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Abstract:
An operational space controller that employs a three-layer neural network (NN) adaptive
controller with the velocity observer is presented in this paper. This incorporates the versatility
of NN based adaptive controller with the performance and effective formulation of the
operational space framework, which accommodates unified force/motion control as well as
highly redundant mechanisms postures. In this paper, it is shown that the trajectory tracking
errors, the estimation tracking errors, and the NN weight errors are bounded even when
the actual and accurate velocity feedbacks are not available, such as often the case in a
physical robot. Consequently, the controller with velocity observer is shown to be stable.
Realtime experiments on PUMA 560 robot was carried out to compare the effectiveness of
the proposed NN adaptive control strategy, the inverse-dynamics control, and the Proportional-
plus-Derivative (PD) control with gravity compensation.

1. INTRODUCTION

It is well-established that the operational space formula-
tion [Khatib, 1987] provides a natural extension to unified
force-motion (compliant) control [Jamisola et al., 2005] as
well as to the elegant posture management of highly redun-
dant and branching mechanisms [Russakow et al., 1995].
Control approach for this framework can be described as
inverse-dynamics, which requires the a priori knowledge of
robot dynamics. However, it is also known that the system
identification process for a robot is difficult to perform
accurately [Armstrong et al., 1986].

The identification of a robot Lagrangian dynamics is a two
step process: the derivation of symbolic expressions for the
dynamic parameters through the equations of motion and
the measurement of the numerical values of the dynam-
ics parameters of the physical robot. Some experimental
techniques have been proposed in the past [Jamisola et al.,
1999], to measure a robot dynamics through the responses
obtained from sending certain commands to the joint actu-
ators, however, it is difficult to obtain an accurate result
from the measurements. Additionally, joint friction of a
real robot is also difficult to obtain, as friction parameters
depend on the current ambient condition, so friction iden-
tification should ideally be performed immediately prior
to the operation of the robot.

Linear-In-Parameter (LIP) adaptive control [Craig et al.,
1986, Slotine and Li, 1987, Middleton and Goodwin,
1988, Ortega and Spong, 1988] was explored in the early
effort to formulate an easy-to-use high performance robot
control strategy. However, LIP adaptive strategy still
requires the derivation of the regression matrix out of

the symbolic expressions of the dynamics equations, prior
to the parameters estimation. Furthermore the dynamics
equations in Cartesian space becomes more complicated
than in joint space, making it difficult for implementation.

A three-layer Neural Network (NN) joint space adaptive
motion control was proposed in [Lewis et al., 1996] with
satisfactory performance in simulation. Several studies
then followed [Hu et al., 2000] [Kwan et al., 1994] where the
task space force/motion NN adaptive control was formu-
lated based upon model-based framework of [McClamroch
and Wang, 1988]. However, this framework still required
the contact surface geometry. A position only NN adaptive
control was demonstrated in [Ge et al., 1997] which lacked
the orientation control of the end-effector. Furthermore,
only the second layer NN weights were tuned. It has been
established that dual-layer weight NN can approximate
any function, only if both layers are tuned.

As most physical robots do not have a joint velocity
feedback and have to rely on joint displacement sensors
to obtain velocity measurements, the formulation becomes
more complicated. The adverse consequence of utilizing
backward difference of joint displacement feedback in the
absence of a clean joint velocity signal is shown in [Soe-
wandito et al., 2008], where an adaptive NN formulation
was implemented on a PUMA 560.

In this paper, an NN adaptive control in Operational
Space without velocity feedback is proposed, based on the
joint space model-based motion controller with velocity
observer by [Berghuis and Nijmeijer, 1993] and the three-
layer NN controller by [Lewis et al., 1996]. The proposed
controller is then constructed within the framework of op-
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erational space motion formulation [Khatib, 1987]. Stabil-
ity proof as well as comparison to the inverse-dynamics and
the PD with gravity control strategies are presented in this
paper. Real-time experimentation shows the effectiveness
of the proposed strategy. The implementation results on
Puma 560 are provided and discussed.

2. EFFECTOR DYNAMICS AND PROPERTIES

The effector dynamics of a serial manipulator in this paper
is expressed as:

Mx(q)ẍ + Bx(q, q̇)ẋ + gx(q) + fx(q, q̇) = F (1)

where x ∈ ℜn denotes the operational space coordinates,
q ∈ ℜn the joint space coordinates, Mx(q) ∈ ℜn×n the
kinetic energy matrix, Bx(q, q̇) ∈ ℜn×n the Coriolis and
centrifugal matrix, gx(q) ∈ ℜn the gravity forces vector,
fx(q, q̇) ∈ ℜn the friction forces vector, and F ∈ ℜn the
operational space forces as control input. The subscript
‘x’indicates that the matrices and vectors are expressed in
operational space. The relationships between the compo-
nents of the joint space dynamic and the operational space
dynamic of non-redundant manipulator in non-singular
configuration can be expressed as

Mx(q) =J−T(q)M(q)J−1(q) (2)

Bx(q, q̇) =[J−T(q)B(q, q̇) − Mx(q)J̇(q, q̇)]J−1(q) (3)

gx(q) =J−T(q)g(q) (4)

fx(q, q̇) =J−T(q)τ f (q̇) (5)

where J(q) is the basic Jacobian and M(q), B(q, q̇), g(q)
are as stated above, but expressed in joint space. The
friction term τ f (q̇) can be obtained by Xia et al. [2004]:

τ f (q̇) = τ visq̇ +
[
τ cou + τ stiexp(−τdecq̇

2)
]
sgn(q̇) (6)

where sgn(q̇) = +1,−1, 0 if q̇ = positive, negative and
zero respectively and τ vis, τ cou, τ sti, and τ dec are the
viscous friction, coulomb friction, stiction, and Stribeck
effect, respectively.

In order to develop the NN adaptive controller in the
operational space framework, the following properties of
the effector dynamics (1) are utilized:

Property 1. The operational space kinetic energy matrix
Mx(q) is symmetric and positive definite due to (2)
and the joint space kinetic energy M(q) is symmetric
and positive definite by definition. Hence according to
Rayleigh-Ritz theorem:

Mm‖z‖2 ≤ zTMx(q)z ≤ MM‖z‖2 (7)

where Mm and MM denote the minimum and maximum
eigenvalues of Mx(q) respectively. Moreover any positive
definite matrix A(y) satisfies:

Am ≤ ‖A(y)‖ ≤ AM (8)

where Am and AM denote the minimum and maximum
eigenvalues of A(y) respectively. Unless otherwise speci-
fied, all norms are defined as 2-norm (Frobenius norm).

Property 2. As shown in Lewis et al. [1993], Ṁx(q) −
2Bx(q, q̇) is skew-symmetric, hence

zT
(
Ṁx(q) − 2Bx(q, q̇)

)
z = 0, z ∈ ℜn (9)

Property 3. In joint space, τ f (q̇) by parts satisfies, Lewis
et al. [1993]:

‖τ visq̇‖ ≤ τvis,M‖q̇‖ (10)

‖τ cousgn(q̇)‖ ≤ τcou,M (11)

‖τ stiexp(−τdecq̇
2)sgn(q̇)‖ ≤ τsti,M (12)

Property 4. The operational space gravity vector gx(q) is
upper-bounded, this is direct from (4):

‖gx(q)‖ ≤ gM < ∞ (13)

Property 5. The operational space Coriolis and centrifugal
matrix Bx(q, q̇) can be expressed as a function of q and
ẋ since

Bx(q, ẋ) = [J−T(q)B(q, ẋ)−Mx(q)J̇(q, ẋ)]J−1(q) (14)

This can be obtained directly by substituting B(q, q̇) =

B(q, ẋ) and J̇(q, q̇) = J̇(q, ẋ) (since q̇ = J−1ẋ) into (3).

Property 6. The operational space Coriolis and centrifugal
matrix Bx(q, ẋ) is upper-bounded

‖Bx(q, ẋ)‖ ≤ Bx,M‖ẋ‖ (15)

where Bx,M is a positive scalar constant. It is a direct
result from property 5 combined with the joint space
properties ‖B(q, ẋ)‖ ≤ BM‖ẋ‖ and ‖J̇(q, ẋ)‖ ≤ J̇M‖ẋ‖.

Property 7. For any vectors y, z ∈ ℜn, the operational
space Coriolis and centrifugal matrix Bx(q, ẋ) satisfies the
following relationship

Bx(q,y)z = Bx(q, z)y (16)

which is obtained by using the following properties:
the joint space coriolis and Centrifugal matrix property
B(q,y)z = B(q, z)y [Nicosia and Tomei, 1990] and

J̇(q,y)z = J̇(q, z)y and the fact that J−1(q) ˙̂x = ˙̂q.

3. NN ADAPTIVE MOTION
CONTROLLER-OBSERVER FORMULATION

3.1 NN Adaptive Motion Controller-Observer
In this section, the operational space NN-based adaptive
motion controller is proposed as:

F =Kv(r1 + r2) + M̂x(q)ẍr + B̂x(q, ẋ0)ẋr

+ ĝx(q) + f̂x(q, ˙̂q)
(17)

The estimate of a dynamic parameter m is represented as
m̂ and the error dynamics are represented by m̃ = m− m̂.

The following terms are defined

ẍr = ẍd + Λ1(ẋ − ˙̂x) + Λie (18)

ẋr = ẋd + Λ1(xd − x̂) + Λi

∫ τ=t

0

e dτ (19)

r1 = ẋr − ẋ = ė + Λ1e + Λ1x̃ + Λi

∫ τ=t

0

e dτ (20)

ẋ0 = ˙̂x − Λ2x̃ (21)

r2 = ẋ − ẋ0 = ˙̃x + Λ2x̃ (22)

r1 + r2 = ẋr − ẋ0 (23)

where Λ1,Λ2,Λi ∈ ℜn×n are positive diagonal matrices,
e = xd − x and ė = ẋd − ẋ, are the trajectory tracking
errors, and xd, ẋd, ẍd are the desired trajectories. The esti-
mation motion tracking errors are x̃ = x−x̂ and ˙̃x = ẋ− ˙̂x,
while x̂ is the estimated operational space coordinates.
Combining the robot dynamics (1) with property 5, and
then with proposed controller (17), a general closed-loop
dynamics is obtained as:

Mx(q)ṙ1 = −Kv(r1 + r2) − Bx(q, ẋ0)ẋr

+ Bx(q, ẋ)ẋ + fx(q, q̇) − fx(q, ˙̂q) + η
(24)
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where the uncertainties of the system η

η = M̃x(q)ẍr + B̃x(q, ẋ0)ẋr + g̃x(q) + f̃x(q, ˙̂q). (25)

From property 3

fx(q, q̇) − fx(q, ˙̂q) = J−T[τ vis
˙̃q + τ cou(sgn(q̇) − sgn( ˙̂q))

+ τ sti(exp(−τdecq̇
2)sgn(q̇) − exp(−τdec

˙̂q2)sgn( ˙̂q))].
(26)

Using property 7, Bx(q, ẋ0)ẋr −Bx(q, ẋ)ẋ in (24) equals
to Bx(q, ẋ)r1 − Bx(q, ẋr)r2. This yields the controller
closed-loop dynamics:

Mx(q)ṙ1 = −Kv(r1 + r2) − Bx(q, ẋ)r1

+ Bx(q, ẋr)r2 + fx(q, q̇) − fx(q, ˙̂q) + η
(27)

The proposed observer is introduced as:

˙̂x = ẋ − ˙̃x = z + LDx̃ (28)

ż = ẍr + LP x̃ (29)

where LD,LP ∈ ℜn×n are positive diagonal matrices.
Combining (29) and the first derivative of (28), and taking
into account (20), we obtain:

¨̃x + LD
˙̃x + LP x̃ = −(ẍd − ẍ + Λ1(ẋd − ˙̂x)) = −ṙ1 (30)

LD and LP can be written as

LD = lD + Λ2 (31)

LP = lDΛ2 (32)

where lD,Λ2 ∈ ℜn×n are positive diagonal matrices.
Substituting r2 = ˙̃x + Λ2x̃ into (30) and multiply with
Mx(q), it yields

Mx(q)ṙ2 + Mx(q)lDr2 = −Mx(q)ṙ1 (33)

Using property 7, Bx(q, ẋ0)ẋr −Bx(q, ẋ)ẋ in (24) equals
to Bx(q, ẋ0)r1 −Bx(q, ẋ)r2 and (33), the observer closed-
loop dynamics is obtained as:

Mx(q)ṙ2 = −(Mx(q)lD − Kv)r2 + Kvr1

− Bx(q, ẋ)r2 + Bx(q, ẋ0)r1 − (fx(q, q̇) − fx(q, ˙̂q))

− η.

(34)

3.2 Three-Layer Neural Networks

Given N1, N2 and N3 are the number of neurons in
layer 1, 2 and 3, respectively, an input vector z ∈ ℜN1

can be defined where vkl is the first-to-second layer node
weights, l = 1, . . . , N1, k = 1, . . . , N2, θk is the threshold
offset, and wik is second-to-third layer node weights where
i = 1, . . . , N3. For a three-layer NN, the output vector
y ∈ ℜN3 can be expressed as

yi =

N2∑

k=1

wik σk

(
N1∑

l=1

vklzl + θk

)
; i = 1, . . . , N3, (35)

or an output matrix y ∈ ℜN3×N4 , which can be expressed
as:

yij =

N2∑

k=1

wijk σk

(
N1∑

l=1

vklzl + θk

)
;

i = 1, . . . , N3, j = 1, . . . , N4

(36)

where function σ(·) is differentiable such as sigmoid and
hyperbolic functions. The output (35) and (36) can be
compactly expressed in vector form (y) and matrix form
(Y):

y = {W}Tσ
(
{V}Tz

)
, Y = {W}Tσ

(
{V}Tz

)
(37)

3.3 Uncertainties η in NN terms

Since the estimate of a dynamic parameter m is repre-
sented as m̂ and the error dynamics are represented by
m̃ = m − m̂ then the uncertainties η (25) can be written
as

η = (Mx − M̂x)(q)ẍr + (Bx − B̂x)(q, ẋ0)ẋr

+ (gx − ĝx)(q) + (fx − f̂x)(q, ˙̂q)
(38)

From NN theory, given unlimited number of hidden layer
nodes, three layer NNs with ideal weights can approxi-
mate any functions. In practice, however, there are only
limited number of hidden layer nodes, thus the dynamic
terms Mx(q), Bx(q, ẋ0), gx(q), and fx(q, ˙̂q) can be ap-
proximated by three-layer NNs with “optimum”weights
{V}, {W} and approximation error ε:

Mx(q) = {WM}TσM({VM}TzM) + εM (39)

Bx(q, ẋ0) = {WB}
TσB({VB}

TzB) + εB (40)

gx(q) = {Wg}
Tσg({Vg}

Tzg) + εg (41)

fx(q, ˙̂q) = {Wf}
Tσf ({Vf}

Tzf ) + εf (42)
Likewise the estimated dynamic terms M̂x(q), B̂x(q, ẋ0),

ĝx(q), and f̂x(q, ˙̂q) are approximated by estimated weights

{V̂i}, {Ŵi} where subscript i = M,B, g, f represents the
individual dynamical terms. The following generic NN
expressions are then defined for ease of representation such
that:

Li = ({Wi}
Tσi({Vi}

Tzi)

L̂i = ({Ŵi}
Tσi({V̂i}

Tzi)

L̃i = Li − L̂i;

(43)

where Li, L̂i, and L̃i represent the actual, estimated,
and error, of the expression accordingly. Hence, using
the generic NN expressions, the uncertainties (38) can be
written as

η = (LM − L̂M )ẍr + (LB − L̂B)ẋr + (Lg − L̂g)

+ (Lf − L̂f ) + ε
(44)

where the total approximation error ε = εMẍr + εBẋr +
εg +εf . To compute η (44), it is necessary to compute the
generic form of

Li − L̂i = {Wi}
Tσ
(
{Vi}

Tzi

)
− {Ŵi}

Tσ
(
{V̂i}

Tzi

)
, (45)

while the error in the sigmoid of the first to second layer
weights is calculated as:

σ̃ = σ
(
{V}Tz

)
− σ

(
{V̂}Tz

)
. (46)

Utilizing the Taylor series expansion of the term σ(k), fol-
lowing the derivation in [Soewandito et al., 2008], equation
(45) can be shown that:

Li − L̂i = {Wi}
Tσi − {Ŵi}

Tσ̂i − {Wi}
Tσ̂i + {Wi}

Tσ̂i

= {W̃i}
Tσ̂i + {Wi}

Tσ̃i

= {W̃i}
Tσ̂i + {Wi}

T
[
σ̂′

i{Ṽi}
Tzi + O

(
{Ṽi}

Tzi

)]

= {W̃i}
Tσ̂i

+({Ŵi}
T + {W̃i}

T)
[
σ̂′

i{Ṽi}
Tzi + O

(
{Ṽi}

Tzi

)]
(47)

Using (47), the uncertainties η (44) can be divided into

η = ξ + w (48)
where

ξ =
(
{W̃M}Tσ̂M

)
ẍr +

(
{W̃B}Tσ̂B

)
ẋr

+ {W̃g}
Tσ̂g + {W̃f}

Tσ̂f +
(
{ŴM}Tσ′

M{ṼM}TzM

)
ẍr

+
(
{ŴB}Tσ′

B{ṼB}TzB

)
ẋr

+ {Ŵg}
Tσ′

g{Ṽg}
Tzg + {Ŵf}

Tσ′

f{Ṽf}
Tzf

(49)

and the “whole”errors w
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w =
(
{W̃M}Tσ′

M{ṼM}TzM

)
ẍr +

(
{W̃B}Tσ′

B{ṼB}TzB

)
ẋr

+ {W̃g}
Tσ′

g{Ṽg}
Tzg + {W̃f}

Tσ′

f{Ṽf}
Tzf

+
(
{WM}TO({ṼM}TzM

)
ẍr +

(
{WB}TO({ṼB}TzB

)
ẋr

+ {Wg}
TO({Ṽg}

Tzg + {Wf}
TO({Ṽf}

Tzf + ε

(50)

In the Lyapunov analysis in Section 3.4, it becomes evident
that it is only ξ that can be canceled by the weight
updates. A non-strict assumption that ‖w‖ ≤ wM and
‖ξ‖ ≤ ξM are defined, following the reason that:

• {W}, {V} and ε are the actual dynamics, hence
bounded.

• σ̂, its derivative and O({Ṽ}Tz) are bounded for
differentiable functions such as sigmoid and tanh.

• The desired trajectories ‖xd, ẋd, ẍd‖ ≤ xd,M are
bounded.

• {W̃} and {Ṽ} are assumed to bounded, implying that

{Ŵ} and {V̂} are also bounded. (This assumption

will be valid when {W̃} and {Ṽ} are shown to be
bounded in Section 3.4.)

• ė and e are assumed to be bounded, implying ẋ,x
and q̇,q, as well as ẍr and ẋr are also bounded. (This
assumption will be valid when ė and e are shown to
be bounded in Section 3.4.)

3.4 Stability Analysis

For the stability analysis, Z = diag[W,V] is defined, such
that ‖Z‖ ≤ ZM , where W = diag[WM,WB,Wg, Wf ]
and V = diag[VM,VB,Vg,Vf ].

Theorem 1. Let yT =
[
rT rT

2

]
, if satisfied

lD,m > Kv,M/Mm (51)

where lD,m,Mm are the minimum eigenvalues of lD,Mx(q)
respectively, while Kv,M is the maximum eigenvalue of Kv.
Let the NN weight updates be provided as

˙̂
WMij =FMij(σ̂M (r1,i + r2,i) ẍr,j − κŴMij) (52)

˙̂
VMk =GMk(zM σ̂′

Mk
(

n∑

i=1

n∑

j=1

ŴMijk (r1,i + r2,i) ẍr,j) (53)

− κV̂Mk)

˙̂
WBij =FBij(σ̂B (r1,i + r2,i) ẋr,j − κŴBij) (54)

˙̂
VBk =GBk(zB σ̂′

Bk
(

n∑

i=1

n∑

j=1

ŴBijk (r1,i + r2,i) ẋr,j) (55)

− κV̂Bk)

˙̂
Wgi =Fgi(σ̂g (r1,i + r2,i) − κŴgi) (56)

˙̂
Vgk =Ggk(zg σ̂′

gk
(

n∑

i=1

Ŵgik (r1,i + r2,i)) − κV̂gk) (57)

˙̂
Wf i =Ff i(σ̂f (r1,i + r2,i) − κŴf i) (58)

˙̂
Vf k =Gf k(zf σ̂′

f k
(

n∑

i=1

Ŵf ik (r1,i + r2,i)) − κV̂f k) (59)

where output nodes i, j = 1, . . . , n and hidden nodes
k = 1, . . . , ki (the subscript ‘i’≡ M,B, g, f). It is then
obtained that

lim
t→∞

‖y(t)‖ = by, lim
t→∞

‖Z̃(t)‖ = bZ̃ (60)

where by and bZ̃ are defined in (74) and (75) respectively.

Having defined the error dynamics (27), (34) and the
uncertainties η (48), the Lyapunov function is

V (r1, r2, Z̃) =
1

2
rT
1 Mx(q)r1 +

1

2
rT
2 Mx(q)r2

+
1

2

n∑

i=1

n∑

j=1

W̃T
Mij

F−1
Mij

W̃Mij
+ . . . +

1

2

kf∑

k=1

ṼT
fk

G−1
fk

Ṽfk

(61)

where W̃Mij
∈ ℜkM , . . . ,W̃fi ∈ ℜkf and ṼMk

∈

ℜlM , . . . , Ṽfk ∈ ℜlf and F−1
Mij

∈ ℜkM×kM , . . . ,F−1
fi

∈

ℜkf×kf and G−1
Mk

∈ ℜlM×lM , . . . ,G−1
fk

∈ ℜlf×lf are posi-

tive diagonal matrices. With li is the input nodes size (the
subscript ‘i’≡ M,B, g, f).

Then the error dynamics (27), (34), property 2 and the

uncertainties η (48) are substituted into V̇ (r1, r2, Z̃) to
yield:

V̇ = − rT
1 Kvr1 − rT

2 (Mx(q)lD − Kv)r2

+ rT
1 Bx(q, ẋr)r2 + rT

2 Bx(q, ẋ0)r1

+ (rT
1 − rT

2 )(fx(q, q̇) − fx(q, ˙̂q))

+ (rT
1 − rT

2 )w + ν

(62)

where the lump parameter

ν =

n∑

i=1

n∑

j=1

W̃T

Mij

(
F−1

Mij

˙̃
WMij + σ̂M(r1,i − r2,i)ẍr,j

)

+

n∑

i=1

n∑

j=1

W̃T

Bij

(
F−1

Bij

˙̃
WBij + σ̂B(r1,i − r2,i)ẋr,j

)

+

n∑

i=1

W̃T
gi

(
F−1

gi

˙̃
Wgi + σ̂g(r1,i − r2,i)

)

+

n∑

i=1

W̃T

fi

(
F−1

fi

˙̃
Wf i + σ̂f (r1,i − r2,i)

)

+

kM∑

k=1

ṼT

Mk

(
G−1

Mk

˙̃
VMk + zMσ̂′

Mk

(
n∑

i=1

n∑

j=1

ŴMijk

(r1,i − r2,i)ẍr,j))

+

kB∑

k=1

ṼT

Bk

(
G−1

Bk

˙̃
VBk + zBσ̂′

Bk

(
n∑

i=1

n∑

j=1

ŴBijk

(r1,i − r2,i)ẋr,j))

+

kg∑

k=1

ṼT
gk

(
G−1

gk

˙̃
Vgk + zgσ̂′

gk
(

n∑

i=1

Ŵgik(r1,i − r2,i))

)

+

kf∑

k=1

ṼT

fk

(
G−1

fk

˙̃
Vf k + zf σ̂

′

f k
(

n∑

i=1

Ŵf ik(r1,i − r2,i))

)

(63)

The terms in (62) can be analyzed for its boundedness.
Firstly, the second line of (62) can be shown bounded

‖rT
1 Bx(q, ẋr)r2 + rT

2 Bx(q, ẋ0)r1‖

≤‖r1‖‖r2‖Bx,M (‖r1‖ + ‖r2‖ + 2ẋM ).
(64)

this is due to the facts ẋr = r1+ ẋ and ẋ0 = ẋ−r2, and by
taking into account property 6 and assuming ‖ẋ‖ ≤ ẋM .

Secondly, the third line of (62) can be shown bounded

‖fx(q, q̇) − fx(q, ˙̂q)‖ ≤ ζfriction (65)
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which by using (26) and property 3 the followings hold:

(1) J is full-rank (non-singular) hence J−1 exists.

(2) τ vis
˙̃q is bounded: because τ vis is bounded and as-

suming ˙̂q is bounded, hence ˙̃q is also bounded. The
boundedness of ˙̂q can be fairly assumed if rx2 can be
shown bounded (in Section 3.4) – which implies ˙̂x is

bounded, and further showing ˙̂q = J−1 ˙̂x is bounded.
(3) τ cou(sgn(q̇) − sgn( ˙̂q)) is bounded: because τ cou is

bounded (11) and (sgn(q̇i)− sgn( ˙̂qi)) ≤ 2 is bounded.

(4) τ sti(exp(−τdecq̇
2)sgn(q̇) − exp(−τdec

˙̂q2)sgn( ˙̂q)) is
bounded: because τ sti is bounded (12) and sgn(·) and
exp−|a| are bounded.

Substituting the results into (62) and taking into ac-

count (1), (8) and ‖w‖ ≤ wM , V̇ (r1, r2, Z̃) becomes

V̇ ≤− Kv,m‖r1‖
2 − (MmlD,m − Kv,M )‖r2‖

2

+ ‖r1‖‖r2‖Bx,M (‖r1‖ + ‖r2‖ + 2ẋM )

+ (‖r1‖ + ‖r2‖)(ζfriction + wM ) + ν

(66)

It can be seen that the lump parameter ν is made up of
the derivatives of the NN weights ˙̃m and (rT

1 − rT
2 )ξ. The

idea is to cancel (rT
1 − rT

2 )ξ with ˙̃m. Since only (rT
1 + rT

2 )
term is available, then only rT

1 ξ can be accommodated by

the updates of the weights. Furthermore, − ˙̃m = ˙̂m, since
m̃ = m − m̂ and m is constant. With the weight updates
(52) – (59), and taking into consideration ξ ≤ ξM , the
lump parameter ν becomes

ν =κ

n∑

i=1

n∑

j=1

W̃T
Mij

ŴMij + . . . + κ

kf∑

k=1

ṼT
fk

V̂f k + 2‖r2‖ξ

≤− κ‖Z̃‖2 + κ‖Z̃‖ZM + 2‖r2‖ξM

(67)

Equation (67) is obtained by making use of

〈W̃,Ŵ〉 =

n∑

i=1

n∑

j=1

W̃T

Mij
ŴMij + . . . +

n∑

i=1

W̃T

fi
Ŵf i (68)

〈Ṽ, V̂〉 =

kM∑

k=1

ṼT

Mk
V̂Mk + . . . +

kf∑

k=1

ṼT

fk
V̂f k (69)

〈Z̃, Ẑ〉 = 〈Ṽ, V̂〉 + 〈W̃,Ŵ〉. (70)

where Ẑ = Z− Z̃, and therefore 〈Z̃, Ẑ〉 = 〈Z̃,Z〉 − ‖Z̃‖
2
≤

‖Z̃‖‖Z‖ − ‖Z̃‖
2
≤ ‖Z̃‖ZM − ‖Z̃‖

2
.

Substituting ν (67) into (66) and defining yT =
[
rT
1 rT

2

]
,

V̇ (r1, r2, Z̃) can be expressed as

V̇ (y, Z̃) ≤ −yT


Kv,m −

1

2
p

−
1

2
p (MmlD,m − Kv,M )


y

+

[
ζfriction + wM 0

0 ζM

]
y − κ‖Z̃‖2 + κ‖Z̃‖ZM

(71)

where p = Bx,M (‖r1‖ + ‖r2‖ + 2ẋM ) and ζM = ζfriction +
wM + 2ξM . The matrix

Ψ =


Kv,m −

1

2
p

−
1

2
p (MmlD,m − Kv,M )


 (72)

is positive definite if p < 2
√

Kv,m(MmlD,m − Kv,M )

by virtue of (51) the term 2
√

Kv,m(MmlD,m − Kv,M ) is

positive. Equation (71) can therefore be written as

V̇ (y, Z̃) ≤− Ψm

[
‖y‖ −

ζM

2Ψm

]2
− κ

[
‖Z̃‖ −

ZM

2

]2

+
ζ2
M

4Ψm

+
κZ2

M

4

(73)

Hence if

‖y‖ >

√
ζ2
M

4Ψ2
m

+
κZ2

M

4Ψm

+
ζM

2Ψm

≡ by, and (74)

‖Z̃‖ >

√
ζ2
M

4κΨm

+
Z2

M

4
+

ZM

2
≡ bZ̃ (75)

then V̇ (y, Z̃) < 0. According to Lyapunov’s extension
theorem [LaSalle, 1960] this demonstrates

lim
t→∞

‖y(t)‖ = by, lim
t→∞

‖Z̃(t)‖ = bZ̃ (76)

This shows ‖r1‖, ‖r2‖ and ‖W̃‖, ‖Ṽ‖ are bounded. It can
be shown through classical control that a bounded input
r2, yields bounded outputs ˙̃x and x̃. Having bounded
inputs r1 and ˙̃x, yields error signals lim

t→∞
e = 0 and ė,

∫ τ=t

0
e dτ that are also bounded.

4. PERFORMANCE EVALUATION

The proposed NN-based observer-controller is validated
with 6 DOF PUMA 560 manipulator which does not have
velocity feedback sensors. In addition to the proposed
NN adaptive motion control proposed in this paper, two
other types of control strategies are performed for com-
parison: (i) the model-based inverse dynamics motion con-
troller in Operational Space Formulation [Khatib, 1987] –
without friction compensation and (ii) Proportional-plus-
Derivative (PD) control with gravity model compensation.
A periodic circular trajectory – 75 mm radius and 2 second
circular period – for end-effector position with a constant
orientation was set as the desired path the experimenta-
tions.
The performance of the proposed NN based adaptive
control is shown in Fig. 1(c). Without any prior knowledge
of the robot dynamics, the controller was initialized with
zero weights. The proposed NN adaptive control was
shown to effectively learn and reduce the tracking errors.
Table 1 shows that the proposed NN control strategy yields
comparable performance, although slightly less, to inverse
dynamics strategy, without prior knowledge of the robot
dynamics. It should be noted that a friction model was
not included in the inverse dynamic controller. This is a
common practice in the implementation as coefficients of
frictions are difficult to identify and it varies with many
factors, such as temperature, presence of dust and dirt,
humidity, etc. However, the friction model is included in
the proposed NN adaptive controller, as described in the
derivation hence identification is not an issue. Figure 2 also
shows the boundedness and stability of the norms of NN
weights.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, the extension of the operational space
formulation to NN adaptive motion observer-controller is
derived and validated through real-time experimentation.
It is shown that even without prior knowledge to the robot
dynamics, the proposed neural network is effective in its
task and achieved a performance slightly less than inverse
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Fig. 1. End-effector tracking error with respect to the reference trajectory for (a) inverse dynamics control (b) PD control
with gravity compensation and (c) NN adaptive control strategies – obtained through real-time implementation.

Control
type

Inverse-
dynamics

PD +
gravity

NN with
observer

Xerror 2.5 12.5 2.5

Yerror 2.5 20.0 6

Zerror 2.5 7.0 1.5

Table 1. Position errors comparison

dynamics strategy. This could be seen as an interesting
alternative to the inverse-dynamics strategy, in term of
the cost of finding the robot dynamics. Future work would
be to extend this work into force-motion controller in the
operational space framework.
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