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Abstract: This paper proposes a reliability monitoring scheme for active fault tolerant control
systems using a stochastic modeling method. The reliability index is defined based on system
dynamical responses and a safety region; the plant and controller are assumed to have a multiple
regime model structure; and a semi-Markov model is built for reliability evaluation based on
safety behavior of each regime model estimated by using Monte Carlo simulation. Moreover, the
history data of fault detection & isolation decisions is used to update its transition characteristics
and reliability model.

1. INTRODUCTION

New control techniques and design approaches have been
developed to treat system component faults and to im-
prove system reliability and availability, which are collec-
tively called Fault Tolerant Control Systems (FTCS’s).
FTCS’s usually employ Fault Detection and Isolation
(FDI) schemes and reconfigurable controllers to accommo-
date fault effects, also known as active FTCS’s. In these
systems, faults and imperfect FDI results may degrade
overall system performance thus corrupt designated reli-
ability requirement. Therefore, it is necessary to validate
the design of FTCS’s from a reliability perspective.

The reliability of FTCS’s has been investigated using var-
ious methods. The key problem is to establish appropri-
ate reliability models with control objectives and safety
requirements incorporated. Wu used serial-parallel block
diagrams and Markov models for evaluation purpose, and
defined a coverage concept to relate reliability and control
actions (Wu [2004]). Walker proposed Markov and semi-
Markov models to describe the transitions of fault and FDI
modes, but without taking into account the control actions
(Walker [1997]). In our previous work, we adopted static
model-based control objectives and built a semi-Makov
model from imperfect FDI and hard-deadline concepts
(Li and Zhao [2005, 2006]). However, in many practical
systems, the system safety and reliability are often assessed
based on dynamic system responses. For instance, reliabil-
ity in structural control is defined as the probability of sys-
tem outputs outcrossing safety boundaries and evaluated
by using Gaussian approximation (Song and Kiureghian
[2006]). Also, an online reliability monitoring scheme us-
ing updated information may aid maintenance scheduling,
provide pre-alarming, and avoid emergent overhauls. How
to evaluate reliability when it is defined on system trajec-
tory and how to implement an online-monitoring scheme
are the main motivations of this work.

In this paper, first of all, a Steady State Test (SST)
is proposed to reduce false alarms of FDI decisions. A
stochastic model of such an FDI scheme is obtained based
on which the transition characteristics of FDI modes can
be described. A reliability evaluation scheme for FTCS’s
is then developed based on system dynamic responses
and safety boundary. At last, online monitoring features
are considered, such as estimation of FDI transition pa-
rameters based on history data and timely update of
⋆ This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada.

reliability index to reflect the changing system behavior.
The remainder of this paper is organized as follows: The
assumptions and system structure are given in Section
2; FDI scheme, modeling, and parameter estimation are
discussed in Section 3; the determination of out-crossing
failure rates and hard-deadlines are discussed in Section
4; and the reliability model construction is discussed in
Section 5 followed by a demonstration example of an F-14
aircraft model in Section 6.

2. ASSUMPTIONS AND SYSTEM STRUCTURE

Assumption 1. The considered plant is assumed to have
finite fault modes, and dynamics under each fault mode
can be effectively represented by a linear system model.

Fault modes are represented by a set S with N integers;
{Mi : i ∈ S} represents the set of dynamical plant models
under various fault modes; and {Kj : j ∈ S} denotes a set
of reconfigurable controllers in a switching structure. Kj

is designed for fault mode j based on Mj , j ∈ S. An FDI
scheme is used to generate estimates of fault modes, which
may deviate from true fault modes with error probabilities.
Assumption 2. FDI scheme is assumed to generate a fault
estimate based on a batch of measurements and calcula-
tions for every fixed period Tc.

This assumption states a cyclic feature of FDI, such as
statistical tests and Interactive Multiple Model (IMM)
Kalman filters (Zhang and Li [1998]). FDI modes are
represented by a discrete-time stochastic process ηn ∈ S,
where n ∈ N, the set of non-negative integers. The time
duration between consecutive discrete indices is equal to
FDI detection period Tc. Kj is put in use when ηn = j,
j ∈ S. Corresponding to ηn, a discrete-time stochastic
process ζn denotes true fault mode. In reliability engi-
neering, constant failure rates are usually assumed for
the main part of component life cycle. In such a case, ζn
can be described as a Markov chain, and its transition
probabilities are denoted as Gij = Pr{ζn+1 = j|ζn = i},
i, j ∈ S.
Assumption 3. System performance is assumed to be rep-
resented by a vector signal z(t). Safety region, denoted as
Ω, is assumed to a fixed region in space of z(t) bounded
by its safety threshold. Failure is assumed to occur when
z(t) exceeds a safety region for the first time.

It is common in control systems to use a signal z(t) to
represent performance; and z(t) is usually to be kept
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at small values against influences from exogenous dis-
turbances, model uncertainties, and model characteristic
changes caused by faults. Safety region Ω is assumed to be
fixed and known a priori. The scenario that z(t) exceeds
Ω represents lost of control or a failure. More discussions
on this assumption can be found in Field and Bergman
[1998].

Definition 4. For a time interval from 0 to t, the reliability
function R(t) is defined as the following probability:

R(t) = Pr{∀0 ≤ τ ≤ t, z(τ) ∈ Ω}.

Mean Time To Failure (MTTF) is defined as the expected
time of satisfactory operation:

MTTF =

∫

∞

0

R(t)dt.

The MTTF herein represents the mean operational time
without human intervention before failure.

Fig. 1. Transitions among regime models.

Compared with ζn and ηn, z(t) is typically a fast-changing
function determined by both continuous and discrete dy-
namics. As shown in Figure 1, ζn and ηn are two regime
modes. When the modes ζn = i and ηn = j are fixed,
z(t) evolves according to plant model Mi and controller
Kj during the transitions among the regime models. As
a result of this hybrid dynamics, directly evaluating R(t)
and MTTF is difficult. Therefore, a discrete-time semi-
Markov chain Xn is constructed for reliability evaluation
purpose. The main idea is: the hybrid system is decom-
posed into various regime models; each regime model is
then evaluated for related safety characteristics; and Xn
is constructed to integrate these characteristics with tran-
sition parameters of regime modes and its transition prob-
abilities for reliability evaluation computed. The structure
and main components of reliability monitoring scheme are
illustrated in Figure 2.
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Fig. 2. System structure.

Semi-Markov reliability model Xn is the kernel component
for calculating MTTF. It is constructed based on the
following parameters: 1) the transition rates of ζn, called
plant failure rates; 2) the estimates of ζn from FDI and
confirmation test, called confirmed fault modes; 3) the
parameters of ηn estimated from history data, called
FDI transition characteristics; 4) the probability of z(t)
crossing safety boundary during an FDI cycle Tc when
ζn = ηn, called failure out-crossing rates. 5) the average
number of periods before crossing safety boundary when

ζn �= ηn, called hard-deadlines. Among these parameters,
the second and third ones can be updated online.

3. FDI SCHEME AND ITS CHARACTERIZATION

3.1 Steady state tests

It is well-known that false alarm and missing detection
rates are two conflicting quality criteria of FDI. One is
usually improved at the cost of degrading the other. The
general rules of adjusting FDI to balance these two criteria
are often not known. Herein we focus on false alarm
reduction. Considering that most false alarms last for short
time only, an SST strategy is adopted for post-processing
FDI decisions.

SST requires that, when FDI decision changes, new deci-
sion is accepted only when it stays the same for a minimum
number of detection cycles. Let TSSTj denote the required
number of consistent cycles for FDI mode j, j ∈ S. The
effectiveness of this SST strategy relies on the distribution
of false alarm durations. For example, if a nonnegative dis-
crete random variable λ0 denotes the false alarm duration
when system fault mode ζn = 0, TSST0 can be taken as
(1 − α)-quantile of λ0, 0 < α < 1, meaning

Pr{λ0 > TSST0} ≤ α,

which implies that false alarm probability can be reduced
by ratio α when accepting FDI decisions after TSST0.
The weakness of this method is additional detection time
delay of TSSTj when fault occurs. Detection decisions
from SST are represented by ηn and used for controller
reconfigurations. In Figure 2, the confirmation test is an
SST with large test period to further reduce false alarm
probability to a negligible level. It generates confirmed
fault modes, which are used with FDI trajectories for
updating transition parameters of ηn and reliability index.

3.2 Stochastic models
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Fig. 3. A sample path of ηn.

A sample path of ηn is given in Figure 3. Let θm ∈ S and
Tm ∈ N denote the FDI mode and cycle index respectively
after the m-th transition of ηn, m ∈ N. For example,
in Figure 3, θ1 = η5 and T2 = 5. θm and Tm together
determine FDI trajectory, and ηn = θSn

, where Sn =
sup{m ∈ N : Tm ≤ n} is the discrete-time counting process

of the number of jumps in [1, n]. (θ, T ) � {θm, Tm : m ∈ N}
is called a discrete-time Markov renewal process if

Pr{θm+1 = j, Tm+1 − Tm = l|θ0, · · · , θm;T0, · · · , Tm}(1)

= Pr{θm+1 = j, Tm+1 − Tm = l|θm}

holds for fixed ζTm
= ζTm+1 = · · · = ζTm+1

= k, k, j ∈ S,
l,m ∈ N. ηn = θm is then called the associated discrete-
time semi-Markov chain of (θ, T ). It can be shown that θm

is a Markov chain, and its transition probability matrix is
denoted by P k.

Given ζTm
= ζTm+1 · · · = ζTm+1

= k, let τk
ij = Tm+1 − Tm

if θm = i and θm+1 = j, i, j, k ∈ S. τk
ij is the sojourn

time of ηn between its transition to state i at Tm and
the consecutive transition to j at Tm+1. If the transition
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destination state is not specified, let τk
i denote the sojourn

time at state i.

As shown in Figure 3, τk
ij is the sum of two variables: a

constant TSSTi for SST period and a random sojourn time
σk

ij . Let hk
ij(l) and gk

ij(l) denote the discrete distribution

functions of τk
ij and σk

ij respectively, which have the
following relations:

hk
ij(l) = Pr{τk

ij = l} =

{

0, l ≤ TSSTi;
gk

ij(l − TSSTi), l ≤ TSSTi.

(2)
This semi-Markov description provides a general model on
FDI mode transitions, but it involves a large number of
parameters. The transition characteristics of ηn are jointly
determined by P k and hk

ij (or gk
ij). If S contains N fault

modes, there are N transition probability matrices P k and
N3 distribution functions hk

ij . If each hk
i follows geometric

distribution, the description of ηn may degenerate to a
hypothetical Markov model η′

n.

Markov chain can be considered as a special type of semi-
Markov chain. If ηn can be modeled as a Markov chain with
transition probability matrix denoted by Hk for ζn = k,
the following relations hold:

P k
ij =

Hk
ij

1 − Hk
ii

, (3)

hk
ij(l) = (Hk

ii)
l−1Hk

ij , (4)

hk
i (l) = (Hk

ii)
l−1(1 − Hk

ii), (5)

It is obvious that hk
i is a geometric distribution. In fact,

this is an essential property of Markov chain, as shown in
the following Lemma.
Lemma 5. A discrete-time semi-Markov chain degenerates
to a Markov chain if and only if the sojourn time at
each state (when subsequent state is not specified) follows
geometric distribution.

The proof is omitted for brevity. When TSST is nonzero,
the sojourn time of ηn does not follow geometric distri-
bution owing to this deterministic constant, and Lemma
5 cannot be directly applied. However, as TSST is known,
a hypothetical process η′

n can be constructed by setting
TSST to zeros; if the sojourn time of η′

n is geometrically
distributed, it can be described as a Markov chain; the
original sojourn time of ηn can be recovered by adding
TSST to that of η′

n. This method may greatly reduce the
number of parameters for characterizing FDI results.

3.3 Transition parameter estimation

FDI transition parameters can be estimated as an off-line
test on FDI when both fault mode and FDI detection
results are known. This estimation can also be carried out
online using FDI history data and confirmed fault modes.

When ηn is modeled as a semi-Markov chain, P k and hk
ij

(or gk
ij) are parameters to be estimated. P k can be esti-

mated from the transition history of ηn. For example, when
ζn is kept as a constant k, if there are Mij transitions from
i to j among all M transitions leaving i, the ij-th element
of P k can be estimated as P̂ k

ij = Mij/M . The estimation

of sojourn time distribution gk
ij can be completed in two

steps: the histogram of sojourn time is firstly examined
to select a standard distribution such that nonparametric
estimation is converted to a parametric one; ĝk

ij is then ob-

tained by estimating unknown parameters in distribution
functions.

If ĝk
ij follows geometric distribution for all i, j, k ∈ S, ηn

can be described as a hypothetical Markov chain η′

n under
the hypothesis that TSSTi = 0. As a result, transition
probability Hk

ij from i to j and sojourn time τk
i at i have

the following relation:

Pr{τk
i = n} = (Hk

ii)
n−1(1 − Hk

ii).

Therefore, E(τk
i ) = 1

1−Hk
ii

, and Hk
ii can be estimated by

Ĥk
ii =











1 −
1

∑M

l=1 τk
i (l)/M

,

M
∑

l=1

τk
i (l)/M �= 0,

1, otherwise,

(6)

where τk
i (l) denote M sojourn time samples at state i,

l = 1, · · · ,M . Hk
ij can be estimated based on the transition

frequency from state i to j:

Ĥk
ij = (1 − Ĥk

ii)w
k
ij/M, (7)

where 1 − Ĥk
ii is a normalization coefficient and wk

ij

represents the number of FDI transitions from i to j.

4. OUT-CROSSING FAILURE RATES AND
HARD-DEADLINES

Owing to FDI delays or incorrect decisions, controller Ki

may be used for its designated regime model Mi (namely,
matched cases) and other model Mj , i �= j (namely, mis-
matched cases). Matched cases usually account for major
operation time, while mismatched cases often appear as
temporary operation.
Definition 6. The out-crossing failure rate in matched
cases is defined as

vii � Pr{ ∃τ, nTc < τ ≤ (n + 1)Tc, z(τ) /∈ Ω|z(nTc) ∈ Ω,

ζn = ηn = i}, i ∈ S

Monte Carlo simulation can be used for estimating vii:
Sample simulations are performed using generated sample
uncertain plant model and sample disturbance input; the
simulation time when system fails is called a sample time-
to-failure. With a large number of time-to-failure samples
obtained, vii can be estimated as the ratio between Tc
and sample mean of time-to-failure. Mismatched cases are
usually temporary operation caused by FDI false alarms
or delays, and system may return to matched cases if z(t)
does not diverge to unsafe region. So, it is important to
find out the average tolerable time before system failure.
This time limit is called hard-deadline, denoted by Thdij

for ζn = i and ηn = j. It can also be estimated by sample
mean of time-to-failure using Monte Carlo simulations.

5. RELIABILITY MODEL CONSTRUCTION

The states of semi-Markov chain Xn for reliability evalua-
tion are classified into two groups: one unique failure state,
denoted by sF, and multiple functional states, defined as
state combinations of ζn = i and ηn = j, denoted as sij ,
i, j ∈ S. For example, if two types of faults are considered
in the plant, ζn includes states of fault-free, fault type
1, fault type 2, and both fault 1 and 2, represented by
S = {0, 1, 2, 3}, and Xn contains 17 states.

The semi-Markov kernel of Xn is denoted as Q(·, ·, n),
representing the one-time transition probability in n steps.
It is determined by the following parameters: 1) transition
characteristics of fault and FDI modes; 2) outcrossing
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failure rate in state sii denoted by vii; 3) hard-deadline
in state sij denoted by Thdij ; 4) FDI SST period denoted
by TSSTj for FDI mode j.

Let us begin with the case that FDI mode can be described
as a hypothetical Markov chain η′

n with transition prob-
ability denoted by Hk

ij . The calculation of Q is classified
into the following cases:

Case 1: The transitions from functional states to them-
selves are not defined and the corresponding elements are
assigned as zeros:

Q(sii, sii,m) = 0, Q(sij , sij ,m) = 0, i, j ∈ S.

Case 2: Failure state sF is absorbing:

Q(sF, sF,m) =

{

1, m = 1;
0, m > 1.

Case 3: Matched states sii:

Q ( sii, sF, m) =

{

(1 − vii)
m−1Gm−1

ii
vii, m ≤ TSSTi,

pii[(1 − vii)GiiH
i
ii]

(m−TSSTi−1)vii, m > TSSTi,

Q ( sii, sji, m) =
{

(1 − vii)
m−1G

m−1
ii

(1 − vii)Gij , m ≤ TSSTi,

pii[(1 − vii)GiiH
i
ii]

(m−TSSTi−1)(1 − vii)GijHi
ii, m > TSSTi,

Q ( sii, sij , m) =
{

0, m ≤ TSSTi,

pii[(1 − vii)GiiH
i
ii]

(m−TSSTi−1)(1 − vii)GiiH
i
ij , m > TSSTi,

Q ( sii, skj , m) =
{

0, m ≤ TSSTi,

pii[(1 − vii)GiiH
k
jj ]

(m−TSSTi−1)(1 − vii)GikHi
ij , m > TSSTi,

where pii = Pr{X1 = X2 = · · · = XTSSTi
= sii|X0 =

sii} = (1 − vii)
TSSTiGTSSTi

ii , i �= j, k �= i, i, j, k ∈ S.

The derivation of these equations are based on Markov
transition probabilities and the decomposition of each
event. For example,

Q (sii, sF, m)

= Pr{X1 = X2 = · · · = Xm−1 = sii, Xm = sF|X0 = sii}

= Pr{X1 = X2 = · · · = Xm−1 = sii|X0 = sii}Pr{X1 = sF|X0 = sii}.

Considering steady state test of FDI, if m ≤ TSSTi,

Pr{X1 = X2 = · · · = Xm−1 = sii|X0 = sii} = (1 − vii)
m−1Gm−1

ii
;

If m > TSSTi,

Pr{X1 = X2 = · · · = Xm−1 = sii|X0 = sii}

= Pr{X1 = X2 = · · · = XTSSTi
= sii|X0 = sii} ·

[(1 − vii)GiiH
i
ii]

(m−TSSTi−1).

Q(sii, sF,m) can be obtained by combining these two
probabilities with Pr{X1 = sF|X0 = sii} = vii,

Case 4: Mismatched states: sij , i �= j. When m ≤ TSSTj ,
the transition probability of X(t) to any other state is
zero because of SST period. When TSSTj < m ≤ Thdij ,
the probability of X(t) transiting to any other state is
zero except to sii. The above reasoning is based on the
facts that FDI rarely jumps to other false modes when
current mode is incorrect, and mean fault occurrence time
is in a much higher order compared with a short false FDI
detection period. Therefore, when TSSTj < m ≤ Thdij ,

Q(sij , sF,m) = 0,

Q(sij , sii,m) = (Hi
jj)

m−TSSTj−1Hi
ji, j �= l, j, l ∈ S.

When m > Thdij + 1, Xn jumps to sF at the earliest time
m = Thdij + 1 only:

Q(sij , sF, TSSTi + 1) = 1 −

Thdij
∑

k=TSSTi+1

Q(sij , sii,m)

= 1 −
1 − (Hi

jj)
Tij−TSSTj+1

1 − Hi
jj

Hi
ji.

In the general cases, ηn is modeled as a semi-Markov chain,
and the competition probabilities methods discussed in Li
and Zhao [2006] can be utilized.

Definition 7. Given ζn = i and ηn = j, the combinational
mode is denoted as (i, j), i, j ∈ S. Suppose (ζn+1, ηn+1) =
· · · = (ζn+m−1, ηn+m−1) = (i, j) and the next combina-
tional mode after the consequent transition of ζn or/and
ηn at n + m is (ζn+m, ηn+m) = (k, l), where k �= i or/and
l �= j, k, j ∈ S. The probability of this event is called the
competition probability, denoted by ρ(i,j)֌(k,l)(m).

The calculation formulas of ρ(i,j)֌(k,l)(m) were derived in
Section 3 of Li and Zhao [2006] and are omitted here for
brevity. As the states of Xn is mainly defined as the state
combinations of ζn and ηn, the calculation of the semi-
Markov kernel of Xn is simplified when ρ(i,j)֌(k,l)(m) is
available, as shown in the following listed formulas.

Q(sii, skl,m) = (1 − vii)
mρ(i,i)֌(k,l)(m),

Q(sii, sF,m) = (1 − vii)
m−1vii,

Q(sii, sii,m) = 0,

Q(sij , skl,m) =

{

ρ(i,j)֌(k,l)(m), m ≤ Thdij

and k = l = i,
0, otherwise

Q(sij , sF,m) =











0, m ≤ Thdij ,

1 −

Thdij
∑

m=1

Q(sij , sii,m), m > Thdij ,

Q(sF , sF ,m) =

{

1, m = 1;
0, m > 1.

Although these formulas appear to be simpler, both the
parameter estimation and competition probability calcu-
lations need much more calculation burden than the first
case when FDI decision is modeled as a hypothetical
Markov chain. Once Xn is constructed, calculation of
reliability function and MTTF are straightforward using
available formulas given in Barbu et al. [2004].

6. DEMONSTRATION ON AN F-14 AIRCRAFT
MODEL

6.1 Model description

A control problem of F-14 aircraft was presented in Balas
et al. [1998], and also used as a demonstration example
in MATLAB� Robust Control Toolbox 1 . This problem
considers the design of a lateral-directional axis controller
during powered approach to a carrier landing with two
command inputs from the pilot: lateral stick and rudder
1 MATLAB and Robust Control Toolbox are the trademarks of The
MathWorks, Inc.
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pedal. At an angle-of-attack of 10.5 degree and airspeed
of 140 knots, the nominal linearized F-14 model has four
states: lateral velocity, yaw rate, roll rate, and roll angle,
denoted by v, r, p, and φ respectively; two control inputs,
differential stabilizer deflection and rudder deflection, de-
noted by δdstab and δrud respectively; and four outputs:
roll rate, yaw rate, lateral acceleration, and side-slip an-
gle, denoted by p, r, yac, and β respectively. The system
dynamics equations are ignored here, and can be loaded
in MATLAB 7.1 using command ‘load F14nominal’. An
additional disturbance input is added to represent the
wind gust effects.

The control objectives are to have handling quality (HQ)
responses from lateral stick to roll rate p and from rud-
der pedal to side-slip angle β match ideal HQ models.
Under fault free modes, the HQ models are 5 2

s+2 and

−2.5 1.252

s+2.5s+1.252 ; when fault occurs, HQ models degrade

to 5 1
s+1 and −2.5 0.752

s+1.5s+0.752 respectively.
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Fig. 4. Control design diagram for F-14 lateral axis (Cour-
tesy of The MathWorks, Inc.)

The system block diagram is shown in Figure 4, where F-
14nom represents the nominal linearized F-14 model, and
AS and AR the actuator models. ep and eβ represent
the weighted model matching errors. Actuator energy is
described by eact, and noise is added to the measured
output after anti-aliasing filters.

The considered fault occurs in two actuators. Under fault-
free mode, their transfer functions are:

AS = AR =
25

s + 25
.

Two types of actuator faults are considered here: each has
mean occurrence time 105 of FDI periods or its failure
rate is 10−5. Under fault type 1, the transfer function of
AS becomes

A′

S = 0.5
15

s + 15
.

Under fault type 2, the transfer function of AR becomes

A′

R = 0.5
10

s + 10
.

These fault modes are described as the change of actuator
gains and time constants. The set of fault modes is denoted
by S = {0, 1, 2, 3}, representing fault-free, faut type 1, type
2, and simultaneous occurrence of both.

6.2 Simulation Results

Different H∞ controllers are designed for each system
mode to achieve nominal HQ control objectives under
fault-free mode and degraded ones under fault modes.
Typical output trajectories under fault-free mode are
shown in Figure 5. The absolute minimal matching errors
between the real responses and the ideal or degraded ones

are shown in Figure 6. When these matching errors go
over the safety limits, 30% of expected output, aircraft is
considered as failed.

2 4 6 8 10 12 14

−4

−2

0

2

4

6

8

Time

R
o

ll 
ra

te
 (

p
)

 

 

0 10 20 30 40 50 60
−4

−2

0

2

4

Time

S
id

e
 s

lip
 (

β
)

 

 
Real

Ideal

Degraded

Real

Ideal

Degraded

Fig. 5. Output trajectories.

0 10 20 30 40 50 60
0

0.5

1

Time

R
o

ll 
ra

te
 e

rr
o

r

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Time

S
id

e
 s

lip
 e

rr
o

r

Fig. 6. The trajectories of matching errors.

An IMM FDI is constructed to detect fault occurrences. To
reduce false alarms, a steady state test strategy is applied
on FDI decisions with TSSTj = 6 for any FDI mode j. A
typical FDI trajectory is shown in Figure 7. It is clear that
the steady FDI mode is free of false alarms in the shown
time period. But detection time delays are introduced
when fault occurs at 20 and 50 seconds respectively.
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Fig. 7. FDI trajectory.

To represent FDI detection characteristics, a batch of fault
and FDI history data is collected for statistical estimation.
First, histograms of FDI delays are generated to check its
distribution type. When there is no fault, the histogram
of FDI sojourn time at fault-free mode is shown in Fig.
8. It clearly resembles a geometric distribution. Equation
(6)-(7) are then used to estimate Markov transition prob-
abilities, and those under fault-free mode are obtained as:

H0 =





0.9990 0 0.0010 0.0000
1.0000 0 0 0
0.1330 0 0.8670 0
0.5000 0 0 0.5000



 .
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Note H0(2, 1) represents the transition probability of FDI
from decision mode 1 when fault mode is 0. It means that
FDI is at false alarm state, and a properly designed FDI
transits back to mode 0.

As a result of imperfect FDI results, controllers may be
engaged for wrong fault modes. So, it is necessary to
evaluate system behavior under all possible combinations
of FDI and fault modes. Here, Monte Carlo simulations are
adopted with the following settings: 1) command stick in-
puts are square waves with frequency as a random variable
ranging from 0.2 to 2 Hertz; 2) wind gust disturbances and
sensor measurement noises are assumed to be Gaussian
processes; 3) actuator saturation effects limit control in-
puts to 20 and 30 respectively; 4) system failure is assumed
to occur when model matching errors go over 30% of stick
commands. For example, with fault mode 2 occurred and
K2 engaged, mean time to system failure is 57403 seconds
when controller K2 is used, and 6 seconds when K1 is
used. Considering the sampling period is 0.1 second for
IMM FDI, the out-crossing failure rate and hard-deadline
are: v22 = 1/574030, Thd21 = 60.

BY using MTTF as an objective, an optimization is per-
formed on TSST. It is found that MTTF will be improved
from 27727 to 32605 seconds if TSSTj is reduced from
6 to 1. A comparison of reliability functions before and
after this optimization is shown in Figure 9. It is clearly
shown that reliability index is improved. Comparisons on
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Fig. 9. Reliability functions comparison.

the transition probabilities between these two SST periods
are shown in Figure 10, in which each sub-figure gives the
transition probability curves from s00 to other states. For
example, the sub-figure at the first row and second column
shows the transition probabilities to s01 is increased from
0 to about 0.008. This is a natural result of increased false
alarms when reducing TSSTj . In fact, when TSSTj = 1, new
Markov transition parameters H ′0 becomes:

H ′0 =





0.9822 0.0017 0.0122 0.0038
0.2634 0.7366 0 0
0.1989 0 0.8011 0
0.3530 0 0 0.6470



 .

Compared with H0, the element on the first row and sec-
ond column is increased from 0 to 0.0017, a confirmation of
increased false alarms. On the other hand, detection delays
are reduced approximately from 6 to 1, and system stays
less time under mis-matched fault and FDI cases. Overall,
MTTF is improved.
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Fig. 10. Comparison of transition probabilities.

This evaluation procedure can be completed in an online
manner. Estimated FDI transition parameters H and
current mode of ζn provided by confirmed test on FDI can
be used to provide updated MTTF based on this most
recent information.

7. CONCLUSIONS

A reliability monitoring scheme for FTCS’s is reported
in this paper. The scheme contains two post-processing
strategies on FDI results to provide estimated fault mode
for control reconfiguration and confirmed mode for up-
dating reliability. The stochastic transitions of FDI mode
is represented by a semi-Markov chain with parameters
estimated from history data. This scheme provides timely
monitoring on the reliability index of FTCS’s. However,
as a weakness, the proposed scheme has large computation
burden. In addition, it is necessary to study the sensitivity
of the proposed scheme with respect to the uncertainties in
transition parameters of the fault and FDI Markov chains,
especially considering the implementation of the scheme to
practical systems.
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