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Abstract: In modern, large scale interconnected power grids, low-frequency oscillation is a key roadblock 
to improved power transmission capacity. Supplementary generator control, flexible AC transmission 
system (FACTS), and high voltage direct currents (HVDC) are engineered devices designed to damp such 
low frequency swings. In this paper a neural network-based approximate dynamic programming method, 
namely direct heuristic dynamic programming (direct HDP), is applied to power system stability 
enhancement. Direct HDP is a learning and approximation based approach to addressing nonlinear system 
control problems under uncertainty, and it is also a model-free design strategy. The action and critic 
networks of the direct HDP are implemented using multi-layer perceptrons; learning is carried out based 
on the interactions between the controller and the power system. For this design approach, real time system 
responses are provided through wide-area measurement system (WAMS). The controller learning 
objective is formulated as a reward function that reflects global characteristics of the power system under 
low frequency oscillation, as well as tight coupling effects among system components. Direct HDP control 
design is illustrated by case studies, which are also used to demonstrate the learning control performance. 
The proposed direct HDP learning control is also developed as a new solution to a large scale system 
coordination problem by using the China Southern Power Grid as a major test bed. 

 

1. INTRODUCTION 

Power system is a complex network composed of diverse 
components. The most important task of power system 
control is to maintain stable operation of the system. Exciter 
and governor control of generators are traditional methods. 
High voltage direct current (HVDC) and flexible AC 
transmission system (FACTS) equipment are modern control 
devices that are frequently adopted in recent years. However, 
system nonlinearity and uncertainty, plus coordination of 
multiple controllers make up the three major challenges for a 
controller design in a complex system of immense scale. 

Many nonlinear phenomena are apparent in a power system 
including dead zone and control limits, to name a few. In 
addition, some special characteristics of nonlinear systems, 
bifurcation and chaos for example, have also been observed 
in power systems (Cutsem & Vournas, 1998). Even more 
challenging is the fact that many power system nonlinearities 
are difficult to model mathematically.  

For a nonlinear control system design, two approaches are 
usually adopted: linearization of a system model and energy 
function based design. The former includes linearization 
around the operating point (Yu, Vongsuriya, et al, 1970) and 
exact feedback linearization (EFL) (Lu, Sun et al, 2001), then 
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linear design principles can be applied, however, EFL 
depends greatly on the accuracy of the system model. In the 
second approach, energy storage functions or Hamiltonian 
functions are constructed based on the dissipation or 
Lyapunov stability theory to obtain the nonlinear control law 
(Webster, 1999), but the energy function cannot be easily 
constructed such that only simplified power system elements 
can be taken into consideration. 

As regional grids continue getting merged into larger 
networks, the challenges arising from system uncertainty 
have become even greater. The models and parameters 
deviate from reality due to simplifications in modelling and 
their variations with time (Kosterev, Taylor, et al, 1999). The 
power system operating conditions vary constantly, but the 
controller design is only based on typical operating 
conditions. Robust control can guarantee the stability of 
linear time-invariant (LTI) system (Ohtsuka, Taniguchi, et al, 
1992) if the uncertainties can be modelled correctly. Adaptive 
control is another approach to address the uncertainty 
problem; it can also be applied to power system stability 
control (Pierre,  1987). 

Most classic control designs are based on mathematical 
models, but the limitations of these models seriously affect 
the practical control performance. Several approximate 
dynamic programming (ADP) methods (Si,  Barto, et al, 2004) 
are proposed based on real system responses, which reflect 
important system dynamics, and using these methods, the 
constraints of nonlinearities and uncertainties can be 
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potentially handled through learning. The approximation is 
used to solve the curse of dimensionality of dynamic 
programming. It is implemented using the estimation of cost 
function instead of computing the exact performances of all 
combinations of states and controls. The controller 
calculations through interactions with system also reduce the 
complexities introduced by the system model. Generator 
control using dual heuristic programming (DHP) was 
achieved via computer simulations and physical experiments 
(Venayagamoorthy, Harley, et al, 2003). In this approach, a 
system model implemented using a neural network was 
pretrained to predict system responses in the next time step, 
and the training quality of the model have great impact on the 
performance of the controller. In this paper, we consider a 
model-independent ADP approach (Si & Wang, 2001), which 
can be viewed as a model-free version of the action-
dependent heuristic dynamic programming in adaptive critic 
designs (ACD); this will be referred to as direct HDP in the 
followings. In (Enns & Si, 2003), direct HDP was employed 
to control the flight of an Apache helicopter—a complex, 
continuous state/control, MIMO nonlinear system with 
uncertainty. The learning performance of the direct HDP 
application in multi-machine power systems is studied in (Lu, 
Si, et al, 2004). These results suggest the potential of 
adaptive critic designs for scalable complex system control 
applications.   

In this paper, the direct HDP method is employed to solve the 
low-frequency oscillation problem in multi-machine power 
system. The swing period is usually greater than 1 second; 
therefore, the controller has sufficient time to adapt.  

2. FRAMEWORK OF DIRECT HDP CONTROL 

The basic control framework of ADP is shown in Fig.1, 
where u is the control signal, and X is the state vector. The 
effect of u is evaluated by using a cost function and is used to 
update the control policy. The system/envirionment is usually 
represented by a set of differential equations. Under direct 
HDP, a time-domain computer simulation, or the real 
dynamic system itself, with realistic nonlinearities and 
uncertainties are used in learning control. Controller 
parameter updates are based on real-time system responses. 
The controller performance is evaluated by the cost function, 
which can be used to reflect the global system dynamics and 
coordination among different controllers. 

 

Fig. 1. Schematic diagram of ADP control 

Direct HDP control comprises two main parts: an action 
network and a critic network. The former produces control 
signals according to a learning policy represented by the 

approximating network, while the latter approximates the 
cost/reward function J by minimizing the Bellman error. 
These two parts are usually implemented by neural networks 
because of their universal approximation capability and the 
associated simple back-propagation learning algorithm.  

In power systems, real-time system dynamics fed back to the 
direct HDP controller are provided by a wide-area 
measument system (WAMS) as illustrated in Fig. 2, which is 
based on synchronized phasor measurement techniques and 
modern digital communication networks. Through this 
system, some remote key system variables can be gathered 
and used as feedbacks to improve system performance 
(Chaudhuri, Majumder, et al, 2004). 

 

Fig. 2. Framework of online coordinated control based on the 
direct HDP method and WAMS 

The signals that reflect system dynamics can be collected by 
phasor measurement units (PMU), tagged with an exact time 
stamp obtained from global positioning systems (GPS), and 
then transmitted to the WAMS center through a wide area 
communication network. After data pre-processing, the 
information can be used as inputs to online direct HDP 
design programs. During each time step, new control signals 
or parameters for different controllers are produced through 
the interaction between direct HDP and the environment 
(power system). Since cost functions are used in controller 
design, the resulting controllers are coordinated. 

Fig.3 shows the schematic representation of direct HDP 
control (Si & Wang, 2001). The reinforcement signal r(t) is 
obtained from the external environment. 

 

Fig. 3. Schematic diagram for implementation of direct HDP. 
The solid lines represent signal flows, and the dashed lines 
represent the paths for parameter tuning 
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During online learning, the controller is “naive” when it starts 
to control, that is, both the action and critic neural networks 
are randomly initialized for their weights. Once a system 
state is observed, an action will be subsequently produced 
based on the parameters in the action network. A “better” 
control output under the specific system state is rendered as a 
result of optimizing the principle of optimality. In the action 
network, this set of system operations is reinforced and the 
control value is adjusted by tuning the weights. 

The output of the critic network (the J function) 
approximates the discounted total reward-to-go. Specifically, 
it approximates R(t) given by 

1
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where R(t) is the future accumulative reward-to-go value at 
time t and α  is a discount factor for the infinite-horizon 
problem ( 0 1α< < ). 

The critic network is trained to approximate the “value 
function” J(t) by minimizing the objective function, which 
represents the balance of the principle of optimality, as 
follows 

[ ] 2( ) ( ) ( 1) ( ) / 2{ }cE t J t J t r tα= − − −              (2) 

The principle behind adapting the action network is to 
backpropagate the error between the desired ultimate 
objective, denoted by Uc, and the cost function R(t).  

The weight updated in the action network adjusts its weights 
to minimize the following objective function 

2( ) ( ) ( ) / 2[ ]a cE t J t U t= −                            (3) 

3. LEARNING AND ADAPTATION ABILITY OF 
DIRECT HDP CONTROLLER  

3.1  A Two-area System and SVC Supplementary Controllers 

The learning ability of the direct HDP controller is 
demonstrated in a 2-area system. Fig. 4 is the system diagram 
(Kundur, 1994) including four generators located in two areas, 
among which are two parallel tie lines from bus 7 to bus 9. 

 

Fig. 4. Single line diagram of the two-area test system 

An SVC is placed in the middle of the tie lines to support 
voltage and suppress oscillations. Traditional proportional-
integral (PI) method is used for regulation, but this method 
by itself cannot guarantee the stability after severe faults. 
Therefore a supplementary controller is needed. In (Kundur, 
1994), the design is based on the conventional pole-
placement method (C1), which is shown in Fig. 5. 

 

Fig. 5. Block diagram of the supplementary controller C1 

In Fig. 4, Vsupmax=－Vsupmin=0.1, and Vsup represents the output. 
The input signal Iline is the magnitude of the current in the 
transmission line between buses 9 and 10, and it is chosen as 
input based on the system’s observability. 

In order to compare control performance of the direct HDP 
controller and that of C1, the same input signal Iline is used. 
The phase adjustment of the supplementary control input 
signal is critical with regard to the oscillation damping 
problem, and it is implemented through the two phase-shift 
blocks in C1. However, if only one variable is inputted, the 
ordinary MLP neural network is not capable of changing the 
phase to what we want. An additional input—the differential 
of Iline—is necessary, and an approximate differentiator as 
that given in (4) is employed to reduce noise amplification. 

1 2

2 1 1 2

1 1 1
* ( ) 0

( ) 1 1s s
τ τ

τ τ τ τ
− < <

− + +
        (4) 

The structure of the supplementary damping controller using 
the direct HDP method is shown in Fig.6. 

 

Fig. 6. Block diagram of supplementary control using the 
direct HDP method 

3.2  Direct HDP Algorithm Implementation 

In the direct HDP approach, the reward function is the only 
evaluation function on the task known by the controller, in 
this case, prior knowledge about the power system is applied 
explicitly to the reward function. For the 2-area system, the 
reinforcement signal r(t) is given as follows: 

2 2 2
1 inter-area 2 1 3 2( ) ( )local localr t b b bω ω ω= − Δ + Δ + Δ        (5) 

int er areaω
−

Δ , 1localωΔ  and 2localωΔ  are rotor speed deviations 
corresponding to different oscillation modes. By adjusting the 
weights bi (i=1, 2, 3), the most possible destabilizing 
oscillation mode is chosen to be suppressed first. During 
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normal operations, all generators are synchronized and the 
three delta omega variables are zero. Once the system 
undergoes a disturbance, r(t) may be viewed as an index of 
the kinetic energy of the entire system oscillation, which 
reflects how far the current system is away from the 
equilibrium point. In this paper, SVC is used to damp the 
inter-area power swing, as such, b1=0.8, and b2=b3=0.1. 

In the direct HDP controller shown in Fig. 3, there is one 
hidden layer in the action or critic neural network. The 
number of neurons in the input layer varies according to the 
input signals. There are 6 neurons in the hidden layer and 1 
neuron in the output layer. The controller can be easily 
expanded to multi-input multi-output cases, only the neuron 
numbers in the input and output layers need to be altered. The 
update algorithm uses gradient descent, and learning of the 
neural networks is carried out using a Task-Run-Trial setup 
(Lu, Si, et al, 2007).  

The system stability is a prerequisite when used in all 
simulation runs because instability results in system states 
with abnormal values and the neural network learning in this 
situation is hazardous. The instability criterion is placed on 
the generator angle difference, which is impossible to exceed 
180 degrees in a real power system. 

3.3  Simulation Results 

Two supplementary damping control loops are considered in 
the study: (1) C1－PSS-type controller proposed by Kundur; 
(2) C2－direct HDP control with the tie line current lineI  as 

the input. 
The basic scheme used in the simulation is the same as in 
(Kundur, 1994), i.e., the same load flow calculation results 
and the same disturbance in which a three-phase short circuit 
occurs near bus 9 and is cleared by tripping the line between 
buses 8 and 9 after 74ms. This case is also used to train the 
direct HDP controller from randomly initialized action and 
critic weights. Fig. 7 is an example of two trials in the 
learning process of the C2 controller. Without optimizing the 
direct HDP algorithm, the calculation time of one trial is 
about 5 seconds, most of which are consumed by the power 
system simulation. 

In trial 1, since initialization was random, controller 
parameters during the first several seconds were not in 
accordance with the desired actions. The system lost stability 
after 4 seconds, and the simulation was aborted because the 
failure criterion was reached. No proper mapping relationship 
between the inputs and the outputs can be observed. But this 
trial, characterized by a failure, provided the direct HDP 
controller with much useful information about what state-
action pairs may have brought instability and thus should be 
avoided. In trial 2, a refined and accurate control strategy is 
clearly observed as shown in Fig. 7(e). After serious faults, 
the output of the controller switches between the lower and 
upper bounds in order to use the full control power, much 
like a bang-bang controller. When oscillation reduces, so 
does the control magnitude. Continuous training based on 
trial 2 can increase the speed of controller response further. In 
Fig. 8, the performance of learned direct HDP controller is 
compared with the traditional one. 

 

Fig. 7. Learning process of the direct HDP controller including two trials. (a), (d) output of the controller; (b), (e) mapping 
relationships between inputs and outputs; (c), (f) rotor angle between generators G1 and G3.

To evaluate controller performance under different conditions, 
the following case was simulated. The loads at bus 9 are 
reduced from 1769 MW to 1569 MW and correspondingly an 
active power of 200 MW injected into the network from 
generator 2 is reduced, and the line between buses 7 and 8 is 

out of service and no line tripping occurs after the 
instantaneous short circuit fault. 

In this case, the system model, the load level, and the system 
structure have all been changed, and the controller designed 
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on the basis of the basic case cannot guarantee system 
stability. Fig. 9 shows the learning process of the C2 
controller to maintain system stability under new conditions. 

In the beginning, the equivalent gains of the two current 
signals are positive, but after learning is completed, the gains 
are negative (Fig. 9 (a)). However, these are the correct 
controller parameters under new conditions. The adapted 
direct HDP controller damps the oscillations well (Fig. 9 (b)) 
compared to the unstable swings with fixed C1 controller. 

 

Fig. 8. Rotor angle between G1 and G3 after disturbances. 

 

Fig. 9. Learning process when the system configurations 
change significantly.  

4. DIRECT HDP COORDINATED CONTROL IN A 
COMPLEX SYSTEM 

4.1  China Southern Power Grid (CSG) 

CSG is an AC/DC hybrid power network, and mainly 
composed of four provincial grids. The distance of 
transmission from west to east is over 1000km. High capacity 
power transmission takes place through 5 AC lines and 2 DC 
links (Guiguang and Tianguang) in parallel in 2006. The grid 
structure is shown in Fig. 10. Upon completion of connecting 
regional grids, low frequency oscillation has become a 
prominent problem. Power modulation control of HVDC is 
an attractive approach to enhance the stability. The structure 
of modulation controller is as that shown in Fig. 5, and the 

input signals are chosen as the active power on the parallel 
AC lines (Tianshengqiao-Yulin, Nanning-Pingguo) based on 
the analyses of observability and dynamic relative gain array. 

Fig. 10. Simplified Diagram of South China Grid structure 

4.2  Independent Design of HVDC Modulation Controllers 

Since the terminals of two DC links are not far from each 
other in terms of electricity distance, their controllers must be 
coordinated. In section III, the learning ability of direct HDP 
controller is validated, and in this section, its coordinating 
design considering practical engineering constraints will be 
demonstrated. 

If only one DC power modulation controller is used, the 
parameters can be tuned to achieve desired control 
performance, however, if these independently designed 
controllers work together, the interaction between any two 
DC links deteriorates system damping capability, as shown in 
Fig. 11. In the multi-infeed dc system, the supplementary dc 
control must be designed on a coordinated basis to avoid 
unexpected excitation of new poorly damped mode (Pilotto, 
Szechtman, et al, 1995). 

 
Fig. 11. Rotor angle between Generator Qianxi in Guizhou 
and SJCG in Guangdong.  

4.3  Online Coordinated Control using Direct HDP 

For direct HDP controller, the control law update is 
instructed by the reward function. Its definition is the 
weighted sum of squares of relative rotor speed differences 
among three approximate inertia centers: Guangdong, 
Guizhou and Yunan. This function reflects stability of the 
entire system, if only one oscillation mode is suppressed, the 
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reward is not minimal, and the controller parameters will be 
adjusted continuously.  

The basic algorithm of HVDC direct HDP supplementary 
damping controllers is not changed, however, the structure is 
improved for efficiency enhancement (Lu, Si, et al, 2006). 
Starting from the independently designed Guiguang and 
Tianguang DC power modulation controller parameters, the 
new direct HDP controller can obtain a set of coordinated 
values. Fig. 12 illustrates the learning process, where the 
variations are within acceptable bounds for real devices. 

After coordination, the oscillation with several frequencies is 
damped well, as shown in Fig. 13. 

 
Fig. 12. Learning process of Guiguang modulation controller 

 
Fig. 13. Rotor angle between Generator Qianxi in Guizhou 
and SJCG in Guangdong.  

5. CONCLUSIONS 

The three major challenges arising from system nonlinearities, 
uncertainties, and lacking of coordinated design make the 
stability control of a large-scale power system difficult. In 
this paper, the direct HDP method is employed to damp low-
frequency oscillations. Distributed controllers are chose to 
use one common cost function so that the design and 
adaptation can be easily coordinated. The performance of the 
direct HDP controller is validated in two systems. The first 
case is the four-machine two-area system, where the training 
that begins from random initialization and the adaptation 
under various operating conditions demonstrate good 
learning abilities of the direct HDP controller. Further, the 
coordinated design approach has been validated through two 
DC power modulation controllers in CSG, and the advanced 

performances compared with the traditional control approach 
are presented. 
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