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Abstract: This paper presents a new systematic adaptive fuzzy neural network for inverse 
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1. INTRODUCTION 
 
Designing controllers for a Multi-Input Multi-Output 
(MIMO) system requires clear knowledge of its 
mathematical model. For robot manipulators, it is 
almost impossible to obtain or identify precisely this 
model. Instead, the so called adaptive inverse model 
control techniques are generally used. This paper 
presents a systematic adaptive fuzzy neural network 
for inverse modelling of robot manipulators. For this 
purpose, an inductive learning technique (Pham, et 
al., 2004) was modified to generate fuzzy modelling 
rules. A full differentiable fuzzy neural network was 
developed to construct the inverse model, while any 
adaptation mechanism can be applied to tune the 
network parameters online. The proposed system 
was tested on the virtual dynamic model of the first 
three links of the Puma560® robot arm. The 
remainder of the paper is organized as follows. 
Section (2) outlines fuzzy rules generation technique 
from input/output numerical examples. Section (3) 
discusses the overall structure of the proposed 
inductive fuzzy neural network. Section (4) presents 
the obtained modelling results and section (5) 
concludes the paper. 
 
 

2. RULES GENERATION TECHNIQUE 
 
2.1 Review. 
 
For a dynamic system with single input u and single 
output y, the output at time interval k can be 
expressed in discrete form as in equation (1). 
 
y(k) = f(y(k-1),..., y(k-n), u(k-1),..., u(k-m))            (1) 
 
This equation can be extended to represent MIMO 
dynamic systems as well. When input/output records 
are used, function f, and integers n and m define the 
dynamic system. If n and m are given, the only task 
is to find function f. Fuzzy neural networks can be 
employed to approximate f (Narenda and 
Parthasarathy, 1990). Since robot manipulators can 
be regarded as bounded-input bounded-output 
(BIBO) stable systems in presence of input, equation 
(1) can be used to approximate their dynamics. 
 
2.2 Inductive Learning. 
 
A fuzzy rule used to describe a numerical record is in 
many ways similar to the rule created via inductive 
learning (Pham and Aksoy, 1995). The main 
difference is that, due to the notion of fuzziness, a 
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record will have a particular “degree of match” 
(μrule(record)) with each rule (Srinivasan, et al., 
1993). The fuzzy inductive learning algorithm 
presented in (Pham, et al., 2004) is briefly explained. 
The algorithm is designed to extract fuzzy “If-Then” 
rules from numerical records. In this paper, the 
output is divided into equal, 50% overlapped 
Gaussian membership functions (target classes). 
Each record (E) is described in terms of a fixed set of 
m (no. of inputs) attributes (equivalent to linguistic 
variables) and by an output class value (CE). Each 
created rule is composed of a number of conditions 
on each (or some of the) attribute(s) (CAi) and by a 
class value (Crule). Each rule can be represented as 
CA1 ∧ CA2 ∧ ... ∧ CAm→ Crule. In order to create a 
rule set, the algorithm incrementally employs a rule 
forming process until all records are covered. The 
first step is to select a seed example (SE), which is 
the first record in the list not covered by previously 
created rules. The second step consists of employing 
a specific search process to create a consistent and 
general rule covering the (SE). The main feature of 
this search is that the conditions for inputs are 
created automatically during the rule forming 
process. The result is a rule where all conditions will 
take the form [Vi

min < Ai <Vi
max]. These conditions 

might cover large areas in the records space. Thus, as 
the third and final step, the algorithm employs a post-
processing technique that reduces the coverage of 
some conditions to the training data range only. The 
search mechanism searches for rules that cover as 
many records as possible from the target class and at 
the same time exclude records belonging to other 
classes. By applying this procedure, there is no need 
to discretise the input data. The algorithm identifies 
splitting points for each continuous attribute range 
during the learning process. Each condition takes the 
form [Vi

1 < Ai <Vi
2] where Vi

1 and Vi
2 are continuous 

values included in the ith continuous attribute range 
[Vi

min, Vi
max]. At the end of rule forming process, 

transformation into fuzzy conditions is employed. 
 
Consider the condition [Vi

1 <Ai<Vi
2], it is transformed 

into a membership function f (a, b, c), where a= , 

b= , and c= ( + )/2. 
1

iV

2

iV 2
iV 1

iV
 

1 

μ(x) 

x 
b2 b1 b3 c2 c1 a1 a3 

 
Fig. 1. Types of generated input membership 

functions. 
If =-∞, then a=-∞, b= , and c= , which is the 

minimum attribute value. If =+∞, then a= , 

b=+∞, and c= , which is the maximum attribute 
value. These values are then used to generate 
equivalent Gaussian and sigmoid membership 
functions to be used in the fuzzy neural network as 
shown in Fig. 1. To adaptively model the inverse 
kinematics of the robot arm, a fuzzy rule-base is 
generated first using the algorithm explained. 
Equation (2) expresses an approximate discrete 
inverse kinematics relation. 

1

iV 2

iV min

iV

2

iV 1

iV

max

iV

 
θi

k+1 ≅  f( xk+1, yk+1, zk+1,θ1
k,θ2

k,.......,θn
k)          (2) 

 
Where k is the sampling interval, i = (1,2,..., n), n is 
the number of links, (x, y, z) is the end-effector’s 
Cartesian position, and θ  is the joint angle. Three 
sets of six-input single-output fuzzy rules can be 
generated representing the robot inverse kinematics. 
The entire training set is composed of around forty 
thousand records. The outputs domains have all been 
selected to be decomposed into eleven Gaussian 
membership functions. The resulting model is 
composed of thirty-nine rules for the first three links 
compared to more than eight hundred rules using 
Wang’s method (Wang and Mendel, 1992a,b).  
 
To adaptively model the inverse dynamics of the 
robot arm for inverse model control systems, a fuzzy 
rule-base is generated first using the algorithm 
explained. Equation (3) expresses an approximate 
discrete inverse dynamics relation for this purpose. 
 
Ti

k+1 ≅ f(T1
k,..., Tn

k,θ1
k+1,..., θn

k+1, θ1
k,..., θn

k, v1
k+1,..., 

                vn
k+1 ,v1

k,..., vn
k)                                        (3) 

 
Where T is the joint torque and v is the joint velocity. 
Three sets of fifteen-input single-output fuzzy rules 
can be generated representing the robot inverse 
dynamics. The entire training set is composed of 
around forty thousand records. The outputs domains 
have all been selected to be decomposed into eleven 
Gaussian membership functions. The resulting model 
is composed of two hundred and thirty rules for the 
first three links compared to more than fourteen 
hundred rules generated using Wang’s method 
(Wang and Mendel, 1992a,b). 
 
 

3. INDUCTIVE FUZZY NEURAL NETWORK 
 
3.1 Network Structure 
 
Fig. 2 presents the structure of the proposed six-layer 
fuzzy neural network. The network employs time-
delayed feed-backs from output layer to input layer.  
Using the same notation reported in (Lin and Lee, 
1991), the function that provides the net input and net 
output of each node can be written as in equation (4). 
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Where p is the number of inputs to the node, w is the 
link weight associated with each input, u is the node 
output in the preceding layer, k indicates the layer 
number, f is the node function, and  denotes the 
activation function in layer k.  
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Fig. 2. Proposed fuzzy neural network. 
 
In the proposed network in fig. 2, layer (1) contains n 
nodes, representing the input linguistic variables; 
these nodes receive a crisp input vector 

( ) 1 11
1 n ii i iX ,...., ,   1

if fx  x u x a,= = = = .The link weights at 
layer (1) are fixed to unity. Nodes at layer (2) are 
input term nodes which act as membership functions 
to represent the terms of the respective n input 
linguistic variables. An input linguistic variable x in 
a universe of discourse U is characterized by 

{ }1 2 m
x x xA(x) , ,...,A A A= , where A(x) is the term set of x, 

which is the set of the generated membership 
functions for each input derived from inductive 
learning algorithm.  
 
Layer (2) therefore accommodates n independent 
term sets, where each corresponds to an input xi and 
is partitioned to mi terms representing input 
membership functions. The function of each node j 
in a term set i is to calculate the degree of 
membership of the input xi with respect to the 
membership function associated with the term set 

ij
xA ( ) according to the specific equation of this 

membership function as in equation (5). 
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Where mij and σij are, respectively, the centre (or 
mean) and the width (or variance) of the Gaussian 
function and βij is the characteristic value for the 
sigmoid function. mij, σij, and βij all calculated from 
the (a,b,c) parameters generated for each membership 
function from the inductive learning stage. Hence a 
link weight at layer (2)  can be interpreted as an 
adjustable free parameter of the input membership 
function. The tuning of this parameter (link weight) 
has the effect of tuning the membership function 
parameters (a,b,c). 

2
ijw

 
The nodes at layer (3) are the inductive learning rules 
nodes. Hence, the rule nodes perform the softmin 
function (Berenji and Khedkar, 1992) as the 
minimum interpretation of the sentence connective 
"and" between the antecedents of a fuzzy rule is 
employed. Therefore the function of the rth rule node 
is as in equation (6). 

3 1

1

( (        3 3 3 3
r 1 2 qr

q

i
q

i

ii

i

uu e
softmin , ,..., )  = fa u u u

ue

ζ

ζ
=

=

−

= =
−

∑

∑
6)

Where r= 1,…,R, and R is the number of rules or rule 
nodes in layer (3), q is the number of inputs for that 
particular rule, ui is the ith input to layer (3), and ζ is 
an index representing the softness of the softmin 
function. All link weights at this layer are fixed to 
unity to transmit only the membership degree of the 
linguistic input to the rule interpretation mechanism. 
 
 The nodes at layer (4) are output term nodes which 
act as membership functions to represent the output 
terms of the respective l linguistic output variables 
(in this case l=3). An output linguistic variable y in a 
universe of discourse W is characterized 
by { }1 2 11

y y yF(y) , , ...,F F F= , where F(y) is the term set 
of y, that is the set of the class membership functions 
for each output, as explained previously. 
Consequently layer (4) accommodates 3 independent 
term sets, where each term set corresponds to an 
output yi and is partitioned to 11 terms representing 
output membership functions. 
 
 The nodes in layer (4) perform the softmax function 
(Estevez and Nakano, 1995). Therefore, the function 
of each term node j in the output term set i, is as in 
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equation (7). 
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Where p is the number of rules sharing the same 
consequent (output term node), ui is the ith input to 
layer (4), 1 )i i( uu = −  is the membership logic 

complement, and ζ is an index representing the 
softness of the softmax function. Hence the link 
weights at layer four are fixed to unity. The number 
of nodes at layer (5) is 2l, where l is the number of 
output variables, i.e. two nodes for each output 
variable. The function of these two nodes is to 
calculate the denominator and the numerator of an 
approximate form of Mean of Maxima (MOM) 
defuzzification function (Runkler, 1997) for each 
output variable. The functions of the numerator and 
denominator nodes of the ith output variable 
are , while . Where 55 4 *ni ij ijni= =a af m a55 4

di ijdi
= =a f

5
nif  and 5

dif are respectively the node functions of 

the numerator and the denominator nodes of the ith 
output variable. mij is the centre (or mean) of the 
Gaussian function of the jth term of the ith output 
linguistic variable yi. Layer (5) employs 2l weight 
vectors, with two weight vectors for each output 
variable. The first link weight vector connects the 
numerator node of the ith output to the term nodes in 
its term set and its weight components are denoted 

by . Each component of this weight vector 

represents the centre (or mean) of the membership 
function of the j

5
nijw

th term of the term set of the ith output 
variable. The second link weight vector connects the 
ith output denominator node to the term nodes in its 
term set and its weight components are denoted 

by . Hence the link weights are fixed to unity.  5
dijw

 
Nodes at layer (6) are the defuzzification nodes. The 
number of nodes in layer (6) equals the number of 
output linguistic variables. The function of the ith 

node corresponding to the ith output variable is as in 
equation (8). 

(8)
 
 

66
i i i

6 5
ni ni
6 5
di di

   w a=                                   = =y
w a

a f  

Where  and  are layer (6) link weights 
associated with each output variable node. These two 
link weights represent a scaling factor of an output. 
Following the network construction phase, the 
network then enters the parameter learning phase to 
adjust its free parameters through on-line adaptation. 
The network adjustable free parameters were 
selected to be centre’s (m

6
niw 6

diw

ij
s) of the output 

membership functions of the term nodes in layer (4) 
as well as the link weights at layers (2) and (6). 

 3.2 Parameters Tuning 
 
The back-propagation learning algorithm is applied 
as an example of an adaptation mechanism which 
requires full differentiable model to optimally tune 
the proposed fuzzy neural network parameters. The 
problem for the supervised learning can be stated as: 
Given n input patterns xi(t), i = 1,....,n, and l desired 
output patterns yi(t), i = 1,.....,l, the fuzzy partitions, 
and the fuzzy rule base, adjust the network free 
parameters optimally. In the parameter learning 
phase, the network works in the feed-forward 
manner, that is the goal is to minimize the error 
function ( ) ( )( 2

net
1
2 )E = y t - ty . Where y(t) is the 

desired output, and ynet(t) is the current network 
output. For each training data set, starting at the input 
nodes, a forward pass is followed to compute the 
activity levels of all the nodes in the network. Then, 
starting at the output nodes, a backward pass is 
followed to compute the rate of change of the error 
function with respect to the adjustable free 
parameters for all the hidden nodes. Assuming that 
(w) is the adjustable free parameter in a node, then 

the general learning rule can be written as E
w

w

∂
Δ = −

∂
 

and ( ) ( )1w wt t η w= + Δ+ . Where η is the learning rate, 
then using the chain rule, the partial derivative can be 

defined as E E f E a f
w f w a f w
∂ ∂ ∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂ ∂ ∂

. Hence, the 

calculation of the back-propagated errors can be 
described starting at the output nodes. The adaptive 
tuning rule for the weights at layer (6) is 

5

5 66

( ( ) ( ))netni

di dini

E a
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−  &
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while the error propagated to layer (5) is, 
6
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6

5
δ
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y t y t
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−
 &
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5
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*
δ

( ( ) ( ))
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netni
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w a

y t y t
=

−
. 

At layer (5), no adjustment is required for the link 
weights connected to the denominator nodes, while 

an adjustment is required for the link weights 5 'nij sw  

which represent the centres mij’s of the output 
membership functions. Consequently, the adaptive 
rule to tune the centers of the output membership 

functions is 6
ni ij

ij

E
a

m
δ

∂
= ×

∂
4 . The propagated error from 

layer (5) to the jth node in the ith term set in layer (4) 

is ( ) ( )5 6
ij ni ij dimδ δ δ= × + 6 . No adjustment is required 

for the link weights of layer (4). Only the error 

signals  need to be calculated and to be 
propagated to a rule node r in layer (3). Each one of 
these error signals is a summation of L propagated 

error signals 

4
r ' sδ

4
riδ , one error signal from a specific 
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node j of each term set i, where i =1,….,L and L is 
the number of output variables. The error at layer (4) 

is
44

4 4 5
34i i

ij ij
r ri ij

r
ij

fa

af
δ δ δ

∂∂
= = × ×

∂∂
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∑ ∑ , 
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∑ ∑

∑
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if the jth term node at the ith term set at layer (4) is 
connected to the rth rule node at layer (3), 

otherwise,
4

3
0ij

r

f

a

∂
=

∂
. Where p is the number of rules 

sharing the same jth output node, and 
4

ijmu  is the 

complement of the mth input to the jth output term 
node at the ith term set at layer (4). Similar to layer 
(4), no adjustment is required for link weights at 
layer (3). Only the error signals 3 'ij sδ  need to be 
calculated and propagated from the rth rule node at 
layer (3) to the jth node at the ith term set at layer (2). 
Each of these errors is a summation of p propagated 
error signals  from layer (2), whereδ 3

ijm 1m ,..., p= , 
and p is the number of rules that share the same jth 
node at the same ith input at layer (2). 

So,
33
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the jth term node at the ith input term set in layer (2) is 
connected to the rule node m at layer (3), otherwise 

3

2
0m
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f

a

∂
=

∂
. Where  is the i

3
u

mi
th input to the rule node 

m in layer (3) and N is the number of input term sets. 
The adaptive rule to tune the weights at layer (2) is, 
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 for right sigmoid functions 
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The propagated error from layer (2) to layer (1) is 
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right sigmoid functions respectively and   
2
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∂

∂
 is 

calculated as before. The nodes in this layer transmit 
input values to the next layer directly without any 
processing. So, the link weights at layer (1) are fixed 
to unity and no tuning is required in this layer. 
Following the construction phase and the learning 
phase, an on-line tuning process is performed to 
obtain the optimum mapping for the inverse 
kinematics and inverse dynamics of the robot 
manipulator. The network adjustable free parameters 
were selected to be centres (mijs) of the output 
membership functions of the term nodes in layer (4) 
as well as the link weights at layers (2) and (6) as 
mentioned earlier. According to the above 
explanation, any adaptation mechanism can be 
applied to the proposed fuzzy neural network due to 
its full differentiable characteristics.  
 
 

4. RESULTS 
 
The proposed method was tested on the first three 
links of the Puma 560® robot. Fig. 3 to Fig. 5 
represents the pre-adaptation results for the inverse 
kinematics modeling for random trajectories 
compared with the actual values. Fig. 6 to Fig. 8 
represents the pre-adaptation results for inverse 
dynamics modeling normalized result to rated torque 
for random trajectories compared with the actual 
outputs. It can be seen from the modeling results that 
the suggested modeling method is effective. 
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Fig. 3. Results for link-1 angle prediction. 
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Fig. 4. Results for link-2 angle prediction. 
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Fig. 5. Results for link-3 angle prediction. 
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Fig. 6. Results for link-1 torque prediction. 
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Fig. 7. Results for link-2 torque prediction. 
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Fig. 8. Results for link-3 torque prediction. 
 
 

5. CONCLUSION 
 
This paper proposed a method for inverse modeling 
of robotic manipulators for inverse-model based 
control system. The main idea is the use of inductive 
learning technique to develop fuzzy rule sets to 
mimic the models from numerical records. These 
rule sets were employed in a full differentiable fuzzy 

neural network to adaptively tune the obtained 
models in adaptive inverse control systems. The 
method was tested using the Puma 560® robot model. 
Results showed that the method was successful and 
applicable for inverse modeling of robot arms. 
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