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Abstract: The active vibration suppression of a flexible link manipulator using a smart structure (piezoelectric 
actuator) is investigated. For this purpose, a Finite Element (FE) model is developed for the modal and 
transient analysis of a cantilever beam and a flexible link manipulator. The novelty of this work is in the 
development of an accurate finite element model of a piezoelectric and beam/manipulator. Also, the effect of the 
placement of the piezoelectric actuator along the beam, based on the controllability of the system states and 
using FE analysis, is investigated. To avoid system instability, a collocated sensor-actuator pair is used and a 
proportional control strategy is employed to adjust the voltage applied to the piezoelectric actuator so as to 
control vibrations. For the flexible link manipulator, it is shown that the vibration is well suppressed during 
and at the end of a maneuver by locating the piezoelectric actuator at the optimum location. The effect of the 
controller gain on the vibration behavior of the system is investigated and the optimum controller gain is found 
using two main evaluation criteria; these are the contribution of the dominant frequencies in the response and 
the error norms of the vibration amplitudes. 

 

1. INTRODUCTION 

Designing and utilizing robot manipulators having higher 
load capacities is always desired. However, vibration is an 
important factor that restricts the performance of such devices 
especially in applications where accurate positioning is very 
important. In the past decade different approaches have been 
used for vibration suppression. Active vibration control is one 
of the best approaches to suppress vibration. One of the 
methods of active control is using piezeoelectrics as actuators 
(Lewis and Inman, 2001). 

Piezoelectric actuators have been successfully used for 
vibration suppression in some works. Khajehpour and 
Golnaraghi (1997) developed a nonlinear controller for 
vibration control of a cantilever beam using piezoelectric 
actuators. The optimum placement of the actuators for a 
cantilevered plate was proposed in (Peng et al., 2005). Effect 
of the placement of the piezoelectric actuator on the modal 
and spatial controllability of a structure was analysed in 
(Moheimani and Ryall, 1999) based on a performance index 

. This index represents the norm of the input-output 
characteristics of a dynamical system and can be used to find 
the optimal placement of the actuator/sensor for plates. 

2H

However, in most of the models developed for the control 
of flexible structures, the controller is designed for a 
particular range of frequency, and it is common practice to 
remove the higher modes of vibration which are lying out of 
the desired range of frequency (Clark, 1997). This approach 
leads to truncation errors and the closed-loop performance 
will be considerably different from the predicted theoretical 
model. In fact, by ignoring the higher modes in the assumed 
mode shapes method, the zeros of the system are located far 
from where they should be and as a result the developed 
model will be different from the original one. One of the 

methods used to reduce the truncation error is finite element 
analysis (FEA) (Theodore and Ghosal, 1995). Since a large 
number of the mode shapes of the system are considered in 
FEA, the truncation of the error, due to ignoring the higher 
modes, is minimized in finite element models provided that a 
reasonably enough number of elements are used.  

The main contribution of this paper is in the development 
of an accurate model of a piezoelectric and beam/manipulator 
using the finite element (FE) method and finding the optimal 
placement of the piezoelectric actuator along the flexible 
structure. Verifying the FE model by analytical calculations 
and error analysis can be considered as other less important 
contributions of this paper. It is believed that in the FE model, 
if the time integration and iterative solver provide accurate 
solutions, the computer simulations of the manoeuvre of the 
manipulators, even very flexible ones, will be quite reliable 
and closer to the experimental measurements. To check the 
accuracy of the FE model, the natural frequencies of the FE 
model are calculated and verified using the theoretical 
approach. The optimal placement of the piezoelectric is then 
found for the cantilevered beam, based on the controllability 
of the system, and is then compared with the results of the 
FEA. In the following, the piezoelectric is utilized for the 
vibration suppression of the flexible manipulator during the 
manoeuvre and after reaching the desired position. The effect 
of the gain on the controller performance is also investigated.  

2. MATHEMATICAL FORMULATION 

2.1 Piezoelectric Actuator 

A cantilever beam with a piezoelectric actuator, shown in 
Fig. 1, was used in the study described in this paper. For 
perfectly bonded piezoelectric actuators and assuming an 
Euler-Bernoulli beam, the moment induced by the applied 
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voltage on the piezoelectric actuator is given as 
)1(                      )]2/2 pt/))(()([( 2131 bpp ttVtVeEM +−=

(( 1VKM sp =

 

where is the module of elasticity of the piezoelectric 

element,  the piezoelectric actuator constant, the 
thickness of the beam and  the thickness of the piezoelectric 

actuator.  and  are respectively the applied voltage 
to the top and bottom surfaces of the piezoelectric actuator, 
and is the effective bending moment applied to the beam 

with an equivalent area moment of inertia . By 

letting , equation (1) becomes  
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If the applied voltage to the bottom surface of the 
piezoelectric actuator is zero ( , then from equation 
(2) will be proportional to the applied voltage on the top 

surface, . If the beam is modeled as a Euler-

Bernoulli beam with deflection , where 
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),( txy x is measured 
from the fixed end of the beam and t is time, the partial 
differential equation of the system becomes  
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where  and bE bρ  are the module of elasticity and density of 
the beam respectively. ,  and , as shown in Fig. 1, are 
the length of the beam, length of the piezoelectric actuator, 
and distance of the piezoelectric actuator from the fixed end 
respectively, and 

bL pL sL

)(xδ is the Dirac function. The deflection of 
the beam can be expressed using assumed mode shapes 
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where iϕ  is the i’th normalized mode shape,  is the 
amplitude of the i’th normalized mode shape, and  is the 
number of the assumed mode shapes. Substituting equation 
(4) into equation (3), multiplying by 

iq
N

iϕ  and integrating, 
equation (3) becomes  
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where the dot indicates the time derivative and  represents 
the derivation with respect to 

)( ′

x . Using the orthogonality 
property of mode shapes and inclusion the modal damping 
ratio iξ  for the i’th normal mode, equation (5) is written as  
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Equation (6) can be written in the state-space form 
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and ),,,( 21 Ndiag ωωω L=Ω , ),,,( 21 Ndiag ξξξξ L= , is 
a zero matrix of size , and  is an identity matrix of 
size

NNO ×

N NI
NN × . Note that as shown in equation (8) the matrix F  

depends on the location of the piezoelectric, .  sL
The optimum placement of the piezoelectric can be 

obtained by minimizing the energy of the control force. In 
fact, it is desired in minimizing the energy required to steer 
the initial state  to the final state . It means that at 
the final state all modes are well suppressed; that is 

)( 0tX )( 1tX
0)( 1 =tqi  

and 0)( 1 =tqi&  for Ni ,,2,1 L= . Therefore the final state 
, , must be zero. The value of the minimum energy 
functional of the control voltage , which steers the 
initial state  to zero, can be written as (Klamka, 1991) 
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where  is a controllability Grammian matrix which is the 
solution of the following Lyapunov equation  

W
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The controllability measure μ can be introduced as the 

reciprocal of the maximum value of the control energy 
 for all initial states taken from the unit sphere, 

that is, 
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where denotes the maximum eigenvalue of 

 which is the inverse of the minimum eigenvalue of  W , 

)),(( 10
1

max ttW −λ
1−W

)),(( 10min ttWλ . To find the optimal placement of the 
piezoelectric actuator, the control energy in equation (13), 
must be minimized for different locations of the piezoelectric 
actuator. In other words, most controllability can be obtained 
when μ  has its maximum value. Based on this approach, the 
optimal placement of a piezoelectric actuator will be found in 
Section 4.1 for a cantilevered beam. 
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2.2  Dynamics of Manipulator 

The manipulator shown in Fig. 2 has a hub at the base with 
a mass moment of inertia , a beam of length , a payload 
with mass  and a mass moment of inertia . The 

coordinate system  is the global coordinate system and 

 rotates with angular velocity  where the angle 

oJ bL

pm pJ

),( YX

),( yx θ& θ  is 
the rotation of the base. A torque is applied by the hub 
(motor) and the arm rotates around its base during the interval 
time of . After reaching the desired angle

u

)0( dtt ≤< dθ , the 
torque is reduced to zero and the arm behaves as a cantilever 
beam . Thus, the simulation procedure must be 
performed in two steps for a rotating flexible manipulator 

 and a cantilever beam . A piezoelectric 
actuator is used for vibration suppression of the manipulator 
during the rotation of the arm and after reaching its desired 
position. 

)( dtt >

)0( dtt ≤< )( dtt >

2.3  Controller Design 

A proportional controller was used in which the applied 
voltage to the piezoelectric actuator was proportional to the 
axial strain. A block diagram of the controller is shown in the 
Fig. 3 where , cK ε ,  and  are the gain, strain at the 
midpoint of the piezoelectric actuator,  potentiometer output 
voltage and applied voltage to the piezoelectric actuator, 
respectively. To avoid instability due to the non-collocation of 
sensor and actuators, the actuator and sensor were located at 
the same location; that is the strain 

V εV

ε  was measured at the 
location of the piezoelectric actuator. The set point (for error) 
was selected as zero. An important issue in vibration control 
of flexible structures is the collocation of sensor and actuator. 
In this study, a collocated sensor-actuator pair is used. The 
collocation of sensor and actuator guarantees that the system 
is positive real at least for lower frequency modes. However, 
this guarantee does not apply to higher frequency modes, 
because the collocation principle does not apply to modes of 
wavelength comparable to the size of piezoelectric actuator. 
In addition, computational delays at high frequencies can 
drive some higher frequency modes unstable (Falangas, 
1994). Therefore, the collocation of the sensor and actuator 
necessarily does not lead to the stability of the controller. 
Another factor affecting the stability criteria is the proper 
location of the piezoelectric which is discussed later in this 
paper. 

3. FINITE ELEMENT MODEL 

Three types of elements from the ANSYS Software 
elements library were used to model the beam/manipulator. 
The beam was constructed using ten “PLANE 82” elements 
spaced equally along the beam. This element had eight nodes 
with two degrees-of-freedom (DOF), and translations in the x 
and y directions at each node. Since “PLANE 82” did not 
have a rotational degree of freedom, two “BEAM 3” elements 
having three degrees of freedom, translations in the nodal x 
and y directions as well as rotation in the z-direction, were 

used for the base rotation. The element “PLANE 223”, which 
models the piezoelectric actuator, was used as an actuator to 
suppress the vibration. The physical properties of the beam 
and piezoelectric actuator shown in Figs. 1 and 2, are given as 
follows 
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where ,  and  are, respectively, the length of the 
beam, length of the piezoelectric actuator, and distance of the 
piezoelectric actuator from the fixed end, and  and are 

respectively the thicknesses of the beam and piezoelectric 
actuator.  , ,

bL pL sL

bt pt

bE bI ν  and bρ  are the module of elasticity, area 
moment of inertia, Poisson ratio and density of the beam 
respectively, and ,  and  are the payload mass, mass 
moment of inertia of the hub and mass moment of inertia of 
the payload. 

pm oJ pJ

4. SIMULATION RESULTS 

In the simulation study both modal and transient analyses 
were carried out for the cantilever beam and for the robot 
flexible link manipulator. The simulation was performed in 
three steps. In the first step, the free vibration and modal 
analysis of the cantilever beam was studied. The natural 
frequencies of the manipulator which were determined 
theoretically and using finite element analysis (FEA) are 
illustrated in table 1. The results obtained from the theoretical 
approach and FEA are in good agreement. In the next step, the 
effect of placement of the piezoelectric actuator on the 
vibration was studied and the optimal location of the 
piezoelectric actuator along the beam was determined. 
Finally, the active vibration suppression of the robot flexible 
link manipulator during and at the end the manoeuvre was 
successfully accomplished, and the effect of the gain on the 
vibration behaviour of the system was determined. In this 
study it was assumed that the base was fixed and the beam 
behaved as a cantilever.  

4.1  Optimum location of the Piezoelectric Actuator  

Based on the approach described in Section 2.1, the 
optimum placement of the piezoelectric was found for the 
cantilevered beam. For this purpose, the first two mode shapes 
were considered and the eigenvalues of the controllability 
Grammian matrix,W , were found for different locations of 
the piezoelectric actuator using the Lyapunov equation  (12). 
Values of μ  versus , are plotted in Fig. 4.  It can be 
seen that the location  had the maximum value 
and provided the most controllability. 

bs LL /
3.0/ =bs LL

To verify the optimal placement of the piezoelectric 
actuator, 30.0/ =bs LL , the simulation was performed using 
the finite element model for different values of . To 
find the best location of the actuator, the following evaluation 
criteria were used 

bs LL /
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where the norms  and   represent the values of the 
normalized tip deflections for the time intervals of (

30−E 32−E
30 ≤≤ t ) 

and ( ), respectively. The  is the tip deflection of 

the beam at the time step i,  is the number of time steps at 
and  is the number of time steps at . Table 2 

illustrates the values of these norms for the different cases 
investigated. The values of and  are plotted versus 

 in Fig. 5. According to this figure, 

32 ≤≤ t eiy ,

3N
3=t 2N 2=t

30−E 32−E

bs LL / 3.0/ =bs LL  
corresponds to the best location of the piezoelectric actuator. 
This finding is also consistent with the findings of (Peng, 
2005) for a similar beam. 

4.2  Flexible link robot manipulator 

To verify the effectiveness of the piezoelectric actuator in 
suppressing the vibration of a robot manipulator, a single 
flexible manipulator was analyzed. In this case, the 
manipulator could rotate about its base. The physical 
properties and the dimensions were the same as those of the 
cantilever beam, except the values of the mass moment of 
inertia of the hub and the tip-mass which were selected as 

 and  respectively. The torque 
applied to the hub was of a bang-bang nature causing, as 
shown in Fig. 6.a, the manipulator initially to accelerate, then 
decelerate and finally to lock at its desired final position, 
where it continued to vibrate as a cantilever beam. As shown 
in Fig. 6.b, the hub rotated approximately 0.8 in one 
second and it was locked then at 0.8 rad. The natural 
frequencies of the manipulator and cantilever beam were 
obtained theoretically and compared in table 1 against the 
FEA results. Fig. 7.a illustrates the tip deflection with respect 
to the shadow beam (see Fig. 2) without the controller being 
active ( ). To find the dominant frequencies of the 
system, the FFT of the tip deflections in time was evaluated. 
This is illustrated in Fig. 7.b which indicates three dominant 
frequencies. The first was the main excitation frequency 
which was 1.0

mkgeJo ⋅−= 32.1 kgmp 2.0=

rad

0=cK

Hz . The second frequency was approximately 
17 Hz  which corresponded to the first natural frequency of 
the cantilever beam and the third frequency, which was 
approximately 60 Hz , corresponded to the first non-zero 
natural frequency of the flexible link manipulator. To 
suppress the vibration a piezoelectric actuator was placed at 
the optimum location, , as reported in Section 4.1. 
The simulation was carried out for three different values of 
the controller gain, and , and these 
are referred to as Cases 2, 3 and 4 respectively. The vibration 
was well suppressed during and at the end of the manoeuvre 
as shown in Fig. 8.a for Case 3 ( ). The FFT of 

the tip deflection in time is shown in Fig. 8.b for this case. 
According to this figure, the peak values of the dominant 
frequencies, especially the main excitation frequency and the 
first natural frequency of the cantilever beam, were 
significantly reduced for Case 3 in comparison with Case 1 
(Fig. 7).  

3.0/ =bs LL

500.4,500.2 eeKc = 500.6 e

500.4 eKc =

Three evaluation criteria, for  (during the 
manoeuvre), for 

10−E 10 <≤ t

41−E 41 <≤ t  (at the end of the manoeuvre) 
and for 40−E 40 <≤ t  (the total response), were defined so as 
to compare the results. The values of these norms were the 
normalized tip deflections of the manipulator arm and were 
calculated using equations similar to those reported for the 
cantilever beam (equations (14) and (15)).  These norms are 
compared in Fig. 9.a for different gain values.  As shown in 
Fig. 9.a, the gain value of Case 3 ( ) had the 
smallest values of norms  and   in comparison with 
other gain values. Thus the amplitude of vibration was smaller 
for Case 3 than other cases, after the manipulator reached its 
desired rotation during 

500.4 eKc =

41−E 40−E

41 <≤ t , as well as during the total 
response ( 40 <≤ t ). 

Another index which was used to compare the results was 
the values of the PSD peaks at the dominant frequencies. This 
index is shown in Fig. 9.b for four different cases. Also, for 
the three dominant frequencies, overall Case 3 shows the best 
result in suppressing the vibration. 

5. CONCLUSIONS 

Finite element analysis (FEA) was used in this paper for 
modeling a cantilever beam and a flexible robot manipulator. 
The optimum values for the controller gain were found and 
the optimum location of the piezoelectric actuator was 
determined for the cantilever beam based on minimizing the 
energy of the control force and was verified by FEA. The 
controller was stable because of using a collocated sensor-
actuator pair in the optimum position and because of using 
full non-linear transient dynamic analysis using FEA. Also, it 
was concluded that Case 3 with a controller gain of Kc= 
4.00e5 and the location of the piezoelectric actuator 30% of 
the beam length from the base, produced the best results as far 
as suppressing the vibration was concerned. These findings 
were verified by analytical calculations and will be verified 
experimentally in near future. 
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Table 1. The natural frequencies of the flexible manipulator 
and cantilever beam 

 Flexible link manipulator Cantilever beam 

Set Theoretical 
(Hz) FEA (Hz) Theoretical 

(Hz) FEA (Hz) 

1 0 0 16.97 16.91 
2 61.94 61.41 112.6 110.5 

3 145.6 144.5 325.7 322.9 

 

Table 2. Evaluation criteria for different locations of actuator  

bs LL /  0.05 0.1 0.2 0.3 0.4 0.5 

30−E  0.3917 0.2999 0.2848 0.2845 0.2938 0.3106

32−E  0.2084 0.0799 0.063 0.063 0.0731 0.0925

 
Fig. 1. Model of a cantilever beam with piezoelectric actuator 

 
Fig. 2. A single flexible link robot manipulator including its 
tip mass and hub inertia 

 
Fig. 3. Block diagram of the controlling vibration of the 
manipulator 

 
Fig. 4. Controllability measure for different locations of the 
piezoelectric actuator 
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Fig. 5. Norms of normalized tip deflection of cantilever beam 
for optimum location of piezoelectric actuator 
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Fig. 6.(a) Applied bang-bang controller torque, and (b) hub 
rotation. 

 

 
Fig. 7. Case 1 (Kc= 0): Single-link flexible manipulator, (a) 
tip deflection w.r.t. shadow beam, and (b) FFT spectrum of tip 
deflection 

  

 
Fig. 8.  Case 3 (Kc=4.00e5): Single-link flexible manipulator, 
(a) tip deflection w.r.t. shadow beam, and (b) FFT spectrum 
of tip deflection. 
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Fig. 9. Single-link flexible manipulator, evaluation criteria for 
different gain values, (a) norms of vibration amplitudes, and 
(b) peak values of FFT spectrums at dominant frequencies.  
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