

ADAPTIVE FUZZY NEURAL NETWORK FOR INVERSE MODELING OF ROBOT
MANIPULATORS

D. T. Pham, A. A. Fahmy, and E. E. Eldukhri,

Manufacturing Engineering Centre, Cardiff University, Cardiff CF24 3AA, U.K.

Abstract: This paper presents a new systematic adaptive fuzzy neural network for inverse
modelling of robot manipulators. An inductive learning algorithm is applied to generate
the required inverse modelling rules from the robot’s input/output records. A full
differentiable fuzzy neural network is developed to construct the inverse models of the
robot manipulator, while any adaptation technique, such as back-propagation algorithm,
can be applied to tune the network parameters online. Copyright © 2008 IFAC

Keywords: Fuzzy logic, Neural networks, Modelling, Robots manipulators, Intelligent
robotics, Autotuning, Nonlinear systems, Adaptive system and control, Knowledge
discovery.

1. INTRODUCTION

Designing controllers for a Multi-Input Multi-Output
(MIMO) system requires clear knowledge of its
mathematical model. For robot manipulators, it is
almost impossible to obtain or identify precisely this
model. Instead, the so called adaptive inverse model
control techniques are generally used. This paper
presents a systematic adaptive fuzzy neural network
for inverse modelling of robot manipulators. For this
purpose, an inductive learning technique (Pham, et
al., 2004) was modified to generate fuzzy modelling
rules. A full differentiable fuzzy neural network was
developed to construct the inverse model, while any
adaptation mechanism can be applied to tune the
network parameters online. The proposed system
was tested on the virtual dynamic model of the first
three links of the Puma560® robot arm. The
remainder of the paper is organized as follows.
Section (2) outlines fuzzy rules generation technique
from input/output numerical examples. Section (3)
discusses the overall structure of the proposed
inductive fuzzy neural network. Section (4) presents
the obtained modelling results and section (5)
concludes the paper.

2. RULES GENERATION TECHNIQUE

2.1 Review.

For a dynamic system with single input u and single
output y, the output at time interval k can be
expressed in discrete form as in equation (1).

y(k) = f(y(k-1),..., y(k-n), u(k-1),..., u(k-m)) (1)

This equation can be extended to represent MIMO
dynamic systems as well. When input/output records
are used, function f, and integers n and m define the
dynamic system. If n and m are given, the only task
is to find function f. Fuzzy neural networks can be
employed to approximate f (Narenda and
Parthasarathy, 1990). Since robot manipulators can
be regarded as bounded-input bounded-output
(BIBO) stable systems in presence of input, equation
(1) can be used to approximate their dynamics.

2.2 Inductive Learning.

A fuzzy rule used to describe a numerical record is in
many ways similar to the rule created via inductive
learning (Pham and Aksoy, 1995). The main
difference is that, due to the notion of fuzziness, a

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5308 10.3182/20080706-5-KR-1001.4006

record will have a particular “degree of match”
(μrule(record)) with each rule (Srinivasan, et al.,
1993). The fuzzy inductive learning algorithm
presented in (Pham, et al., 2004) is briefly explained.
The algorithm is designed to extract fuzzy “If-Then”
rules from numerical records. In this paper, the
output is divided into equal, 50% overlapped
Gaussian membership functions (target classes).
Each record (E) is described in terms of a fixed set of
m (no. of inputs) attributes (equivalent to linguistic
variables) and by an output class value (CE). Each
created rule is composed of a number of conditions
on each (or some of the) attribute(s) (CAi) and by a
class value (Crule). Each rule can be represented as
CA1 ∧ CA2 ∧ ... ∧ CAm→ Crule. In order to create a
rule set, the algorithm incrementally employs a rule
forming process until all records are covered. The
first step is to select a seed example (SE), which is
the first record in the list not covered by previously
created rules. The second step consists of employing
a specific search process to create a consistent and
general rule covering the (SE). The main feature of
this search is that the conditions for inputs are
created automatically during the rule forming
process. The result is a rule where all conditions will
take the form [Vi

min < Ai <Vi
max]. These conditions

might cover large areas in the records space. Thus, as
the third and final step, the algorithm employs a post-
processing technique that reduces the coverage of
some conditions to the training data range only. The
search mechanism searches for rules that cover as
many records as possible from the target class and at
the same time exclude records belonging to other
classes. By applying this procedure, there is no need
to discretise the input data. The algorithm identifies
splitting points for each continuous attribute range
during the learning process. Each condition takes the
form [Vi

1 < Ai <Vi
2] where Vi

1 and Vi
2 are continuous

values included in the ith continuous attribute range
[Vi

min, Vi
max]. At the end of rule forming process,

transformation into fuzzy conditions is employed.

Consider the condition [Vi

1 <Ai<Vi
2], it is transformed

into a membership function f (a, b, c), where a= ,

b= , and c= (+)/2.
1

iV

2

iV 2
iV 1

iV

1

μ(x)

x
b2 b1 b3 c2 c1 a1 a3

Fig. 1. Types of generated input membership

functions.
If =-∞, then a=-∞, b= , and c= , which is the

minimum attribute value. If =+∞, then a= ,

b=+∞, and c= , which is the maximum attribute
value. These values are then used to generate
equivalent Gaussian and sigmoid membership
functions to be used in the fuzzy neural network as
shown in Fig. 1. To adaptively model the inverse
kinematics of the robot arm, a fuzzy rule-base is
generated first using the algorithm explained.
Equation (2) expresses an approximate discrete
inverse kinematics relation.

1

iV 2

iV min

iV

2

iV 1

iV

max

iV

θi

k+1 ≅ f(xk+1, yk+1, zk+1,θ1
k,θ2

k,.......,θn
k) (2)

Where k is the sampling interval, i = (1,2,..., n), n is
the number of links, (x, y, z) is the end-effector’s
Cartesian position, and θ is the joint angle. Three
sets of six-input single-output fuzzy rules can be
generated representing the robot inverse kinematics.
The entire training set is composed of around forty
thousand records. The outputs domains have all been
selected to be decomposed into eleven Gaussian
membership functions. The resulting model is
composed of thirty-nine rules for the first three links
compared to more than eight hundred rules using
Wang’s method (Wang and Mendel, 1992a,b).

To adaptively model the inverse dynamics of the
robot arm for inverse model control systems, a fuzzy
rule-base is generated first using the algorithm
explained. Equation (3) expresses an approximate
discrete inverse dynamics relation for this purpose.

Ti

k+1 ≅ f(T1
k,..., Tn

k,θ1
k+1,..., θn

k+1, θ1
k,..., θn

k, v1
k+1,...,

 vn
k+1 ,v1

k,..., vn
k) (3)

Where T is the joint torque and v is the joint velocity.
Three sets of fifteen-input single-output fuzzy rules
can be generated representing the robot inverse
dynamics. The entire training set is composed of
around forty thousand records. The outputs domains
have all been selected to be decomposed into eleven
Gaussian membership functions. The resulting model
is composed of two hundred and thirty rules for the
first three links compared to more than fourteen
hundred rules generated using Wang’s method
(Wang and Mendel, 1992a,b).

3. INDUCTIVE FUZZY NEURAL NETWORK

3.1 Network Structure

Fig. 2 presents the structure of the proposed six-layer
fuzzy neural network. The network employs time-
delayed feed-backs from output layer to input layer.
Using the same notation reported in (Lin and Lee,
1991), the function that provides the net input and net
output of each node can be written as in equation (4).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5309

() (4)1 2

1 2

p

p

k
i

k kk
net net

k k k

k k k

, ,......, ,u u u
Inp ,Outf fa

, ,.....,w w w
o

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟
⎝ ⎠

Where p is the number of inputs to the node, w is the
link weight associated with each input, u is the node
output in the preceding layer, k indicates the layer
number, f is the node function, and denotes the
activation function in layer k.

()k .a

Layer (4)
Output term
nodes

Layer (5) &
Layer (6)
Output nodes

Layer (2)
Input term
nodes

Layer (3)
Rule nodes

Layer (1)
Input nodes

y1 yl

x1 xn

2
ijw

3
ijw

4
ijw

5
ijw

6
ijw

Z-1 Z-1

Fig. 2. Proposed fuzzy neural network.

In the proposed network in fig. 2, layer (1) contains n
nodes, representing the input linguistic variables;
these nodes receive a crisp input vector

() 1 11
1 n ii i iX ,...., , 1

if fx x u x a,= = = = .The link weights at
layer (1) are fixed to unity. Nodes at layer (2) are
input term nodes which act as membership functions
to represent the terms of the respective n input
linguistic variables. An input linguistic variable x in
a universe of discourse U is characterized by

{ }1 2 m
x x xA(x) , ,...,A A A= , where A(x) is the term set of x,

which is the set of the generated membership
functions for each input derived from inductive
learning algorithm.

Layer (2) therefore accommodates n independent
term sets, where each corresponds to an input xi and
is partitioned to mi terms representing input
membership functions. The function of each node j
in a term set i is to calculate the degree of
membership of the input xi with respect to the
membership function associated with the term set

ij
xA () according to the specific equation of this

membership function as in equation (5).

()()

()()

()()

2

2

7 1

1

7 1

1

(5)

2
ij

2
ij

2
ij

2 1
ij i ij2 2

ijij

ij

2 1
ij i ij2

ij
ij

2 1
ij iij2

ij
ij

-f=

2 =ij
f

2 =ij
f

mw a
= & for Gaussianf a e

βw a
= & for Left Sigmoid f a

β
e

β w a
= & for Right Sigmoidf a

β
e

σ

×

×

+

×

+

-

-

-

Where mij and σij are, respectively, the centre (or
mean) and the width (or variance) of the Gaussian
function and βij is the characteristic value for the
sigmoid function. mij, σij, and βij all calculated from
the (a,b,c) parameters generated for each membership
function from the inductive learning stage. Hence a
link weight at layer (2) can be interpreted as an
adjustable free parameter of the input membership
function. The tuning of this parameter (link weight)
has the effect of tuning the membership function
parameters (a,b,c).

2
ijw

The nodes at layer (3) are the inductive learning rules
nodes. Hence, the rule nodes perform the softmin
function (Berenji and Khedkar, 1992) as the
minimum interpretation of the sentence connective
"and" between the antecedents of a fuzzy rule is
employed. Therefore the function of the rth rule node
is as in equation (6).

3 1

1

((3 3 3 3
r 1 2 qr

q

i
q

i

ii

i

uu e
softmin , ,...,) = fa u u u

ue

ζ

ζ
=

=

−

= =
−

∑

∑
6)

Where r= 1,…,R, and R is the number of rules or rule
nodes in layer (3), q is the number of inputs for that
particular rule, ui is the ith input to layer (3), and ζ is
an index representing the softness of the softmin
function. All link weights at this layer are fixed to
unity to transmit only the membership degree of the
linguistic input to the rule interpretation mechanism.

 The nodes at layer (4) are output term nodes which
act as membership functions to represent the output
terms of the respective l linguistic output variables
(in this case l=3). An output linguistic variable y in a
universe of discourse W is characterized
by { }1 2 11

y y yF(y) , , ...,F F F= , where F(y) is the term set
of y, that is the set of the class membership functions
for each output, as explained previously.
Consequently layer (4) accommodates 3 independent
term sets, where each term set corresponds to an
output yi and is partitioned to 11 terms representing
output membership functions.

 The nodes in layer (4) perform the softmax function
(Estevez and Nakano, 1995). Therefore, the function
of each term node j in the output term set i, is as in

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5310

equation (7).

4
i

(1 (7)44 4 4
ij 1 2 pij

n

n

i

i

uu e
softmax , ,...,)fa u u

ue
u

ζ

ζ
=

=

−

= = = −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑
i 1

i 1

Where p is the number of rules sharing the same
consequent (output term node), ui is the ith input to
layer (4), 1)i i(uu = − is the membership logic

complement, and ζ is an index representing the
softness of the softmax function. Hence the link
weights at layer four are fixed to unity. The number
of nodes at layer (5) is 2l, where l is the number of
output variables, i.e. two nodes for each output
variable. The function of these two nodes is to
calculate the denominator and the numerator of an
approximate form of Mean of Maxima (MOM)
defuzzification function (Runkler, 1997) for each
output variable. The functions of the numerator and
denominator nodes of the ith output variable
are , while . Where 55 4 *ni ij ijni= =a af m a55 4

di ijdi
= =a f

5
nif and 5

dif are respectively the node functions of

the numerator and the denominator nodes of the ith
output variable. mij is the centre (or mean) of the
Gaussian function of the jth term of the ith output
linguistic variable yi. Layer (5) employs 2l weight
vectors, with two weight vectors for each output
variable. The first link weight vector connects the
numerator node of the ith output to the term nodes in
its term set and its weight components are denoted

by . Each component of this weight vector

represents the centre (or mean) of the membership
function of the j

5
nijw

th term of the term set of the ith output
variable. The second link weight vector connects the
ith output denominator node to the term nodes in its
term set and its weight components are denoted

by . Hence the link weights are fixed to unity. 5
dijw

Nodes at layer (6) are the defuzzification nodes. The
number of nodes in layer (6) equals the number of
output linguistic variables. The function of the ith

node corresponding to the ith output variable is as in
equation (8).

(8)

66
i i i

6 5
ni ni
6 5
di di

 w a= = =y
w a

a f

Where and are layer (6) link weights
associated with each output variable node. These two
link weights represent a scaling factor of an output.
Following the network construction phase, the
network then enters the parameter learning phase to
adjust its free parameters through on-line adaptation.
The network adjustable free parameters were
selected to be centre’s (m

6
niw 6

diw

ij
s) of the output

membership functions of the term nodes in layer (4)
as well as the link weights at layers (2) and (6).

 3.2 Parameters Tuning

The back-propagation learning algorithm is applied
as an example of an adaptation mechanism which
requires full differentiable model to optimally tune
the proposed fuzzy neural network parameters. The
problem for the supervised learning can be stated as:
Given n input patterns xi(t), i = 1,....,n, and l desired
output patterns yi(t), i = 1,.....,l, the fuzzy partitions,
and the fuzzy rule base, adjust the network free
parameters optimally. In the parameter learning
phase, the network works in the feed-forward
manner, that is the goal is to minimize the error
function () ()(2

net
1
2)E = y t - ty . Where y(t) is the

desired output, and ynet(t) is the current network
output. For each training data set, starting at the input
nodes, a forward pass is followed to compute the
activity levels of all the nodes in the network. Then,
starting at the output nodes, a backward pass is
followed to compute the rate of change of the error
function with respect to the adjustable free
parameters for all the hidden nodes. Assuming that
(w) is the adjustable free parameter in a node, then

the general learning rule can be written as E
w

w

∂
Δ = −

∂

and () ()1w wt t η w= + Δ+ . Where η is the learning rate,
then using the chain rule, the partial derivative can be

defined as E E f E a f
w f w a f w
∂ ∂ ∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂ ∂ ∂

. Hence, the

calculation of the back-propagated errors can be
described starting at the output nodes. The adaptive
tuning rule for the weights at layer (6) is

5

5 66

(() ())netni

di dini

E a

w a w

y t y t∂
=

∂

− &
()

6

6
6

5

25

(() ())
ni

di

net

di

ni

di

wE a

w wa

y t y t∂
=

∂

− ,

while the error propagated to layer (5) is,
6

6

6

5
δ

(() ())
ni

di

net
ni

di

w

wa

y t y t
=

−
 &

()
6

6

5
6

2
5

*
δ

(() ())
ni

di

netni
di

di

w a

w a

y t y t
=

−
.

At layer (5), no adjustment is required for the link
weights connected to the denominator nodes, while

an adjustment is required for the link weights 5 'nij sw

which represent the centres mij’s of the output
membership functions. Consequently, the adaptive
rule to tune the centers of the output membership

functions is 6
ni ij

ij

E
a

m
δ

∂
= ×

∂
4 . The propagated error from

layer (5) to the jth node in the ith term set in layer (4)

is () ()5 6
ij ni ij dimδ δ δ= × + 6 . No adjustment is required

for the link weights of layer (4). Only the error

signals need to be calculated and to be
propagated to a rule node r in layer (3). Each one of
these error signals is a summation of L propagated

error signals

4
r ' sδ

4
riδ , one error signal from a specific

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5311

node j of each term set i, where i =1,….,L and L is
the number of output variables. The error at layer (4)

is
44

4 4 5
34i i

ij ij
r ri ij

r
ij

fa

af
δ δ δ

∂∂
= = × ×

∂∂

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ,
4

4
1ij

ij

a

f

∂
=

∂

, and

()
1 1

1

44 4

4

3 33
4

3 2

1-
p p

m m

p

m

ijm ijmijm

ijm

r rr
ij

r

a u ae e e ea uf

a
ue

ζ ζ ζ ζζ ζ

ζ

= =

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− − − −− +∂
=

∂
−

⎡ ⎤
⎢ u
⎣

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑

∑

⎥⎦ ,

if the jth term node at the ith term set at layer (4) is
connected to the rth rule node at layer (3),

otherwise,
4

3
0ij

r

f

a

∂
=

∂
. Where p is the number of rules

sharing the same jth output node, and
4

ijmu is the

complement of the mth input to the jth output term
node at the ith term set at layer (4). Similar to layer
(4), no adjustment is required for link weights at
layer (3). Only the error signals 3 'ij sδ need to be
calculated and propagated from the rth rule node at
layer (3) to the jth node at the ith term set at layer (2).
Each of these errors is a summation of p propagated
error signals from layer (2), whereδ 3

ijm 1m ,..., p= ,
and p is the number of rules that share the same jth
node at the same ith input at layer (2).

So,
33

3 3 4
23m m

m m
ij ijm m

ij
m

fa

af
δ δ δ

∂∂
= = × ×

∂∂

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ,
3

3
1m

m

a

f

∂
=

∂
,

and ()
1 1

1

32 2 32 3

2 23

1
N N

i i

N

i

umi miij ij umiij
m

ij
umi

a ae a e e ef

a
e

ζ

ζ

ζ ζζ ζ
= =

=

−

−

− −− +∂
=

∂

⎡ 3
uζ−

⎢⎣

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑

∑

⎤
⎥⎦ , if

the jth term node at the ith input term set in layer (2) is
connected to the rule node m at layer (3), otherwise

3

2
0m

ij

f

a

∂
=

∂
. Where is the i

3
u

mi
th input to the rule node

m in layer (3) and N is the number of input term sets.
The adaptive rule to tune the weights at layer (2) is,

22
3

2 22

ij ij
ij

ij ij
ij

faE

w wf
δ

∂∂∂
= × ×

∂ ∂∂
 where

22

2
ijij

ij

fa

f
= -e

∂

∂
 for

Gaussian ,
2

2
2

2 2

1

ij
ij

ij ij

fa

f f
= -e

e

∂

∂
+⎛ ⎞

⎜ ⎟
⎝ ⎠

, for left sigmoid, and

2

2
2

2 2

1

ij
ij

ij ij

fa
=

f f

-e

e

∂

∂
+⎛ ⎞

⎜ ⎟
⎝ ⎠

 for right sigmoid functions

respectively, while ()()2

2 2

2 2

ij

1 1
i i ijij ij

ij

f ma a w
=

w σ

∂

∂

- , for

Gaussian,
2

2

7

ij ij

1
ij i

f a=
w

∂

∂
 for left sigmoid, and

β

2

2

7

ij ij

1
ij i

f a=
w

∂ −

∂ β
 for right sigmoid functions respectively.

The propagated error from layer (2) to layer (1) is
22

2 1j j

ij ij2 2 3
i ij ij

iij

fa
δ δ δ

f a

∂∂
= = × ×∑

∂∂

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ , while

()()2 2 2

1 2

2 1
ij ij iij ij

i ij

f mw w a
=

a σ

∂ × ×

∂

- for Gaussian,

2

1

27

ij

ij

i

ijf

a

w
 =

β

∂

∂

× for left sigmoid, and
2

1

27

ij

ij

i

ijf

a

w
=

β

∂

∂

− × for

right sigmoid functions respectively and
2

2
ij

ij

a

f

∂

∂
 is

calculated as before. The nodes in this layer transmit
input values to the next layer directly without any
processing. So, the link weights at layer (1) are fixed
to unity and no tuning is required in this layer.
Following the construction phase and the learning
phase, an on-line tuning process is performed to
obtain the optimum mapping for the inverse
kinematics and inverse dynamics of the robot
manipulator. The network adjustable free parameters
were selected to be centres (mijs) of the output
membership functions of the term nodes in layer (4)
as well as the link weights at layers (2) and (6) as
mentioned earlier. According to the above
explanation, any adaptation mechanism can be
applied to the proposed fuzzy neural network due to
its full differentiable characteristics.

4. RESULTS

The proposed method was tested on the first three
links of the Puma 560® robot. Fig. 3 to Fig. 5
represents the pre-adaptation results for the inverse
kinematics modeling for random trajectories
compared with the actual values. Fig. 6 to Fig. 8
represents the pre-adaptation results for inverse
dynamics modeling normalized result to rated torque
for random trajectories compared with the actual
outputs. It can be seen from the modeling results that
the suggested modeling method is effective.

-180

-120

-60

0

60

120

180

Time Sample

D
eg

re
es

Network Output Target Output

Fig. 3. Results for link-1 angle prediction.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5312

-240

-190

-140

-90

-40

10

60

Time Sample

D
eg

re
es

Network Output Target Output

Fig. 4. Results for link-2 angle prediction.

-60

-10

40

90

140

190

240

Time Sample

D
eg

re
es

Network Output Target Output

Fig. 5. Results for link-3 angle prediction.

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Time Sample

Pe
r-U

ni
t

Network Output Target Output

Fig. 6. Results for link-1 torque prediction.

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Time Sample

Pe
r-

U
ni

t

Network Output Target Output

Fig. 7. Results for link-2 torque prediction.

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Time Sample

Pe
r-U

ni
t

Network Output Target Output

Fig. 8. Results for link-3 torque prediction.

5. CONCLUSION

This paper proposed a method for inverse modeling
of robotic manipulators for inverse-model based
control system. The main idea is the use of inductive
learning technique to develop fuzzy rule sets to
mimic the models from numerical records. These
rule sets were employed in a full differentiable fuzzy

neural network to adaptively tune the obtained
models in adaptive inverse control systems. The
method was tested using the Puma 560® robot model.
Results showed that the method was successful and
applicable for inverse modeling of robot arms.

ACKNOWLEDGEMENT

The research described in this paper was supported
by the EC FP6 Innovative Production Machines and
Systems (I*PROMS) Network of Excellence.

REFERENCES

Berenji, H. R. and P. Khedkar (1992), Learning and

Tuning Fuzzy Logic Controllers Through
Reinforcements, IEEE Transactions on Neural
Networks, volume 3, issue 5.

Estevez, P. A. and R. Nakano (1995), Hierarchical
Mixture of Experts and Max-Min Propagation
Neural Networks, IEEE International
Conference on Neural Networks, Australia.

Lin, C. T. and C. S. G. Lee. (1991), Neural Network-
Based Fuzzy Logic Control and Decision
System, IEEE Transactions on Computers,
volume 40, issue 12.

Narendra, K. S. and K. Parthasarathy (1990),
Identification and Control of Dynamical
Systems Using Neural Networks, IEEE
Transactions on Neural Networks, volume 1,
issue 1.

Pham, D. T., S. Bigot and S. S Dimov. (2004), A
new technique for fuzzy rule induction,
Proceedings of the fourth CIRP International
Seminar on Intelligent Computation in
Manufacturing Engineering, Sorrento.

Pham, D. T. and M. S. Aksoy (1995), A New
Algorithm for Inductive Learning, Journal of
Systems Engineering, volume 5.

Runkler, T. A. (1997), Selection of Appropriate
Defuzzification Methods Using Application
Specific Properties, IEEE Transactions on
Fuzzy Systems, volume 5, issue 1.

Srinivasan, A., C. Batur, and C.C. Chan (1993),
Using Inductive Learning to Determine Fuzzy
Rules for Dynamic Systems, Engineering
Applications of Artificial Intelligence, volume
6, issue 3.

Wang, L. X. and J. M. Mendel (1992a), Fuzzy basis
functions, universal approximation, and
orthogonal least-squares learning, IEEE
Transactions on Neural Networks, volume 3,
issue 5.

Wang, L. X. and J. M. Mendel (1992b), Generating
Fuzzy Rules by Learning from Examples, IEEE
Transactions on Systems, Manufacturing, and
Cybernetics, volume 22, issue 6.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5313

