be regular and impulse free for
any constant time delay d satisfying 0 ≤ d ≤ d∗, if the
pairs (E, A) and (E, A+Ad) are regular and impulse free.
Definition 3. For a given scalar d∗ > 0, the uncertain
singular time-delay system (1) is said to be robustly
stable, if this system is regular, impulse free and stable
for all admissible uncertainties satisfying (2), (3) and any
constant time delay d satisfying 0 ≤ d ≤ d∗.

Lemma 3. If there exist matrices Ω1, Ω2 and Ω3 ∈ Rn×n

such that the following inequality (6a) holds, then the
inequality (6b) is derived from (6a),[

Ω1 Ω2

∗ Ω3

]
< 0, (6a)

Ω1 + Ω2 + ΩT
2 + Ω3 < 0. (6b)

Proof: Pre-multiplying and post-multiplying (6a) by
[ I I ] and [ I I ]T , respectively, we can obtain (6b) im-
mediately. This completes the proof. ¤

3. MAIN RESULTS

Firstly, the result on stability analysis for the nominal
system(4) is summarized in the following theorem. Then
a delay-dependent condition for the uncertain system (1)
to be robustly stable is presented.
Theorem 1. For a given scalar d∗ > 0, the singular time-
delay system (4) is regular, impulse free and stable for
any constant time-delay d satisfying 0 ≤ d ≤ d∗, if there
exist symmetric positive-definite matrices P , Q1, Q2, Z1,
Z2 and matrices S, X1, X2, Y1, Y2 such that the linear
matrix inequalities (7) are satisfied,



Ξ11 Ξ12 Ξ13
d∗

2
AT (Z1 + Z2)

∗ Ξ22 0 0

∗ ∗ −Q1
d∗

2
AT

d (Z1 + Z2)

∗ ∗ ∗ −d∗

2
(Z1 + Z2)




< 0 (7a)

[
Xi Yi

∗ Zi

]
≥ 0, i = 1, 2 (7b)

where R ∈ Rn×(n−r) is any column-full-rank matrix
satisfying ET R = 0 and

Ξ11 = ET PA+AT PE+SRT A+AT RST +Y2E+ET Y T
2 +

d∗
2 (X1 + X2) + Q2, Ξ12 = Y1E − Y2E,

Ξ13 = SRT Ad + ET PAd − Y1E, Ξ22 = Q1 −Q2

Proof: By Lemma 3 and Schur complement, it follows
from (7) that

0 > Ξ11 + Ξ12 + ΞT
12 + Ξ13 + ΞT

13 + Ξ22 −Q1

≥ (ET P + SRT )(A + Ad) + (A + Ad)T (PE + RST )
(8)

By denoting U = PE + RST and employing Lemma 2, it
can be easily verified that the pair (E, A + Ad) is regular,
impulse free and stable. In other words, the system (4)
with d = 0 is regular, impulse free and stable.

Note rank E = r ≤ n, there exist two nonsingular matrices
Ḡ and H̄ such that

Ē = ḠEH̄ =
[
Ir 0
∗ 0

]
(9)

then, the matrix R can be parameterized as

R = ḠT

[
0
Φ̄

]
(10)

where Φ̄ ∈ R(n−r)×(n−r) is any nonsingular matrix.
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In view of (9), we can define

Ā = ḠAH̄ =
[
Ā11 Ā12

Ā21 Ā22

]
(11a)

Ād = ḠAdH̄ =
[
Ād11 Ād12

Ād21 Ād22

]
(11b)

P̄ = Ḡ−T PḠ−1 =
[
P̄11 P̄12

P̄21 P̄22

]
(11c)

Q̄1 = H̄T Q1H̄ =
[
Q̄111 Q̄112

Q̄121 Q̄122

]
(11d)

Q̄2 = H̄T Q2H̄ =
[
Q̄211 Q̄212

Q̄221 Q̄222

]
(11e)

X̄1 = H̄T X1H̄ =
[
X̄111 X̄112

X̄121 X̄122

]
(11f)

X̄2 = H̄T X2H̄ =
[
X̄211 X̄212

X̄221 X̄222

]
(11g)

Ȳ1 = H̄T Y1Ḡ
−1 =

[
Ȳ111 Ȳ112

Ȳ121 Ȳ122

]
(11h)

Ȳ2 = H̄T Y Ḡ−1 =
[
Ȳ211 Ȳ212

Ȳ221 Ȳ222

]
(11i)

Left- and right-multiplying Ξ11 with H̄T and H̄ yield

Ξ̄11 = H̄T Ξ11H̄ =
[
Ξ̄11,11 Ξ̄11,12

∗ Ξ̄11,22

]
< 0 (12)

where Ξ̄11,22 = S̄2Φ̄T Ā22 + ĀT
22Φ̄S̄T

2 + d∗
2 (X̄122 + X̄222) +

Q̄222, S̄ = H̄T S =
[
S̄T

1 S̄T
2

]T and the expressions of
Ξ̄11,11 and Ξ̄11,12 are irrelevant of the following discussion
and hence are omitted here. Obviously, (12) implies that
Ā22 is nonsingular. Suppose, by contradiction, that Ā22

is singular, then there exists a vector ξ 6= 0 such that
Ā22ξ = 0 and thus

ξT Ξ̄11,22ξ ≥ ξT Q̄222ξ > 0

On the other hand, it follows from (12) that Ξ̄11,22 < 0,
which is a contradiction.

We define

G̃ =
[
I −Ā12Ā

−1
22

0 I

]
Ḡ (13a)

H̃ = H̄

[
I 0

−Ā−1
22 Ā21 Ā−1

22

]
(13b)

Then, it is easily shown that

Ẽ = G̃EH̃ =
[
Ir 0
0 0

]
(14a)

Ã = G̃AH̃ =
[
Ã11 0
0 I

]
(14b)

where Ã11 = Ā11 − Ā12Ā
−1
22 Ā21.

Therefore,

det(sE −A) = det(G̃−1) det(sẼ − Ã) det(H̃−1)

= det(G̃−1)(−1)(n−r) det(sIr − Ã11) det(H̃−1)
(15)

which implies that det(sE−A) is not identically zero and
deg(det(sE − A)) = r = rank E. Then, the pair (E, A) is
regular and impulse free.

In view of (14), we define

Ãd = G̃AdH̃ =
[
Ãd11 Ãd12

Ãd21 Ãd22

]
(16a)

P̃ = G̃−T PG̃−1 =
[
P̃11 P̃12

P̃21 P̃22

]
(16b)

Q̃1 = H̃T Q1H̃ =
[
Q̃111 Q̃112

Q̃121 Q̃122

]
(16c)

Q̃2 = H̃T Q2H̃ =
[
Q̃211 Q̃212

Q̃221 Q̃222

]
(16d)

X̃1 = H̃T X1H̃ =
[
X̃111 X̃112

X̃121 X̃122

]
(16e)

X̃2 = H̃T X2H̃ =
[
X̃211 X̃212

X̃221 X̃222

]
(16f)

Ỹ1 = H̃T Y1G̃
−1 =

[
Ỹ111 Ỹ112

Ỹ121 Ỹ122

]
(16g)

Ỹ2 = H̃T Y2G̃
−1 =

[
Ỹ211 Ỹ212

Ỹ221 Ỹ222

]
(16h)

Z̃1 = G̃−T Z1G̃
−1 =

[
Z̃111 Z̃112

Z̃121 Z̃122

]
(16i)

Z̃2 = G̃−T Z2G̃
−1 =

[
Z̃211 Z̃212

Z̃221 Z̃222

]
(16j)

We multiply (7a), on the left and on the right ,
by diag{H̃T , H̃T , H̃T , G̃−T } and diag{H̃, H̃, H̃, G̃−1}, re-
spectively, and (7b), by diag{H̃T , G̃−T } and diag{H̃, G̃−1},
on the left and on the right respectively. Then, one can
easily get

Ξ̃ =




Ξ̃11 Ξ̃12 Ξ̃13
d∗

2
ÃT (Z̃1 + Z̃2)

∗ Ξ̃22 0 0

∗ ∗ −Q̃1
d∗

2
ÃT

d (Z̃1 + Z̃2)

∗ ∗ ∗ −d∗

2
(Z̃1 + Z̃2)




< 0 (17a)

[
X̃i Ỹi

∗ Z̃i

]
> 0, i = 1, 2 (17b)

where

R̃ = G̃−T R =
[
0 Φ̃T

]T , S̃ = H̃T S =
[
S̃T

1 S̃T
2

]T ,

Ξ̃11 = ẼT P̃ Ã+ÃT P̃ Ẽ+S̃R̃T Ã+ÃT R̃S̃T +Ỹ2Ẽ+ẼT Ỹ T
2 +

d∗
2 (X̃1 + X̃2) + Q̃2, Ξ̃12 = Ỹ1Ẽ − Ỹ2Ẽ,

Ξ̃13 = S̃R̃T Ãd + ẼT P̃ Ãd − Ỹ1Ẽ, Ξ̃22 = Q̃1 − Q̃2.

Using Schur complement, (17a) implies[
Ξ̃11 Ξ̃13

∗ −Q̃1

]
< 0 (18)

which can be rewritten as (19) by expanding the block of
(18) 



Ξ̃11,11 Ξ̃11,12 Ξ̃13,11 Ξ̃13,12

∗ Ξ̃11,22 Ξ̃13,21 S̃2Φ̃T Ãd22

∗ ∗ −Q̃111 −Q̃112

∗ ∗ ∗ −Q̃122


 < 0 (19)

where Ξ̃11,22 = S̃2Φ̃T + Φ̃S̃T
2 + d∗

2 (X̃122 + X̃222) + Q̃222,

and other irrelevant variables are omitted here. From (19),
it is obvious that
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[
S̃2Φ̃T + Φ̃S̃T

2 + Q̃222 S̃2Φ̃T Ãd22

∗ −Q̃122

]
< 0 (20)

Left- and right-multiplying (20) by ζ =
[− ÃT

d22 I
]

and
ζT , we have

ÃT
d22Q̃222Ãd22 − Q̃122 < 0 (21)

that is ÃT
d22Q̃222Ãd22 − Q̃222 + (Q̃222 − Q̃122) < 0.

From (17a), Ξ̃22 < 0 holds, which implies (Q̃222−Q̃122) > 0
in (21) and

ÃT
d22Q̃222Ãd22 − Q̃222 < 0

Therefore,

ρ(Ãd22) < 1 (22)

Now, we define a transformation of state x(t) as

x̃(t) =
[
x̃1(t)
x̃2(t)

]
= H̃−1x(t) (23)

where x̃1(t) ∈ Rr and x̃2(t) ∈ Rn−r. Then, the system (4)
can be decomposed as

˙̃x(t) = Ã11x̃1(t) + Ãd11x̃1(t− d) + Ãd12x̃2(t− d) (24a)

0 = x̃2(t) + Ãd21x̃1(t− d) + Ãd22x̃2(t− d) (24b)

or equivalently

Ẽ ˙̃x(t) = Ãx̃(t) + Ãdx̃(t− d) (25)

Considering the system (24), we define the following func-
tional

Ṽ (x̃t) = Ṽ1(x̃t) + Ṽ2(x̃t) + Ṽ3(x̃t) (26)

where

Ṽ1(x̃t) = x̃T (t)ẼT P̃ Ẽx̃(t) = x̃T
1 (t)P̃11x̃1(t)

Ṽ2(x̃t) =
∫ t− d

2

t−d

x̃T (θ)Q̃1x̃(θ)dθ +
∫ t

t− d
2

x̃T (θ)Q̃2x̃(θ)dθ

Ṽ3(x̃t) =
∫ − d

2

−d

∫ t

t+θ

˙̃xT
1 (s)Z̃111

˙̃x1(s) dsdθ

+
∫ 0

− d
2

∫ t

t+θ

˙̃xT
1 (s)Z̃211

˙̃x1(s) dsdθ

From Leibniz-Newton formula, for time t > d, we have
∫ t

t−d

˙̃x1(θ) dθ = x̃1(t)− x̃1(t− d) (27)

∫ t

t−d

Ẽ ˙̃x(θ) dθ = Ẽx̃(t)− Ẽx̃(t− d) (28)

Noting (28) and following the same line as that in [2], [3],
we can write the system (24) as

Ẽ ˙̃x(t) = (Ã + ÃdẼ)x̃(t)− Ãd

∫ t

t−d

Ẽ ˙̃x(θ) dθ

+ Ãd(I − Ẽ)x̃(t− d)
(29)

Then, the derivative of Ṽ1(x̃t) along the trajectory of the
system (29) with respect to time t satisfies

˙̃V1(x̃t) = 2x̃T (t)ẼT P̃ (Ã + ÃdẼ)x̃(t)

+ 2x̃T (t)ẼT P̃ Ãd(I − Ẽ)x̃(t− d)

+ 2x̃T (t)S̃R̃T Ẽ ˙̃x(t) + η

= 2x̃T (t)ẼT P̃ (Ã + ÃdẼ)x̃(t)

+ 2x̃T (t)ẼT P̃ Ãd(I − Ẽ)x̃(t− d)

+ 2x̃T (t)S̃R̃T Ãx̃(t)

+ 2x̃T (t)S̃R̃T Ãdx̃(t− d) + η

(30)

where

η = −2x̃T (t)ẼT P̃ Ãd

∫ t− d
2

t−d

Ẽ ˙̃x(θ) dθ

− 2x̃T (t)ẼT P̃ Ãd

∫ t

t− d
2

Ẽ ˙̃x(θ) dθ.

Setting a = x̃(t), b = Ẽ ˙̃x(θ), N = ẼT P̃ Ãd and employing
Lemma 1 in [3], we can show

η ≤ d

2
x̃T (t)X̃1x̃(t) + 2x̃T (t)(Ỹ1 − ẼT P̃ Ãd)

×
∫ t− d

2

t−d

Ẽ ˙̃x(θ) dθ +
∫ t− d

2

t−d

˙̃xT (θ)ẼT Z̃1Ẽ ˙̃x(θ) dθ

+
d

2
x̃T (t)X̃2x̃(t) + 2x̃T (t)(Ỹ2 − ẼT P̃ Ãd)

×
∫ t

t− d
2

Ẽ ˙̃x(θ) dθ +
∫ t

t− d
2

˙̃xT (θ)ẼT Z̃2Ẽ ˙̃x(θ) dθ

=
d

2
x̃T (t)(X̃1 + X̃2)x̃(t) + 2x̃T (t)(Ỹ1 − ẼT P̃ Ãd)

× (Ẽx̃(t− d

2
)− Ẽx̃(t− d)) +

∫ t− d
2

t−d

[ ˙̃xT (θ)ẼT Z̃1Ẽ

× ˙̃x(θ) dθ
]
+ 2x̃T (t)(Ỹ2 − ẼT P̃ Ãd)

(
Ẽx̃(t)

− Ẽx̃(t− d

2
)
)

+
∫ t

t− d
2

˙̃xT (θ)ẼT Z̃2Ẽ ˙̃x(θ) dθ

(31)

Additionally, direct computation gives the following ex-
pressions for ˙̃V2(x̃t) and ˙̃V3(x̃t),

˙̃V2(x̃t) = x̃T (t− d

2
)Q̃1x̃(t− d

2
)− x̃T (t− d)Q̃1x̃(t− d)

+ x̃T (t)Q̃2x̃(t)− x̃T (t− d

2
)Q̃2x̃(t− d

2
)

(32)

˙̃V3(x̃t) =
d

2
˙̃xT (t)ẼT Z̃1Ẽ ˙̃x(t)−

∫ t− d
2

t−d

˙̃xT (θ)ẼT Z̃1Ẽ ˙̃x(θ) dθ

+
d

2
˙̃xT (t)ẼT Z̃2Ẽ ˙̃x(t)−

∫ t

t− d
2

˙̃xT (θ)ẼT Z̃2Ẽ ˙̃x(θ) dθ

(33)

Combining manipulations (30)–(33) yield

˙̃V (x̃t) ≤




x̃(t)

x̃(t− d

2
)

x̃(t− d)




T

Γ̃




x̃(t)

x̃(t− d

2
)

x̃(t− d)


 (34)

where
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Γ̃ =




Γ̃11 Γ̃12 Γ̃13

∗ Γ̃22 0
∗ ∗ Γ̃33




with

Γ̃11 = ẼT P̃ Ã+ÃT P̃ Ẽ+S̃R̃T Ã+ÃT R̃S̃T +Ỹ2Ẽ+ẼT Ỹ2
T

+
d
2 (X̃1 + X̃2) + Q̃2 + d

2 ÃT (Z̃1 + Z̃2)Ã,

Γ̃12 = −Ỹ2Ẽ + Ỹ1Ẽ,

Γ̃13 = S̃R̃T Ãd + ẼT P̃ Ãd + d
2 ÃT (Z̃1 + Z̃2)Ãd − Ỹ1Ẽ,

Γ̃22 = Q̃1 − Q̃2, Γ̃33 = −Q̃1 + d
2 ÃT

d (Z̃1 + Z̃2)Ãd.

By Schur complement, it is easy to show that (17) guar-
antees ˙̃V (x̃t) < 0 and therefore

λ1‖x̃1(t)‖2−Ṽ (x̃0) ≤ x̃T
1 (t)P̃11x̃1(t)− Ṽ (x̃0)

≤ Ṽ (x̃t)− Ṽ (x̃0) =
∫ t

0

˙̃V (x̃θ)dθ

≤ −λ2

∫ t

0

‖x̃(θ)‖2dθ ≤ −λ2

∫ t

0

‖x̃1(θ)‖2dθ

(35)

where

λ1 = λmin(P̃11) > 0, λ2 = −λmax(Γ̃) > 0.

Then, it is obvious that

λ1‖x̃1(t)‖2+λ2

∫ t

0

‖x̃1(θ)‖2dθ ≤ Ṽ (x̃0) (36)

Noticing (22), we have
lim

t→∞
x̃(t) = 0 (37)

From the congruence transformation x(t) = H̃x̃(t), we
have lim

t→∞
x(t) = 0. This completes the proof. ¤

Remark 1. Theorem 1 presents a new delay-dependent
stability criterion for singular time-delay system (4) by
employing the new Lyapunov-Krasovskii functional. When
E = I, the singular time-delay system (4) reduces to a
state-space time-delay system and it can be easily shown
that Theorem 1 coincides with Theorem 1 in [3] provided
Z1 = Z2 and Q1 = Q2. Therefore, Theorem 1 can
be regarded as a generalization of the reported results
on state-space time-delay systems to singular time-delay
systems.

Though the result of Theorem 1 is delay-dependent, the
delay-independent condition can be obtained as a particu-
lar case for certain values of the tuning variables. Setting

Y1 = Y2 = 0, Q1 = Q2 = Q, X1 = X2 = Z1 = Z2 =
εI

d∗
in

(7) and letting ε → 0+ result in the following corollary.
Corollary 1. The singular time-delay system (4) is regular,
impulse free and stable, if there exist symmetric positive-
definite matrices P , Q and a matrix S such that the linear
matrix inequality (38) is satisfied,[

Θ11 ET PAd + SRT Ad

∗ −Q

]
< 0 (38)

where R ∈ Rn×(n−r) is any full-column-rank matrix
satisfying ET R = 0 and

Θ11 = ET PA + AT PE + SRT A + AT RST + Q

As mentioned in [11], [12], the method of [2], [3] are much
conservative since the transformed system is not equivalent
to the original one and neither is the result of Theorem
1. Following the similar philosophy as that in [13], we
represent the system (4) to the following equivalent form[

E 0
0 0

] [
ẋ(t)
ẏ(t)

]
=

[
0 I
A −I

] [
x(t)
y(t)

]
+

[
0 0

Ad 0

] [
x(t− d)
y(t− d)

]
(39)

where y(t) = Eẋ(t). Then, by Theorem 1, it is easy to see
that the system (39) is regular, impulse free and stable
for 0 ≤ d ≤ d∗, if there exist symmetric positive-definite
matrices P , Qi, Zi and matrices Xi, Yi satisfying (7) where

E is replaced by
[
E 0
0 0

]
, A by

[
0 I
A −I

]
and Ad by

[
0 0

Ad 0

]
,

i = 1, 2. As a particular case, we set

P =
[
P1 0
0 εI

]
, R =

[
R1 0
0 P3

]
, S =

[
S1 S2

0 I

]
,

Qi =
[
Qi1 0
0 εI

]
, Xi =

[
Xi1 Xi2

∗ Xi3

]
,

Yi =
[
Yi1 0
Yi2 0

]
, Zi =

[
Zi1 0
0 εI

]
, i = 1, 2.

where P1, P3 ∈ Rn×n are nonsingular matrices with P1

symmetric and positive-definite, R1 ∈ Rn×(n−r) satisfies
ET R1 = 0 and rank R1 = n − r, S1 ∈ Rn×(n−r),

S2 ∈ Rn×n, ε > 0. It is obvious that
[
E 0
0 0

]T

R = 0 and

R ∈ R2n×(2n−r) is with full column rank. By denoting
P2 = P3S

T
2 and letting ε → 0+, the following theorem can

be obtained by employing Schur complement.
Theorem 2. For a given scalar d∗ > 0, the singular time-
delay system (4) is regular, impulse free and stable for
any constant time delay d satisfying 0 ≤ d ≤ d∗, if there
exist symmetric positive-definite matrices P1, Qi1, Zi1 and
matrices P2, P3, S1, Xi1, Xi2, Xi3, Yi1, Yi2 (i = 1, 2) such
that the linear matrix inequalities (40) hold,

Ξ =




Ξ11 Ξ12 Ξ13 Ξ14

∗ Ξ22 Ξ23 Ξ24

∗ ∗ Ξ33 0
∗ ∗ ∗ −Q11


 < 0 (40a)

[
Xi1 Xi2 Yi1

∗ Xi3 Yi2

∗ ∗ Zi1

]
≥ 0, i = 1, 2 (40b)

where R1 ∈ Rn×(n−r) is any full-column-rank matrix
satisfying ET R1 = 0 and

Ξ11 = PT
2 A + AT P2 + Y21E + ET Y T

21 + Q21

+
d∗

2
(X11 + X21)

Ξ12 = ET P1 + S1R
T
1 − PT

2 + AT P3 + ET Y T
22

+
d∗

2
(X12 + X22)

Ξ22 = −P3 − PT
3 + d∗

2 (X13 + X23) + d∗
2 (Z11 + Z21),

Ξ13 = Y11E−Y21E, Ξ23 = Y12E−Y22E, Ξ33 = Q11−Q21,

Ξ14 = PT
2 Ad − Y11E, Ξ24 = PT

3 Ad − Y12E.

Based on the result of Theorem 2, we can easily obtain the
following robust stability result.
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Theorem 3. For a given scalar d∗ > 0, the uncertain
singular time-delay system (1) is robustly stable for any
constant time delay d satisfying 0 ≤ d ≤ d∗, if there
exist symmetric positive-definite matrices P1, Qi1, Zi1 and
matrices P2, P3, S1, Xi1, Xi2, Xi3, Yi1, Yi2 (i = 1, 2) such
that the linear matrix inequalities (41) and (40b) hold,




Ξ11 Ξ12 Ξ13 Ξ14 PT
2 M NT

a

∗ Ξ22 Ξ23 Ξ24 PT
3 M 0

∗ ∗ Ξ33 0 0 0
∗ ∗ ∗ −Q11 0 NT

d
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I




< 0 (41)

where R1, Ξ11, Ξ12 and Ξ22 follow the same definitions as
those in (40).

4. NUMERICAL EXAMPLES

Example 1. Consider the following singular time-delay
system studied in [12], [13],[

ẋ1(t)
0

]
=

[
0.5 0
0 −1

]
x(t) +

[−1 1
0 0.5

]
x(t− d)

This system is stable for 0 ≤ d ≤ 0.5 in [12]. Applying
Theorem 1 in this note gives d∗ = 0.5773. Table 1 gives
the maximum upper bound of d∗ obtained by different
methods. Note that the result of [10] fails to deal with this
system. It is obvious to see that the condition of Theorem 2
is much simpler than that of [12], [13] with fewer variables.

Table 1. Comparison of delay-dependent sta-
bility condition of example 1

Methods d∗ Number of variables

Fridman [12] 0.5000 19
Theorem 1 0.5773 10

Fridman [13] 1.1500 24
Boukas [10] — —
Theorem 2 1.1547 18

Example 2. The next example concerns system (1) the
following parameters,

E =
[
1 0
0 0

]
, A =

[−0.5 0
0 1

]
, Ad =

[−1 0.1
1 0

]
,

‖∆A‖ ≤ 0.2, ‖∆Ad‖ ≤ 0.2,

By choosing R1 = [ 0 1 ]T and applying Theorem 3, it
can be confirmed that system (1) is regular, impulse free
and robustly asymptotically stable for any constant delay
d∗ = 1.3891.

5. CONCLUSION

The problem of robust stability for uncertain singular
time-delay systems was investigated. Some new delay-
dependent robust stability criteria were obtained based
on a new Lyapunov-Krasovskii functional. The obtained
condition can be checked by using the standard interior-
point algorithm. Numerical examples were also provided to
demonstrate the feasibility and superiority of the proposed
approach.
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