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Abstract: This paper proposes an independent component analysis (ICA) method using H∞

filters for nonminimum phase systems. In the basic ICA approach, the input signal is recovered
by estimating the parameter of the inverse of the mixing system. If the system is nonminimum
phase, the estimated parameter diverges due to the instability of the inverse. For this problem, a
inverse filter is constructed based on an H∞ filter in order to estimate the state of the given plant.
The learning algorithm to estimate the parameter of the system is derived by minimizing the
Kullback-Leibler divergence. Furthermore, a numerical simulation demonstrates the effectiveness
of the proposed method.

1. INTRODUCTION

Independent component analysis (ICA) [Hyvärinen et al.,
2001] is a tool for statistical data analysis and signal
processing that is able to recover independent input signals
from mixed signals where the mixing process is unknown.
This method has many potential applications in various
fields such as speech signal processing, image processing
biomedical signal processing and telecommunications. In
the field of system control engineering, it has been applied
to system identification [Sugimoto and Nitta, 2005], distur-
bance suppression [Sugimoto et al., 2005], fault detection
[Sugimoto et al., 2005] and process monitoring [Kano et al.,
1997].

Typical problems treated in ICA are called Blind Source
Separation (BSS). While a standard BSS problem adopts
a static mapping as the mixing process model, a blind
deconvolution problem employs a dynamical equation in-
stead. In system control engineering, we have to deal with
dynamical systems, and hence have to solve the blind
deconvolution problem. To solve this problem, an FIR
filter approach [Thi and Jutten, 1995], [Gorokhov and
Loubaton, 1999] and state-space approaches [Waheed and
Salem, 2003], [Zhang and Cichocki, 2000], [Fukunaga and
Fujimoto, 2006] were proposed. In these methods, the
input signal is recovered by estimating the parameter of
the inverse of the mixing system. However, if the system is
nonminimum phase, the estimated parameter diverges due
to the instability of the inverse system. For this problem,
Zhang et al. proposed an ICA method for nonminimum
phase systems using FIR filters [Zhang et al., 2004]. This
method approximate the inverse system using FIR filters.

On the other hand, several researchers proposed stable in-
version techniques for nonminimum phase systems [Deva-
sia et al., 1996], [Hunt et al., 1996]. George et al. proposed a

stable dynamic model inversion technique [Devasia et al.,
1996], [Hunt et al., 1996]. This method construct an in-
verse filter using Kalman filters. We developed an ICA
method for nonminimum phase systems using Kalman fil-
ters. However, since a blind deconvolution problem treats
non-gaussian signals, we proposed an ICA method using
H∞ filters [Takaba and Katayama, 1994] which is not
assumed to treat gaussian signals.

This paper is organized as follows. In Section 2, a design
of H∞ filters is presented. In Section 3, we propose an
ICA method for nonminimum phase systems. First, an
approximate inverse filter is constructed based on an
H∞ filter. Second, the parameters of the inverse filter is
estimated by a steepest descent method. In Section 4, a
numerical example is given. Finally, Section 5 concludes
the paper.

2. DESIGN OF H∞ FILTERS

Here, we refer to [Takaba and Katayama, 1994] for a design
of H∞ filters.

Consider the following linear time-varying system

xt+1 = Ftxt + Gtwt

yt = Htxt + vt

where xt ∈ R
n, yt ∈ R

p, wt ∈ R
r and vt ∈ R

p are the state
vector, the measurement, the process disturbance and the
measurement noise, respectively. Note that wt ∈ R

r and
vt ∈ R

p are unknown and arbitrary L2[0, N ] signals. We
assume that an estimate of the initial state x0 is given by
x̂0. We also define

zt = Ltxt

where zt ∈ R
q, Lt ∈ R

q×n.
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The finite-horizon H∞ filtering problem is to find the
estimates x̂t and ẑt based on the measurement signal yt

so that the following inequality hold.

sup
x0,vt,wt

N
∑

t=0

‖zt − ẑt‖2

‖x0 − x̂0‖2

Σ
−1

0

+
N

∑

t=0

‖vt‖2

R
−1

t

+
N

∑

t=0

‖wt‖2

Q
−1

t

< γ2

(1)

where γ is a given constant and Σ0, Qt and Rt are positive
definite weighting matrices.

We define the following cost function

J (ẑt; x0, vt, wt) :=
N

∑

t=0

‖zt − ẑt‖2 − γ2

(

‖x0 − x̂0‖2

Σ
−1

0

+
N

∑

t=0

‖vt‖2

R
−1

t

+
N

∑

t=0

‖wt‖2

Q
−1

t

)

(2)

The inequality condition (1) is equivalent to having
J (ẑt; x0, vt, wt) < 0. The problem is to estimate ẑt sat-
isfying the following inequality

max
x0,vt,wt

J (ẑt;x0, vt, wt) < 0

Thus, we consider the following minimax problem between
ẑt and x0, vt, wt.

min
ẑt

max
x0,vt,wt

J (ẑt;x0, vt, wt) < 0

The optimal minimizer of the minimax problem is given
by

ẑt = Ltx̂t|t

x̂t+1|t = Ftx̂t|t

x̂t|t = Ftx̂t|t−1 + Kt(yt − Htx̂t|t−1)

where

Kt : = PtH
T
t (HtPtH

T
t + Rt)

−1

Pt+1 = FtPtΨ
−1
t FT

t + GtQtG
T
t (3)

Ψt = I + (HT
t R−1

t Ht − γ−2LT
t Lt)Pt (4)

If γ is sufficiently large, the second term of equation
(2) becomes dominant. Thus, as γ tends to infinity, the
minimax problem reduces to the problem of minimizing

J (x0, vt, wt)

:= ‖x0 − x̂0‖2

Σ
−1

0

+
N

∑

t=0

‖vt‖2

R
−1

t

+
N

∑

t=0

‖wt‖2

Q
−1

t

with respect to wt and xt. It is well-known that this
minimization problem is equivalent to the least mean
square (LMS) estimation problem in the case where x0

is generated by the gaussian distribution N (x̂0,Σ0) and
where wt and vt are the zero mean gaussian white noises
with unit covariances. The optimal solution of the LMS
estimation problem is given by the Kalman filter.

3. INDEPENDENT COMPONENT ANALYSIS FOR
NONMINIMUM PHASE SYSTEMS

3.1 Problem setting

Consider the following linear time-invariant system

xt+1 = Axt + But

yt = Cxt + Dut

(5)

where xt ∈ R
n, ut ∈ R

m and yt ∈ R
m are the state vector

of the system, the input signal and the measured signal,
respectively. Here we make the following assumption for
the input.

Assumption 1. The elements of the unknown input signal
ut are stationary zero-mean i.i.d. process and mutually
statistically independent.

Here, yt is known and A, B, C, D, xt and ut are known.
The objective is to estimate the input ut only from the
output yt. This can be achieved by finding the estimates
Ât, B̂t, Ĉt, D̂t and x̂t of A, B, C, D and xt.

3.2 Design of an approximate inverse filter

In the basic ICA approach, the input signal is recovered
by estimating the parameter of the inverse of the mixing
system. However, if the system is nonminimum phase, the
estimated parameter diverges due to the instability of the
inverse. This subsection constructs an approximate inverse
filter using H∞ filters

In the stable dynamic inversion technique, the inverse filter
is constructed based on the Kalman filter. We design the
inverse filter using the H∞ filter. Since A, B, C and D are
unknown, we consider the following time-varying systems

xt+1 = Âtxt + B̂tut

yt = Ĉtxt + D̂tut

(6)

For this system, the H∞ filter is constructed by

x̂t+1|t = Âtx̂t

x̂t|t = x̂t|t − Kt(D̂
−1
t Ĉtx̂t|t − D̂−1

t yt) (7)

where

Kt := Pt(D̂
−1
t Ĉt)

T(D̂−1
t ĈtPt(D̂

−1
t Ĉt)

T + Rt)
−1 (8)

Pt+1 = ÂtPtΨ
−1
t ÂT

t + B̂tQtB̂
T
t (9)

Ψt = I + ((D̂−1
t Ĉt)

TR−1
t D̂−1

t Ĉt − γ−2LT
t Lt)Pt (10)

The input signal can be estimated by using the inverse
of the output equation (6). Therefore, the inverse filter is
given by

x̂t+1|t = Âs,t x̂t|t−1 + ÂtKt
ˆ̄Dtyt

ût =− ˆ̄Ctx̂t|t−1 + ˆ̄Dtyt (11)

where

Âs,t = Ât − ÂtKt
ˆ̄Ct

ˆ̄Ct = D̂−1
t Ĉt

ˆ̄Dt = D̂−1
t
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If the matrix D is singular, D̂−1
t Ĉt and D̂−1

t cannot be

calculate. We estimate ˆ̄Ct and ˆ̄Dt in order to avoid a
singular point.

3.3 Estimation of the parameter of the inverse filter

In this subsection, we derive the algorithm for estimating

the parameters Ât, B̂t,
ˆ̄Ct,

ˆ̄Dt of the inverse filter.

A densed notation of the outputs Y and that of the
estimates of the inputs Û are defined by

Y := (yT
0 , yT

1 , ..., yT
N )T

Û := (ûT
0 , ûT

1 , ..., ûT
N )T

If the estimates of the inputs Û are spatially mutually inde-
pendent and temporarily i.i.d. signals, then the probability
density function p(Û) of Û is factorized as follows:

p(Û) ≡
m
∏

i=1

N
∏

t=0

p(ûi,t )

Statistical independence can be measured using Kullback-

Leibler divergence between p(Û) and
∏m

i=1

∏N

t=0
p(ûi,t )

I(Û) :=

∫

p(Û) log
p(Û)

∏m

i=1

∏N

t=0
p(ûi,t )

dÛ (12)

The objective is to minimize I(Û) with respect to the

parameters Ât, B̂t,
ˆ̄Ct and ˆ̄Dt by the steepest descent

method.

We reformulate the cost function in order to implement the
on-line learning for the parameters of the inverse filter.

According to the property of the probability density func-
tion, we derive the following relation between p(Û) and
p(Y):

p(Û) =
p(Y)

|J | (13)

where J is the determinant of the Jacobian matrix which
is calculated as follows

J = det













ˆ̄D0 0 . . . 0

∗ ˆ̄D1 . . . 0
...

...
. . .

...

∗ ∗ . . . ˆ̄DN













where ∗ denotes a nonzero value. Since the above Jacobian
matrix is lower block triangular, p(Û) is described by

p(Û) =
p(Y)

∏N

t=0
|det ˆ̄Dt|

(14)

Substituting equation (14) for equation (12) gives

I(Û) =−
N

∑

t=0

E[log | det ˆ̄Dt|] + E[log p(Y)]

−
m

∑

i=1

N
∑

t=0

E[log p(ûi,t )]

Here E[log p(Y)] is a constant. Therefore, the cost function
can be simplified as

Ĩ(ût) := − log |det ˆ̄Dt| −
m

∑

i=1

log p(ûi,t ) (15)

The minimization of Ĩ(ût) requires the computation of its

gradient with respect to the parameters Ât, B̂t,
ˆ̄Ct and ˆ̄Dt.

The gradients are computed separately in the parameters
of the output equation and those of the dynamics.

We can calculate the derivative of Ĩ(ût) with respect to

the matrices ˆ̄Ct and ˆ̄Dt as

∂Ĩ(ût)

∂ ˆ̄Ct

=−ϕ(ût)x̂
T
t|t−1 (16)

∂Ĩ(ût)

∂ ˆ̄Dt

=− ˆ̄D−T
t + ϕ(ût)y

T
t (17)

where ϕ(ût) is defined by

ϕ(ût) := −
(

d log p(û1,t )

dû1,t
, ...,

d log p(ûm,t )

dûm,t

)T

(18)

The nonlinear function ϕ(û) depends on the probability
density function of the input signal, which is unknown
in a blind deconvolution setting. It is not necessary to
estimate the probability density function precisely. One
important issue in determining the nonlinear function is
that the stability conditions of the learning algorithm must
be satisfied [Amari et al., 1997]. The gradient of the cost
function in (17) requires calculating the inverse of the ma-

trix ˆ̄Dt. Fortunately, a modification of standard gradient-
based procedures has been developed that overcomes this
difficulty in the BSS task. This modification, termed the
natural gradient by [Amari et al., 1996], modifies the
standard gradient update by a linear transformation whose
elements are determined by the Riemannian metric ten-
sor for the assumed parameter space. Then the modified
search direction is given by

∂Ĩ(ût)

∂ ˆ̄Dt

ˆ̄DT
t

ˆ̄Dt =−(I − ϕ(ût)y
T
t

ˆ̄DT
t ) ˆ̄Dt (19)

The gradients of Ĩ(ût) with respect to the matrices Ât and

B̂t can be calculated as

∂Ĩ(ût)

∂Ât−1

=
n

∑

p=1

∂Ĩ(ût)

∂x̂p,t|t−1

∂x̂p,t|t−1

∂Ât−1

(20)

∂Ĩ(ût)

∂B̂t−2

=
n

∑

p=1

∂Ĩ(ût)

∂x̂p,t|t−1

∂x̂p,t|t−1

∂B̂t−2

(21)

(See the Appendix for the details of this calculation.)

3.4 Algorithm

Summarizing the results of the previous section, the block
diagram of the proposed method is shown in Fig 1 and the
proposed algorithm consists of the following steps:

Algorithm 1.
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System

Eq. (5)

input output estimated input

         filter

Eq. (7)

Output inversion

Eq. (11)

Parameter estimator

Eq. (22) - (25)

estimated state

xt|t-1 utut yt

Fig. 1. Block diagram of the proposed method

step1 Set the initial value of the parameters Â0, B̂0,
ˆ̄C0,

ˆ̄D0

and P0

step2 Compute the gain (8)
step3 Update the filter equation (7)
step4 Update the matrix (9)

step5 Update the parameters Ât, B̂t,
ˆ̄Ct,

ˆ̄Dt using the
gradients are described by equations (20), (21), (16)
and (19)

Ât+1 = Ât + µ1

n
∑

p=1

∂Ĩ(ût)

∂x̂p,t|t−1

∂x̂p,t|t−1

∂Ât−1

(22)

B̂t+1 = B̂t + µ2

n
∑

p=1

∂Ĩ(ût)

∂x̂p,t|t−1

∂x̂p,t|t−1

∂B̂t−2

(23)

ˆ̄Ct+1 = ˆ̄Ct + µ3ϕ(ût)x̂
T
t|t−1 (24)

ˆ̄Dt+1 = ˆ̄Dt + µ4(I − ϕ(ût)y
T
t

ˆ̄DT
t ) ˆ̄Dt (25)

where µ1, µ2, µ3, µ4 > 0 are the step size parameters.
step6 Compute the estimate of the input (11)

4. NUMERICAL EXAMPLE

The parameters of the system (5) are

A =







0 0 1.00 0
0 0 0 1.00

0.5 −0.41 −0.70 0.72
0.72 −0.72 −0.43 0.17







B =







0 0
0 0
1 0
0 1







C =

(

−0.05 −0.46 −0.85 1.13
−0.19 −0.24 −0.99 −0.47

)

D =

(

0.84 −0.66
0.68 0.12

)

The zeros are at −0.8651, 1.3877, 0.8458, −0.0830 ±
1.1228i, 0.2506 ± 0.7894i, −0.2957, 0.8458, −0.6776,
0.7059±0.9828i, 0.4479, 5.2382, 0.5003, −2.0528 and hence
the system is nonminimum phase. The input signal ut is
chosen to be i.i.d signal uniformly distributed in the range
(−1, 1).

The nonlinear function is chosen as ϕ(ût) = û3
t . The initial

parameters are determined as follows:

Â0 =







0.0698 0.1663 1.0770 0.2460
0.0832 0.2566 0.2777 1.1302
0.5751 −0.1129 −0.4923 0.7588
0.7254 −0.5943 −0.2498 0.2921







B̂0 =







0.1616 0.2454
0.2444 0.0616
1.2197 0.2448
0.2655 1.1193







ˆ̄C0 =

(

0.2126 −0.1681 −1.1946 0.0632
0.0193 0.3598 −0.2572 −1.6767

)

ˆ̄D0 =

(

0.6180 1.2460
−0.8785 1.9261

)

Fig. 2 shows the source signals and the recovered signals.
In the figure, the solid line denote the recovered signal and
the dashed line denote the input signal. Fig. 3 shows the
cost function Ĩ(ût). The computation of the cost function
needs to use the probability density function of ût which is
unknown. We solve equation (18) with nonlinear function
ϕ(ût) = û3

t . The solution of equation (18) is given by

p(ût) =

√
2

Γ
(

1

4

) exp

(

− û4
t

4

)

where Γ(·) is the gamma function. We observed that
the value of the cost function decreases and converges.
This result demonstrates the effectiveness of the proposed
method.

To illustrate the influence of γ, we used γ = 1.15 and ∞
Fig. 4 shows the cost function averaged over 20 steps. In
the figure, the solid line denotes γ = 1.15 and the dashed
line denotes γ = ∞. The error bar denotes the standard
derivation from the average of 10 trials. The value of the
cost function at γ = 1.15 is smaller than γ = ∞.

We compare the performance of the proposed method
and the Zhang’s method [Zhang et al., 2004]. The filter
length of the Zhang’s method is 10. Fig. 5 shows the cost
function averaged over 20 steps. In the figure, the solid
line denotes the proposed method and the dashed-dotted
line denotes the Zhang’s method. The error bar denotes
the standard derivation from the average of 10 trials.
The proposed method converges faster than the Zhang’s
method. Furthermore it is seen that the proposed method
can obtain a smaller cost function than the Zhang’s
method.
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Fig. 2. Source signals and recovered signals
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Fig. 3. Cost function Ĩ(ût)
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Fig. 4. Cost function in case of γ = 1.15 and ∞
5. CONCLUSION

In this paper, an independent component analysis method
for nonminimum phase systems using H∞ filters is pro-
posed. An inverse filter is constructed based on an H∞

filter in order to estimate the state of the given plant.

0 100 200 300 400 500
2

3

4

5

6

7

VKOG�=U?

Fig. 5. Cost function of the proposed method and the
Zhang’s method

The learning algorithm to estimate the parameter of the
system is derived by minimizing the Kullback-Leibler di-
vergence. A numerical simulation shows the effectiveness
of the proposed method.
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Appendix A. CALCULATION OF THE GRADIENTS
WITH RESPECT TO THE PARAMETERS Â AND B̂

The gradients with respect to the parameters Ât and B̂t

are calculated by

∂Ĩ(ût)

∂Âij ,t−1

=−ϕ(ût)
T

n
∑

p=1

ˆ̄Cp,t
∂x̂p,t|t−1

∂Âij ,t−1

∂Ĩ(ût)

∂B̂ik,t−2

=−ϕ(ût)
T

n
∑

p=1

ˆ̄Cp,t
∂x̂p,t|t−1

∂B̂ik,t−2

where ˆ̄Cp is the l-th column vector of matrix ˆ̄C. Here,

∂x̂p,t|t−1/∂Âij ,t−1 and ∂x̂p,t|t−1/∂B̂ik,t−2 are described
by

∂x̂t+1|t

∂Âij ,t
= Âs,t

∂x̂t|t−1

∂Âij ,t
+ J ij x̂t|t−1

−J ijKt

(

ˆ̄Ctx̂t|t−1 − ˆ̄Dtyt

)

∂x̂t+1

∂B̂ik,t−1

= Âs,t
∂x̂r,t

∂B̂ik,t−1

−Ât

∂Kt

∂B̂ik,t−1

(

ˆ̄Ctx̂t − ˆ̄Dtyt

)

where J ij is the single-entry matrix with 1 at (i, j) and

zero elsewhere. ∂Kt/∂B̂ik,t is given by

∂Kt

∂B̂ik,t−1

=
∂Pt

∂B̂ik,t−1

ˆ̄CT
t ( ˆ̄CtPt

ˆ̄CT
t + Rt)

−1

−Pt
ˆ̄CT

t ( ˆ̄CtPt
ˆ̄CT

t + Rt)
−1

× ˆ̄Ct

∂Pt

∂B̂ik,t−1

ˆ̄CT
t ( ˆ̄CtPt

ˆ̄CT
t + Rt)

−1

∂Pt+1

∂B̂ik,t
= J ikQtB̂

T
t + B̂tQtJ

ikT
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