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Abstract: In this paper, a dynamic fuzzy neural network (DFNN) is applying for communica-
tion channel equalization problem. By combining fuzzy rules with the learning ability of neural
networks, DFNN can achieve the advantages of both fuzzy logic and neural networks. The
simulation results show that DFNN equalizer is superior to other equalizers such as recurrent
neural network (RNN) and minimal resource allocation networks (MRAN) in terms of bit error
rate (BER).

1. INTRODUCTION

It is well known that in high-speed digital communication
systems, the channel distorts the transmitted symbols
in both amplitude and phase thereby causing interfer-
ences between adjacent symbols. Fig. 1 shows a standard
baseband-equivalent model of a communication system
and the channel output xn is given below:

Fig. 1. Discrete model of a communication system

xn =

nh−13
i=1

hitn−i + vn (1)

where nh is the channel order. The signal sequence {tn} is
passed through the linear/nonlinear channel; the channel
noise-free output x̂n is corrupted by additive zero-mean
Gaussian noise vn to generate the equalizer input signal
xn; after equalization, the equalizer output signal t̂n−τ
is compared with the delayed channel input signal tn−τ
and the error is used to adjust the free parameters of the
proposed equalizer. In Brief, the purpose of the equalizer
is to reconstruct the transmitted signal tn−τ based on the
received symbol sequence Xn = [xn, xn−1, · · · , xn−m+1]T ,
where τ is the equalizer decision delay and m is the
equalizer input dimension.

Because neural networks have very good mapping and
classification ability (Huang et al. (2000)), many types of
neural network have been applied for equalization prob-
lems, such as Multi-Layer Perceptions (MLP), Radial Ba-
sis Function (RBF) networks and Recurrent Neural Net-
works (RNN) (Chen et al. (1990, 1991, 1993); Kechriotis
et al. (1994); Kumar et al. (2000); Li et al. (2000); Parisi

et al. (1997)). Chen et al. (1990) develop an adaptive
equalizer using multilayer perceptron to overcome chan-
nel non-linearities and additive noise correlation. They
also investigated a radial basis function neural network
(RBFNN) equalizer to reconstruct binary signals in a
dispersive channel and showed that the RBF nonlinear
equalizer can realize optimal equalization and is beneficial
in practical implementation (Chen et al. (1991, 1993)).
Recurrent neural networks equalizer has gained great at-
tention because of its feedback property and is developed
by Kechriotis et al. (1994) and Parisi et al. (1997), re-
spectively. Kechriotis et al. (1994) propose an adaptive
RNN equalizer for linear and nonlinear channels. Another
fast adaptive RNN digital equalizer is presented by Parisi
et al. (1997), which is superior to the Kechriotis’ RNN
equalizer in terms of bit error rate (BER) and training
samples. Kumar et al. (2000) present a RBF equalizer
using minimal resource allocation network (MRAN) and
evaluate performances of the proposed equalizer in differ-
ent channels for 2-PAM and 4-QAM signals. The equalizer
using the function link artificial neural networks (FLANN)
is developed by Weng et al. (2004) and Yen et al. (2004).
The performance of FLANN equalizer is compared with
that of MLP equalizer and linear least-mean-square-based
equalizer in several channels for QAM signals. Recently,
self-organizing neural networks have generated great inter-
est in many researchers. One sequential learning algorithm
termed growing and pruning RBF (GAP-RBF) network is
applied to solve the channel equalization problem (Li et al.
(2000)). Using the growing and pruning criterion, the num-
ber of the hidden layer neurons is dynamically adjusted to
achieve the compact network structure. Simulation results
show that the GAP-RBF equalizer is superior to some
existing neural-networks-based equalizers in term of BER
and equalizer complexity.

In the past few years, fuzzy logic has gained great interest
in various applications because fuzzy systems can approx-
imate any continuous function on a compact set to any
accuracy. It is well known that fuzzy logic incorporates a
simple “IF-Then” rule-based approach to solve a control
problem rather than modeling a system mathematically,
which needs expert experiences in the design. However,
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the designer will encounter great difficulty in conventional
fuzzy system design when the system is too complicated
to extract an appropriate number of fuzzy rules. Recently,
a Takagi-Sugeno-Kang (TSK) fuzzy system implementing
radial basis function (RBF) neural networks, termed dy-
namic fuzzy neural networks (DFNN), is proposed by Wu
et al. (2000). By combining fuzzy rules with the learning
ability of neural networks, the DFNN can achieve the
advantages of both fuzzy logic and neural networks. The
key idea of the DFNN is that the system starts with no
hidden units and dynamically adds and deletes neurons
according to their significance to system performance. A
parsimonious structure can be achieved by self-adaptive
learning algorithm. Many applications of the DFNN have
been accomplished since it was proposed Er et al. (2005,?);
Wu et al. (2001). In this paper, the DFNN is applied to
the channel equalization problem and its performance is
evaluated in several different channel models. Simulation
results show that the DFNN equalizer can achieve superior
performance compared with the Bayesian, MRAN and
adaptive RNN equalizers (Parisi et al. (1997)) in terms
of BER.

This paper is organized as follows. Section 2 briefly in-
troduces the architecture of DFNN. Section 3 introduces
the learning algorithm of DFNN. Section 4 shows a per-
formance comparison of the DFNN equalizer with the
Bayesian, MRAN and RNN equalizers. Section 5 concludes
the paper.

2. ARCHITECTURE OF DYNAMIC FUZZY NEURAL
NETWORKS

Fig. 2. Architecture of dynamic fuzzy neural networks

Fig. 2 depicts the architecture of DFNN. Consider a series
of training samples (Xi, ti), i = 1, 2, · · · , n, where Xi =
[xi1, xi2, · · · , xim]T ∈ Rm. The architecture of the DFNN
is made up of five layers:

Layer 1: Input layer. Each node represents an input
linguistic variable xi, i = 1, 2, · · · ,m.
Layer 2: Each input variable xi, has u membership
functions µij , which is in the form of a Gaussian function,
i. e.

µij = exp

^
−(xi − cij)

2

σ2j

�
i = 1, . . . ,m j = 1, . . . , u

(2)
where cij ,σj are the center and width of the Gaussian
function and u is the number of membership functions,
respectively.

Layer 3: Each node represents a possible IF-part for fuzzy
rules. If the T -norm operator is chosen as multiplication
to calculate each rule’s firing strength, the output of the
jth rule Rj is given by

Rj = exp

^
−
�m

i=1(xi − cij)2
σ2j

�
=exp

^
−,(X − Cj),

2

σ2j

�
j = 1, . . . , u

(3)

Layer 4: In this layer, the outputs from the previous layer
are normalized to the interval [0, 1].

aj =
Rj�u
k=1Rk

=
exp
�
−,(X−Cj),2

σ2
j

=
�u
k=1 exp

�
−,(X−Ck),2

σ2
k

= (4)

Layer 5: This is the output layer. We have

y(X) =
u3
j=1

wjaj (5)

For the TSK model, wj can be expressed as follows:

wj = kj0 + kj1x1 + · · ·+ kjmxm (6)

For n training samples, the output of layer 4 with u fuzzy
rules can be denoted by:

ψ =

⎡⎢⎣ a11 . . . a1n...
...

...
au1 . . . aun

⎤⎥⎦ (7)

then, Eq.(5) can be rewritten in a more compact form

Y =WΨ (8)

where

W = [k10, . . . , ku0, k11, . . . , ku1, . . . , k1m, . . . , kum] (9)

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1n
...

...
...

au1 . . . aun
a11x11 . . . a1nx1n
...

...
...

au1x11 . . . aunx1n
...

...
...

a11xm1 . . . a1nxmn
...

...
...

au1xm1 . . . aunxmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where ajk is the normalized output from layer 4, j =
1, . . . , u, k = 1, . . . , n, n is the number of training data.
The optimal coefficient vector W ∗ can be easily solved by
the well-known linear least squares (LLS) method

W ∗ = Y · (ΨTΨ)−1ΨT (11)
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3. LEARNING ALGORITHM OF DFNN

3.1 Criteria of neuron growing

For the ith observation (Xi, ti), calculate the DFNN
output error ei and the distance di(j) as follows:

,ei, = ,ti − yi,
di(j) = ,Xi − Cj, j = 1, . . . , u (12)

If
,ei, > ke
dmin > kd

(13)

where dmin = arg min(di(j)) and ke, kd are two predeter-
mined parameters which are chosen as follows.

ke = max[emax × βi, emin] 0 < β < 1

kd = max[d̂max × γi, d̂min] 0 < γ < 1
(14)

A new neuron is added to the DFNN and the center and
width for the new generated neuron are set as

Ci = Xi
σi = k × dmin (15)

Fig. 3. Learning algorithm of dynamic fuzzy neural net-
works

3.2 Criteria of neuron pruning

In order to realize a compact network structure, inactive
hidden neurons should be detected and removed during the
learning progress. First, the error reduction ration (ERR)
matrix ERR = (δ1, δ2, . . . , δu) ∈ R(m+1)×u is calculated
(please see Wu et al. (2000) for details of ERR matrix
calculation).

If

ηi =

�
δTi δi
m+ 1

< kerr (16)

The ith hidden neuron is inactive and should be deleted,
where kerr is a prespecified threshold. Detailed descrip-
tions of the learning algorithm are shown in Fig. 3.

4. SIMULATION RESULTS

The performance of the DFNN equalizer for 2-PAM signals
is evaluated for three different channel models used in
Kechriotis et al. (1994) and Parisi et al. (1997). In example
1 and example 2, the simulation environment is set as the
same as that of Parisi et al. (1997) in order to compare with
its results directly. 106 testing data were used to calculate
the bit error rate (BER) after the a total of equalizer is
trained at different signal-to-noise ratio (SNR).

Fig. 4. equalizer output (Example 1)

Example 1: In this example, the third-order nonminimum-
phase channel model is used to evaluate the DFNN equal-
izer performance. The channel transfer function (Kechrio-
tis et al. (1994), Parisi et al. (1997)) is given by

H2(z) = 0.3482 + 0.8704z
−1 + 0.3482z−2 (17)

Fig. 5. Fuzzy rules generation (Example 1)

The input dimension of the DFNN equalizer was set to
m = 1 and the equalizer decision delay was τ = 1. The
DFNN network parameters are set as follows: d̂max =
4, d̂min = 0.3, emax = 1, emin = 0.02, kerr = 0.002, k =
0.9,β = 0.9, γ = 0.97. The activation functions are
chosen Gaussian functions for the MRAN, GAP-RBF and
RBFNN equalizers and hyperbolic tangent function for the
RNN equalizer. The RNN equalizer uses 3 units in the
simulation in Kechriotis et al. (1994).

The DFNN equalizer is trained with 300 samples at dif-
ferent SNR and Fig. 4 is the DFNN equalizer output at
10dB SNR. Seven fuzzy rules have been generated by the
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Fig. 6. Membership functions of input variable (Example
1)

DFNN equalizer at the end of the training process shown in
Fig. 5. The membership functions of the input variable are
shown in Fig. 6. Fig. 7 shows the curves of the BER versus
SNR for Bayesian, MRAN, RNN and DFNN equalizers.
As shown in Fig. 7, the Bayesian equalizer (star line) at-
tains the best BER performance. Using the same training
samples, the DFNN equalizer(circle line) always produces
superior performance than the MRAN equalizer (dot line),
the RNN equalizer (plus line), the GAP-RBF equalizer
(square line) and the RBFNN equalizer (diamond line).

The fuzzy rules are listed as follows:
Rule 1: If x is A(0.9, 0.7), then t = −1.7−0.8x.
Rule 2: If x is A(1.5, 0.8), then t = 0.1+0.6x.
Rule 3: If x is A(0.1, 0.2), then t = 0.5 + 5x.
Rule 4: If x is A(1.1, 0.2), then t = 1.3.
Rule 5: If x is A(0.7, 0.2), then t = 0.9+0.5x.
Rule 6: If x is A(−0.3, 0.1), then t = −0.5 +

0.7x.
Rule 7: If x is A(−1.6, 0.4), then t = −2.8−

0.9x.

Fig. 7. Error probability. *: Bayesian. •: MRAN. +:
RNN. o: DFNN. : GAP-RBF. 0: RBFNN equalizers
(Example 1)

Example 2: In this case, a more complicated channel
model will be used to evaluate the performance of the
DFNN equalizer. The nonlinear channel transfer function
(Kechriotis et al. (1994), Parisi et al. (1997)) can be given
by

H2(z) = 0.3482 + 0.8704z
−1 + 0.3482z−2

xn = x̂n + 0.2x̂
2 + vn

(18)

where x̂n is the linear noise-free channel output and vn is
the zero mean Gaussian white noise. The input dimension
of the DFNN equalizer was set to m = 1 and the equalizer
decision delay was τ = 1. The DFNN network parameters
are set as follows: d̂max = 4, d̂min = 0.3, emax = 1, emin =
0.02, kerr = 0.002, k = 0.9,β = 0.9, γ = 0.97.

Fig. 8. Fuzzy rules generation (Example 2)

Fig. 9. Membership functions of input variable (Example
2)

The DFNN equalizer is trained at different SNR with 500
training samples. Fig. 8 and Fig. 9 show the generation
of fuzzy rules and membership functions of the input
variable, respectively. The fuzzy rules are listed as follows:

Rule 1: If x is A(−0.7, 0.7), then t = −0.9 +
0.2x.

Rule 2: If x is A(2.1, 1.0), then t = 4.9−1.7x.
Rule 3: If x is A(0.2, 0.1), then t = 2.6−7.5x.
Rule 4: If x is A(1.2, 0.6), then t = 2.7−2.3x.
Rule 5: If x is A(−0.2, 0.02), then t = −1.0+

1.3x.
Rule 6: If x is A(0.8, 0.3), then t = −1.3+2.1x.
Rule 7: If x is A(−1.1, 0.2), then t = −0.5 +

0.4x.

After the training process, 1000 000 test data at various
SNRs were used for the BER evaluation. The BER results
are compared with other five equalizers shown in Fig. 10.
It can be seen from the figure that the DFNN equalizer
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attains better BER performance than other equalizers,
except Bayesian equalizer.

Fig. 10. Error probability. *: Bayesian. •: MRAN. +:
RNN. o: DFNN. : GAP-RBF. 0: RBFNN equalizers
(Example 2)

Example 3: The nonlinear channel model used in Kechri-
otis et al. (1994) and Kumar et al. (2000) is chosen for
simulation studies. The channel transfer function is given
by

H1(z) = 1 + 0.7z
−1

xn = x̂n + x̂
2 + 0.7x̂3 + 0.5x̂4 + vn

(19)

Fig. 11. Fuzzy rules generation (Example 3)

Fig. 12. Membership functions of input variable (Example
3)

Fig. 13. Error probability. *: Bayesian. •: MRAN. o:
DFNN. : GAP-RBF. 0: RBFNN equalizers (example
3)

The DFNN equalizer is trained with 50 training samples
at 10dB SNR. The growth progress of the fuzzy rules
during the training are given in Fig. 11. Fig. 12 shows
the membership functions of the input variable. A total
of 1000 000 test data at various SNRs were used for the
BER evaluation. A comparison between the Bayesian, the
DFNN and the MRAN equalizer in terms of BER is shown
in Fig. 13. It can be seen from the figure that the DFNN
equalizer is superior to the MRAN, the RBFNN and the
GAP-RBF equalizers.

The fuzzy rules are listed as follows:
Rule 1: If x is A(−0.2, 1.5), then t = −0.8−

2.7x.
Rule 2: If x is A(12.2, 11.7), then t = 0.9 +

0.01x.
Rule 3: If x is A(0.2, 0.3), then t = 1.4−27.7x.
Rule 4: If x isA(0.6, 0.3), then t = 15.8−20.0x.

4.1 Discussions

Algorithms Neuron equalization time
training(s) testing

(ms/sample)

DFNN 7 0.206 0.119
GAP-RBF 6 0.389 0.083

Example1 MRAN 8 0.732 0.107
RBFNN 8 0.089 0.132
Bayesian 8 − 0.094

DFNN 7 0.234 0.104
GAP-RBF 5 0.577 0.072

Example2 MRAN 6 1.307 0.083
RBFNN 8 0.112 0.136
Bayesian 8 − 0.094

DFNN 4 0.031 0.108
GAP-RBF 4 0.108 0.061

Example3 MRAN 4 0.203 0.061
RBFNN 4 0.018 0.068
Bayesian 4 − 0.049

Table 1. Complexities of equalizers

From the simulation results given in the above section,
we can see that the DFNN equalizer can obtain better
equalization performance than other equalizers, except
Bayesian equalizer. This is because the Bayesian equalizer
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uses the noise-free channel states as its centers and the
desired output as its priori probability, which can achieve
an optimal solution. The limitation of Bayesian method
is that the channel model needs to be exactly known,
which is difficult to achieve in real-world applications. The
RBFNN proposed by Chen et al. (1993) uses a supervised
κ-means clustering procedure to eliminate the noise effect
so that the RBF centers can converge to the desired
states. The properties of the clustered centers will directly
determine the equalization performance. For example 1
and example 2, the channel models are complicated which
is the reason why RBFNN equalizer cannot perform better
than the DFNN, GAP-RBF and MRAN equalizers in
terms of BER. For example 3, the channel model is
simple and the RBFNN equalizer can obtain almost the
same equalization accuracy as the DFNN and the GAP-
RBF equalizers. During the training, the RBFNN weights
linking the hidden layer to the output layer are adjusted
with the least mean square (LMS) algorithm. From the
Table 1, it can be seen that the RBFNN can achieve the
fastest learning speed in all methods by virtue of the simple
training algorithm.

The DFNN, GAP-RBF and MRAN equalizers are all self-
constructing neural networks and they use growing and
pruning criterion to search the compact network struc-
ture. At the end of the training process, they generated
almost the same number of hidden neurons as the Bayesian
method which is the optimal solution (Table 1). For BER
performance, the DFNN equalizer is the best in these three
equalizers because it combines the advantage of fuzzy rules
with the learning ability of neural networks. The linear
least square (LLS) method used to determine the output
weights enables the DFNN achieve global generalization
property quickly and directly. Though the GAP-RBF and
the MRAN equalizers can achieve the compact network
structure, the output weights are modified using the ex-
tended Kalman filter (EKF) method which leads to more
time and cost than the DFNN equalizer during the training
(Table 1).

It can be seen from Table 1 that there is not much
difference between the equalizer time of all equalizers.
This is because the equalizer time (testing time) is mainly
affected by the number of hidden neurons.

5. CONCLUSIONS

In this paper, channel equalization with 2-PAM signals is
attempted by using the DFNN. A performance evaluation
of the DFNN has been carried out using several chan-
nel models with increasing complexity. Simulation results
show that the DFNN equalizer is superior to the MRAN,
RBFNN, GAP-RBF and RNN equalizers in terms of BER.
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