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Abstract: The optimal input design problem has been discussed for efficient order determination
of autoregressive models under the input power constraint. By solving a mathematical programming
problem, auto-caovariance sequence of an optimal input is derived , which maximizes the time-average
of the Kullback divergence to make difference of the models bigger without making much effect on the
original system behavior. The proposed approach is based on the sequential comparison of the AIC, and
it can be applied to find the model structure of general linear time-invariant discrete-time systems.

1. INTRODUCTION

System identification deals with constructing mathematical
models of dynamical systems from observed input/output data.
In order to obtain the maximal information from the observa-
tion data, the idea of optimal experimental design originally
developed for static regression analysis (Fedorov [1972], Sil-
vey [1980], Pukelsheim [1993]) has been extensively ap-
plied (Mehra [1974], Goodwin and Payne [1977], Zarrop
[1979], Forsell and Ljung [2000], Hildebrand and Gevers
[2003]). Most studies on this aspect were for optimal input de-
sign for accurate parameter estimation within a specified model
structure under some constraints on input or output, assuming
the precise knowledge of the underlying model structure of the
data generating processes. However, in many cases such knowl-
edge is not available and hence the analysis of the data should
be performed in two steps: identification of an appropriate
model structure from a given class of competing models; and
parameter estimation in the specified model structure. Despite
the universal recognition of the importance of the first step in
system identification, the studies on the optimal input design
for this step is quite few, see Kabaila (Goodwin and Payne
[1977]), Uosaki et al. [1984] and Uosaki et al. [1987]. These
considerations are related to the hypothesis testing approach
(Atkinson and Cox [1974], Dette [1995]) and the informa-
tion criterion approach (Akaike [1974]). See also Uosaki and
Hatanaka [2005].
Here, the optimal input design problem for structure determina-
tion of autoregressive model is considered. An optimal input is
derived, which enlarges the distance of the two rival models,
and does not deviate from the original model without input,
where the distance of models are measured by the Kullback
divergence.

2. PROBLEM STATEMENT

Consider the following stable autoregressive (AR) model,

y(t) =
p∑

k=1

aky(t− k) + ε(t) (1)

where ε(t) is independently normally distributed with mean
zero and variance σ2. Model structure determination problem
here is to determine the order of the AR model (1). An useful
criterion for selection of such nesting models is Akaike’s Infor-
mation Criterion (AIC) (Akaike [1974]), which is an estimate of
the Kullback discrimination information measure (KDI) (Kull-
back [1994]) and offers a relative measure of the information
loss when a given model is used to describe reality. The cri-
terion may be minimized over choices of p to form a tradeoff
between the fit of the model measured by the sum of squared
residuals, and the model’s complexity measured by p, and the
model minimizing the criterion is chosen as the suitable model.
Thus the following two AR models based on the observation
sequence yt = (y(t), y(t− 1), . . . , y(1))T can be compared.

M1 : y(t) =
n∑

k=1

a
(1)
k y(t− k) + ε(1)(t)

M2 : y(t) =
n−1∑
k=1

a
(2)
k y(t− k) + ε(2)(t)

(2)

with independently normally distributed random variables
ε(j)(t)} with mean zero and variance σ(j)2 (j = 1, 2).
It is assumed that a controllable input u(t − 1) can be added
to the model in order to determine the order efficiently and
the problem how to design a suitable input u(t − 1) will be
considered. By introducing the input {u(t − 1)}, the models
corresponding to the AR models with order n and n−1 changes
to the autoregressive models with exogenous input (ARX mod-
els),
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M ′
1 : y(t) =

n∑
k=1

a
(1)
k y(t− k) + u(t− 1) + ε(1)(t)

M ′
2 : y(t) =

n−1∑
k=1

a
(2)
k y(t− k) + u(t− 1) + ε(2)(t)

(3)

or
M ′

1 : A1(z−1)y(t) = u(t− 1) + ε(1)(t)

M ′
2 : A2(z−1)y(t) = u(t− 1) + ε(2)(t)

(4)

with

A1(z−1) = 1−
n∑

k=1

a
(1)
k z−k

A2(z−1) = 1−
n−1∑
k=1

a
(2)
k z−k

(5)

where z−1 is a delay operator. Model discrimination can be
accelerated by enlarging the distance between the two models
(3). However, the system behaviors such as the output process
{y(t)} may change due to the added input {u(t)}. The large
deviations of the behaviors from the original model (1) are not
suitable, and hence, the input should be chosen not to affect
the model so much. This implies that the distance between the
original AR models Mk and the ARX models M ′

k (k = 1, 2)
should be small as possible. Further more, the following input
power constraint

E|u2(t)| ≤ C (6)
with a given constant C is imposed from a practical point of
view.
Thus the optimal input design for model discrimination can be
summarized as follows:

(P0) “Find a input {u(t)} such that it maximizes the distance
between models M ′

1 (autoregressive model of order n with
a controllable input) and M ′

2 (autoregressive model of order
n − 1 with a controllable input) under the restrictions on the
distance between models Mj (autoregressive model) and M ′

j

(autoregressive model with a controllable input) (j = 1, 2) and
the input power constraint (6)."
Since the AIC closely relates to the Kullback discrimination
information measure (KDI), the following Kullback divergence
Jt[Mk : M`; yt, ut−1] is employed as a measure of distance
between the models Mk and M`

1 .

Jt[Mk : M`; yt, ut−1]
= It[Mk : M`; yt, ut−1] + It[M` : Mk; yt, ut−1]

(7)

where It[Mk : M`; yt, ut−1] is the Kullback discrimination
information measure,

It[Mk : M`; yt, ut−1] =
∫ ∞

−∞
pk(yt|ut−1) log

pk(yt|ut−1)
p`(yt|ut−1)

dyt

(8)
where p`(yt|ut−1) is the probability density function of yt

given ut−1 = (u(t− 1), . . . , u(1))T under the model M` (` =
1, 2), respectively.

1 The Kullback divergence employed here as a distance measure might be a
better measure, though it is not a true metric as it does not satisfy the triangle
inequality, compared to the Kullback discrimination information (KDI), which
does not satisfy the symmetrical property nor the triangle inequality.

It is known that the Kullback divergence has the following
properties:

[Properties]

(i) The Kullback divergence is non-negative,
Jt[Mk : M`; yt, ut−1] ≥ 0

(ii) The Kullback divergence equals to zero if and only if the
models are identical, i.e., pk(yt|ut−1) = p`(yt|ut−1).

(iii) The Kullback divergence is symmetric,
Jt[Mk : M`; yt, ut−1] = Jt[M` : Mk; yt, ut−1]

These facts suggest that it becomes easier to discriminate the
models as the divergence Jt[M ′

1 : M ′
2; yt, ut−1] is larger since

the distance between the models is larger. Therefore, it is nat-
ural to find an input which maximizes Jt[M ′

1 : M ′
2; yt, ut−1].

The following theorem shows that the Kullback divergence can
be decomposed shown as in Hatanaka and Uosaki [1995].

[Theorem]
The Kullback divergence can be decomposed as

Jt[M ′
1 : M ′

2; yt, ut−1]

= J
(0)
t [M ′

1 : M ′
2; y(0)] + J

(1)
t [M ′

1 : M ′
2; yt, ut−1]

+ J
(2)
t [M ′

1 : M ′
2; yt, ut−1] + J

(3)
t [M ′

1 : M ′
2; yt, ut−1]

(9)

where

J
(1)
t [M ′

1 : M ′
2; yt, ut−1] =

t

2

(
σ(1)2

σ(2)2
+

σ(2)2

σ(1)2
− 2
)

J
(2)
t [M ′

1 : M ′
2; yt, ut−1]

=
1

2σ(2)2

t∑
i=1

((
A2(z−1)
A1(z−1)

− 1
)

u(t− 1)
)2

+
1

2σ(1)2

t∑
i=1

((
A1(z−1)
A2(z−1)

− 1
)

u(t− 1)
)2

J
(3)
t [M ′

1 : M ′
2; yt, ut−1]

=
tσ(1)2

2σ(2)2
· 1
2πi

∮ (
A2(z−1)
A1(z−1)

− 1
)2

dz

z

+
tσ(2)2

2σ(1)2
· 1
2πi

∮ (
A1(z−1)
A2(z−1)

− 1
)2

dz

z

(10)

Here, J
(1)
t [M ′

1 : M ′
2; yt, ut−1] indicates the difference in noise

components, and J
(2)
t [M ′

1 : M ′
2; yt, ut−1] and J

(3)
t [M ′

1 :
M ′

2; yt, ut−1] indicate the differences in input and output
relations between two models, respectively.

Since they are all non-negative and equals to zero if and only
if the models are identical as Jt[M ′

1 : M ′
2; yt, ut−1], only

the input-dependent term J
(2)
t [M ′

1 : M ′
2; yt, ut−1], or its time

average

J̄ (2)[M ′
1 : M ′

2; y, u] = lim
t→∞

1
t
J

(2)
t [M ′

1 : M ′
2; yt, ut−1] (11)

can be considered for efficient model discrimination. Thus the
problem can be restated as

(P1) “Find a input {u(t)} such that it maximizes the time-
average of the input-dependent term of the Kullback diver-
gence, J̄ (2)[M1 : M2; y, u] under the constraints

J̄ (2)[M1 : M ′
1; y, u] ≤ L

J̄ (2)[M2 : M ′
2; y, u] ≤ L

(12)
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with a given constant L, and input power constraint given by
(6)."

3. OPTIMAL INPUT DESIGN

An optimal input is derived, which maximizes J̄ (2)[M ′
1 :

M ′
2; y, u] defined by (11) under the constraints (12). Suppose

that the input sequence {u(t)} is a zero-mean stationary ergodic
Gaussian process. Then, the output sequence {y(t)} is also a
zero-mean stationary ergodic Gaussian process by the stable
linear system assumption. By the ergodic property assumption,
the time average in (11) can be replaced by the ensemble
average,

J̄ (2)[M ′
1 : M ′

2; y, u]

= lim
t→∞

1
t
J

(2)
t [M ′

1 : M ′
2; yt, ut−1]

= E[J (2)
t [M ′

1 : M ′
2; yt, ut−1]]

= E

[
1

2σ(2)2

((
A2(z−1)
A1(z−1)

− 1
)

u(t− 1)
)2
]

+ E

[
1

2σ(1)2

((
A1(z−1)
A2(z−1)

− 1
)

u(t− 1)
)2
]

(13)

Define

ū(t) =
1

σ(1)σ(2)A1(z−1)A2(z−1)
u(t) (14)

Then the ensemble average of J
(2)
t [M ′

1 : M ′
2; yt, ut−1] can be

expressed by

J̄
(2)
t [M ′

1 : M ′
2; y, u]

=
1
2

(
E[(σ(1)(A2(z−1)−A1(z−1))A2(z−1)ū(t− 1))2]

+E[(σ(2)(A1(z−1)−A2(z−1))A1(z−1)ū(t− 1))2]
)
(15)

Let
H1(z−1) = σ(1)((A2(z−1)−A1(z−1))A2(z−1)

=
2n−1∑
k=1

h
(1)
k z−k

H2(z−1) = σ(2)((A1(z−1)−A2(z−1))A1(z−1)

=
2n∑

k=1

h
(2)
k z−k

(16)

where

h
(1)
1 = σ(1)(a(1)

1 − a
(2)
1 )

h
(1)
k = σ(1)

(
a
(1)
k − a

(2)
k −

k−1∑
`=1

a
(2)
` (a(1)

k−` − a
(2)
k−`)

)
(k = 2, . . . , n− 1)

h(1)
n = σ(1)

(
a(1)

n −
n−1∑
`=1

a
(2)
` (a(1)

n−` − a
(2)
n−`)

)

h
(1)
k = −σ(1)

n−1∑
`=k−n

a
(2)
` (a(1)

k−` − a
(2)
k−`)

(k = n + 1, . . . , 2n− 1)

(17)

h
(2)
2 = σ(2)(a(2)

1 − a
(1)
1 )

h
(2)
k = σ(2)

(
a
(2)
k − a

(1)
k −

k−1∑
`=1

a
(1)
` (a(2)

k−` − a
(1)
k−`)

)
(k = 2, . . . , n− 1)

h(2)
n = −σ(2)

(
a(1)

n −
n−1∑
`=1

a
(1)
` (a(2)

n−` − a
(1)
n−`)

)

h
(2)
k = −σ(2)

n∑
`=k−n

a
(1)
` (a(2)

k−` − a
(1)
k−`)

(k = n + 1, . . . , 2n)

a(2)
n = 0

Thus,

J̄
(2)
t [M ′

1 : M ′
2; y, u]

=
1
2

E

(2n−1∑
k=1

h
(1)
k ū(t− 1− k)

)2


+E

( 2n∑
k=1

h
(2)
k ū(t− 1− k)

)2


(18)

and this can be evaluated by using the following auto-
covariance of the filtered input ū(t).

ρ̄k = E[ū(t)ū(t− k)] (k = 0, 1, . . . , 2n− 1) (19)

that is,

J̄
(2)
t [M ′

1 : M ′
2; y, u] =

2n−1∑
k=0

αkρ̄k

α0 =
1
2

(
2n−1∑
k=1

h
(1)2
k +

2n∑
k=1

h
(2)2
k

)

αk =
2n−k−1∑

`=1

h
(1)
` h

(1)
`+k +

2n−k∑
`=1

h
(2)
` h

(2)
`+k

(k = 1, 2, . . . , 2n− 2)

α2n−1 = h
(2)
1 h

(2)
2n

(20)

Since the input u(t) is expressed by using the filtered input ū(t)
as

u(t) = σ(1)σ(2)A1(z−1)A2(z−1)ū(t)

= σ(1)σ(2)
2n−1∑
k=0

ākū(t− k)
(21)

with
ā0 = 1

āk = −a
(1)
k − a

(2)
k +

n∑
`=1

a
(1)
` a

(2)
k−`

(k = 1, . . . , n− 1)

ān = −a(1)
n +

n∑
`=1

a
(1)
` a

(2)
n−`

āk =
n∑

`=k−n

a
(1)
` a

(2)
k−` (k = n + 1, . . . , 2n− 1)

(22)

the input power constraint (6) can be expressed by
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0 < E[u2(t)]

= E

(σ(1)σ(2)
2n−1∑
k=0

ākū(t− k)

)2


= σ(1)2σ(2)2
2n−1∑
k=0

2n−1∑
k=0

βkρ̄k

≤ C

β0 = 1 +
2n−1∑
`=1

ā2
`

βk = 2
2n−k∑
`=0

ā`ā`+k (k = 1, 2, . . . , 2n− 1)

(23)

and the conditions (12) can be rewritten as

J̄ (2)[M1 : M ′
1; y, u]

= E

[
1

2σ(1)2

(
−A1(z−1)z−1

A1(z−1)
u(t)

)2
]

=
1

2σ(1)2
E[u2(t− 1)] ≤ L

J̄ (2)[M2 : M ′
2; y, u] =

1
2σ(2)2

E[u2(t− 1)] ≤ L

(24)

with E[u2(t− 1)] that equals to E[u2(t)] given by (23).
Furthermore, the following conditions are required by the na-
ture of auto-covariances {ρ̄k}.

ρ̄0 > 0
R̄2n−1 is nonnegative definite

where

R̄2n−1 =


ρ̄0 ρ̄1 · · · ρ̄2n−1

ρ̄1 ρ̄0 · · · ρ̄2n−2

...
... . . .

...
ρ̄2n−1 ρ̄2n−2 · · · ρ̄0


Summarizing the above, the optimal input design problem for
discriminating two autoregressive models (1) can be reduced to
the following mathematical programming problem.
(P1)

Maximize
{ρ̄k}

2n−1∑
k=1

αkρ̄k

subject to

0 < β0ρ̄0 + 2
2n−1∑
k=1

βkρ̄k ≤ C ′

C ′ = min
(

C

σ(1)2σ(2)2
,

2L

σ(1)2
,

2L

σ(2)2

)
R̄2n−1 is nonnegative definite

(25)

(Remark)
For the case of autoregressive model of order 1, this mathe-
matical programming can be reduced to a linear programming
problem, as in Section 4, since the positive definiteness of R̄1

leads to the linear constraint.
Once the auto-covariances {ρ̄k} (k = 0, 1, . . . , 2n − 1),
which the optimal filtered input ūo(t) should possesses, can
be obtained, the optimal filtered input ūo(t) with this auto-
covariances can be realized, for example, by the following

Chebyshev system approach (Zarrop [1979],Ng and Qureshi
[1981]). The optimal input ūo(t) is chosen as

ū0(t) =
r∑

p=1

m′
p cos(ωpt) (26)

where r = n/2, or (n + 1)/2, ωj ∈ [0, 2π], ωp 6= ωq(p 6= q),
and mj > 0. The amplitudes {mp} and frequencies {ωp}
satisfy the following system of equations.

1 1 · · · 1
cos(ω1) cos(ω2) · · · cos(ωr)

· · ·
... . . .

...
cos((n− 1)ω1) cos((n− 1)ω2) · · · cos((n− 1)ωr)



×



γ1

f(ω1)
γ2

f(ω2)
...

γr

f(ωr)


=


ρ̄0 − C0

ρ̄1 − C1

...
ρ̄n−1 − Cn−1



and
γp = m̃2

p

f(ωp) = A(ejωp)A(e−jωp) p = 1, . . . , r

Ck =
σ(1)2

2

∫ π

−π

e−jkω

A(ejω)A(e−jω)
dω k = 0, . . . , n

A(z) = 1− a
(1)
1 z−1 − a

(1)
2 z−2 − · · · − a(1)

n z−n

Then the optimal input uo(t) is easily obtained by

uo(t) = σ(1)σ(2)
2n−1∑
k=0

ākūo(t− k) (27)

In practice, the optimal input derived here cannot be employed
since the true parameter values are not known before identi-
fication experiments, and then the sequential approach can be
applied (Gerencsér, et al. [2007]). In the approach, the autore-
gressive parameters are estimated based on the observation data
of input and output, and their estimates are used in the optimal
input.

4. NUMERICAL EXAMPLE

Consider the problem to determine the order of the following
autoregressive model of order 1,

y(t) = a1y(t− 1) + ε(t) (28)
based on its observation sequence {y(t)} by introducing the
controllable input {u(t)} with power constraint

E[u2(t)] ≤ C (29)
where ε(t) is independently normally distributed with zero
mean and variance σ2.
In this case, an optimal input will be found such that it discrim-
inates the following two rival models.

M1 : y(t) = a
(1)
1 y(t− 1) + ε(1)(t)

M2 : y(t) = ε(2)(t)
(30)

The following linear programming problem should be solved.
Maximize

J̄∗ = a2
1(σ

(1)2 + σ(2)2(1 + a
(1)2
1 ))ρ̄0 − 2a

(1)3
1 σ(2)2ρ̄1

(31)
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Fig. 1. Object function and feasible region

subject to

ρ̄0 > 0

R̄1 =
[

ρ̄0 ρ̄1

ρ̄1 ρ̄0

]
is non-negative definite

0 < (1 + a(1)2)ρ̄0 − 2a
(1)
1 ρ̄1

≤ C ′ = min
(

C

σ(1)2σ(2)2
,

2L

σ(1)2
,

2L

σ(2)2

) (32)

The solution is

ρ̄o =
C ′

(1− a1)2
− ε

ρ̄1 =
C ′

(1− a1)2
− (1 + a1)2

4a1
ε

J̄∗ =
a2
1σ

(1)2

1 + a2
1

(2C ′ − (1− a1)2ε)

(33)

with very small ε > 0 to satisfy the inequality condition.
For a

(1)
1 = 0.5, C = 1, L = 0.2, dashed lines in Fig.1

are corresponding to the restrictions and the feasible region is
the enclosed area by head lines. The objective function shown
by solid line in Fig. 1 gives the optimal auto-covariances as
(ρ̄0, ρ̄1) = ( 8

5 − ε, 8
5 −

9
5ε) and the maximum J̄∗ = 12

25 −
11
40ε.

The optimal input sequence {ūo(t)}, and then {uo(t)} with
these auto-covariances can be constructed by the Chebyshev
system approach.

5. CONCLUSIONS

The optimal input design problem has been discussed for ef-
ficient order determination of autoregressive models under the
input power constraint. By solving a mathematical program-
ming problem, auto-caovariance sequence of the optimal input
is derived, which maximizes the time-average of the Kullback
divergence and makes difference of two rival models bigger
without making much effect on the original system behavior.
The proposed approach is based on the sequential comparison
of the AIC, and it can be applied to find the structure of general
linear time-invariant discrete-time systems. Since it sometimes

takes much time to reach the final decision, optimal input de-
sign for accelerated determination of model structure might be
pursued such as multi-model discrimination (Nikoukhah et al.
[2002]).
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