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Abstract: To deal with the problem of high cost and low accuracy existed in conventional meth-
ods for the lead-zinc sintering blending, a qualitative and quantitative synthetic methodology
for sintering blending optimization is presented in this paper. First, two prediction models are
built based on a process neural network and the improved grey system theory. Next, these two
models are integrated into one prediction model by using the concept of entropy. It guarantees
the prediction precision of the Pb and Zn components in the agglomerate. Then, a blending
optimization model is established to minimize the costs. Finally, the component ratios are
optimized by using the expert reasoning strategy and an integrated synthesis methodology.

1. INTRODUCTION

The imperial smelting process (ISP) in lead-zinc met-
allurgy, which involves sintering and smelting, produces
agglomerate with prescribed mechanical strength, porosity
and reducibility [Du, 2004]. As a material preparatory pro-
cess for reduction smelting, the lead-zinc sintering process
(LZSP) plays an important role in the ISP. The blending
process is the first operation in the working procedure of
the sintering process. It contains two steps: the primary
and secondary proportioning. The ratios of some chemical
components of blended material are key parameters in the
LZSP [Gui, 2007]. They give big influence on sintering
permeability and other parameters. As a result, they affect
the quantity and quality (Q&Q) of the agglomerate. So, it
is very important to control those ratios of the chemical
components in the blended material.

Recently, the optimization problem of the LZSP has been
attracting a great deal of attention. However, studies have
mainly focused on the optimization and control for the
state parameters and performance indices, such as per-
meability, burning through point and Q&Q [Chen, 2003,
Wu, 2006]; few attempts on the blending process have
been investigated. As a result, in most cases, the ratios
of chemical components are determined by the conven-
tional checking method, and are calculated by operators.
This method has some drawbacks. First, the production
cost and the quality of the agglomerate are not directly
considered in the determination of the ratios. Second, it is
difficult to detect the chemical components of the agglom-
erate timely and used them to perform the ratio control
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of the agglomerate. So, this method causes high cost and
low accuracy of the sintering blending process. It is urgent
how to determine optimal ratios and reduce the production
cost under prescribed technological requirements of the
agglomerate quality.

Along with the progress of the artificial intelligence, some
intelligent control and optimization methods have been
applied to the optimization and control of the blending
process involved in many production processes [Glismann,
2001, Cierpisz, 2002]. In particular, a model-based expert
control strategy using neural networks (NNs) was pre-
sented for the control of the coal blending process in an
iron and steel plant [Wu, 1999], it was implemented in an
expert control system that contains an expert controller
and a distributed controller. A new type of the Takagi-
Sugeno fuzzy controller based on an incremental algorithm
was reported for the cement raw material blending process
[Bavdaz, 2007]. A coal-blending model has been developed
by employing the relationship between the quality param-
eters of coal and coke [Gupta, 2007], it reduced the cost a
great deal under the guarantee of the quality of blended
coal. These motivated us to investigate the optimization
and control problem of the lead-zinc sintering blending
process.

In this paper, an integrated prediction model for the chem-
ical components of agglomerate and an optimization model
of the blending process are established. Based on the mech-
anism analysis of the LZSP, an expert reasoning strategy is
presented. Optimization of the sintering blending process
is carried out from the systematic viewpoint by using the
Q&Q synthetic methodology [Yu, 2000]; which combines
the technology of process NN (PNN), the improved grey
system theory (IGST), and the expert reasoning method.
Optimal ratios of the chemical components in the agglom-
erate are obtained by using the presented methods. The
results of real-world applications show that the precision
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Fig. 1. Dwight-Lioyd sintering machine

of the integrated prediction model is higher than that
of a PNN prediction model or an IGST-based prediction
model.

2. MECHANISM ANALYSIS FOR LEAD-ZINC
SINTERING PROCESS

The blast sintering process considered in this study is car-
ried out in a Dwight-Lioyd (DL) type sintering machine,
which has five blowers: Draft fan 0 is used for ignition,
Blower 1 and Blower 2 send fresh gas, and Blower 3 and
Blower 4 send returned gas, as shown in Fig. 1.

After the material is proportioned, it is then blended, gran-
ulated, and finally becomes blended balls with appropriate
water content. These balls are sent to ignition container
and main-bed container by a shuttle distribution. Those
balls are poured into the trolley to a depth of 3 cm to form
a bed called ignition layer and are ignited by the igniter.

Ignition temperature is controlled to ignite the blending
material on the ignition layer by means of gas flux. The
trolley propels the blending materials along. Once the
ignition layer is burning, more balls are added on top
to form a bed 30∼40 cm thick. The blended balls is
moved by trolley. After four phases (evaporation, heating,
reaction, sintering), the blended balls become a sintering
agglomerate with a certain structure, and are discharged
from the back of the sintering machine. Qualified sintering
agglomeration are sent to the smelting process while others
are returned through two-level fragmentation and cooling
process to produce returned powder.

The lead-zinc sintering process is a complicated physical
and chemical reaction process with strong nonlinearity, a
large time delay, and time-varying parameters. It takes
about 2 hours from the beginning of blending to the end
of sintering, and the variables are only detected once in
one process. So, it makes the detected data of the chemical
components of the agglomerate cannot be used in a real-
time control system. And an effective prediction model
for the chemical components of the agglomerate needs to
be built. At the same time, the component ratios of the
blended material have also to be optimized because the
exact ratios of the components in the blended material
is the most important factor that affects the quality of
agglomerate and the production cost.

3. INTEGRATED PREDICTION MODEL OF
AGGLOMERATE COMPONENT

3.1 PNN Prediction Model

The effect of xk−1, xk−2, · · · on xk is apparently hard to
express when the conventional artificial neural network
[Frank, 2001] is used to predict the agglomerate com-
ponents, xk+1, at the time k + 1; or in other words, it
is difficult to express the temporal accumulation in time
series. This certainly affects the prediction accuracy.

This can be regarded as a nonlinear mapping between xk+1

and xk, i.e.,

xk+1 = F (xk(t)). (1)

Then, the problem of prediction for the agglomerate com-
ponents in the time axis can be transformed to an approx-
imation to the function F (·). It is known that a PNN can
be used to approximate a random continuous function [He,
2000]. So, we can set xk(t) to be the input of a PNN, and
find a PNN to approximate the function F (·).
The PNN-based time series prediction model for the lead-
zinc agglomerate components presented in this paper is a
three-layer forward PNN whose topology structure is 1-10-
1. Let x(t) = xk(t), the prediction value of the components
at k + 1 is

ŷ =
10∑

i=1

vif




T∫

0

wi(t)x(t)dt− θi


− θ, (2)

where x(t) is the input of the process neurons; [0, T ] is
the sampling interval; wi(t) and vi are the connecting
weights from the input layer to the hidden layer and from
the hidden layer to the output layer, respectively; θ is a
threshold of the PNN; f(·) is the prompting function.

According to the Weierstrass approaching theorem, a
group of standard orthogonal basis function bj(t) (j =
1, 2, · · · , J) in the space of [0, T ] is acquired by taking the
Gram-Schmidt orthogonal steps. Then, x(t) and wi(t) are
expressed to be

x(t) =
J∑

j=1

ajbj(t), wi(t) =
J∑

j=1

wijbj(t), (3)

where aj and wij ∈ R are coefficients of the expansion
equation. According to the characteristics of the orthogo-
nal function, (3) is simplified to be

ŷ =
10∑

i=1

vif




J∑

j=1

wijaj − θi


− θ. (4)

For given L pair of learning samples {xl(t), dl} (l =
1, 2, · · · , L), where xl(t) and dl are the input and expected
output of the network, respectively; if ŷl is the correspond-
ing output, then the error function of the model is defined
to be
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E =
1
2

L∑

l=1

(ŷl − dl)2

=
1
2

L∑

l=1




10∑

i=1

vif




J∑

j=1

wijajl − θi


− θ − dl




2

.

(5)

Denote Zil =
∑J

j=1 wijajl − θi. According to the rapid
stochastic gradient descent algorithm, adjusting rules for
training parameters of the model are




vi(s + 1) = vi(s) + α∆vi(s),
wij(s + 1) = wij(s) + β∆wij(s),
θi(s + 1) = θi(s) + γ∆θi(s),
θ(s + 1) = θ(s) + δ∆θ(s),

(6)

where α, β, γ and δ are parameters of the learning velocity;
s is the iteration number of learning. In each learning
iteration, ∆vi,∆wij ,∆θi and ∆θ are given by




∆vi = −∂E

∂vi
= −

L∑

l=1

(ŷl − dl)f(Zil),

∆wij = − ∂E

∂wij
= −

L∑

l=1

(ŷl − dl)vif
′(Zil)αjl,

∆θi = −∂E

∂θi
=

L∑

l=1

(ŷl − dl)vif
′(Zil),

∆θ = −∂E

∂θ
=

L∑

l=1

(ŷl − dl).

(7)

The learning steps are

Step 1. Represent the input function and weights of
the PNN model as basis functions using the Legendre
orthogonal basis function.

Step 2. Let the number of learning iteration s = 0; and
choose the biggest number of learning iteration, D; the
allowable learning error, ε; and the parameters α, β, γ
and δ.

Step 3. Set the initial values of the weights and threshold
to be zero.

Step 4. Calculate the error function, E, using to (5). If
E < ε or s > D, then go to Step 6 and finish. Otherwise
go to Step 5.

Step 5. Adjust the weights and threshold according to
(6) and (7), let s + 1 → s, and go to Step 4.

Step 6. Output the learning results.

3.2 IGST-based Prediction Model

Assume that the original data sequence of the agglomerate
components is Y (0) = {y(0)(1), y(0)(2), · · · , y(0)(n)}. When
the grey system model [Yao, 2003, Lin, 2007] is employed
to predict the agglomerate component, the prediction re-
sult is not very accurate if the original data fluctuates.
In order to reduce the influence of the fluctuates and im-
prove the prediction precision, the exponential smoothing
method is adopted in this paper. In particular,

y∗(k) = 0.5y(k) + 0.5y(k − 1)

was used in this study. After the smoothing operation, we
can obtain a sequence Y (0)∗. Then, the sequence Y (1) is

formed by applying the accumulated generating operation
(AGO) technique to the sequence Y (0)∗.




Y (1) = {y(1)(1), y(1)(2), · · · , y(1)(n)},

y(1)(k) =
k∑

i=1

y(0)∗(i).
(8)

The following first order difference equation is established
dy(1)

dt
+ ay(1) = b, (9)

where a is a development coefficient, which reflects the
development trend of the original data sequence Y (0) and
the first order accumulated generating operation sequence
Y (1). b is the grey input, which reflects the variation of the
data.

Let A = [a, b]T , the method of least squares is used to
yield it:

A = (BT B)−1BT XN , (10)

B =




−0.5(y(1)(1) + y(1)(2)) 1
−0.5(y(1)(2) + y(1)(3)) 1
−0.5(y(1)(3) + y(1)(4)) 1

...
...

−0.5(y(1)(n− 1) + y(1)(n)) 1




,

XN =
[
y(0)(2) y(0)(3) y(0)(4) · · · y(0)(n)

]T
.

The grey system model GM(1, 1) is obtained by substitut-
ing a and b into (9) and solving

y(1)(k + 1) =
[
y(0)(1)− b

a

]
e−ak +

b

a
, k = 0, 1, 2, · · · .(11)

Applying the inverse AGO to the (11), we obtain the
grey prediction model of the original sequence Y (0) of the
agglomerate component:

ŷ(0)(k) = ŷ(1)(k)− ŷ(1)(k − 1), k = 1, 2, · · · . (12)

3.3 Entropy-Based Integrated Prediction Model

In order to improve the prediction precision, we integrated
the above two models. The integrated prediction model
is established and the optimal weights are determined by
using the entropy method.

Assume that, the number of prediction models employed
is I, {yt, t = 1, 2, · · · ,M} is the actual value of the
agglomerate components in time series, and ŷit is the
prediction value of the i-th prediction model at time t.
Then Eit = |yt − ŷit| is defined as the absolute value of
the prediction error of the i-th prediction model at time
t. Then the prediction value of the integrated prediction
model is:

ŷt =
I∑

i=1

wiŷit, i = 1, 2, · · · , I, t = 1, 2, · · · ,M, (13)

where wi is the weight of the i-th prediction model, and
satisfies

I∑

i=1

wi = 1, wi ≥ 0, i = 1, · · · , I. (14)
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In this paper, we set I = 2.

Assume that ŷit is the prediction value of the i-th model
at the time t. Let

eit =





∣∣∣∣
yt − ŷit

yt

∣∣∣∣ , if 0 ≤
∣∣∣∣
yt − ŷit

yt

∣∣∣∣ < 1;

1, if
∣∣∣∣
yt − ŷit

yt

∣∣∣∣ ≥ 1.
(15)

Then eit denotes the relative prediction error of the i-
th prediction model at time t. Note that 0 ≤ eit ≤ 1
(i = 1, 2, · · · , I; t = 1, 2, · · · ,M); and {eit} is the relative
prediction error series of the i-th prediction model at time
t.

The mutation degree of the prediction error series of the i-
th prediction model is redefined by employing the concept
of the information entropy in this paper [Themis, 2005,
Mohaned, 2007]. The steps for determining the weights
are as follows.

Step 1. Calculate the relative prediction error, pit, of the
i-th prediction model at time t:

pit =
eit∑M

t=1 eit

, i = 1, · · · , I; t = 1, · · · ,M. (16)

Step 2. Calculate the entropy of the relative prediction
error, Ei, of the i-th prediction model:

Ei = −r
M∑

t=1

pit ln pit. (17)

where r > 0 (r = 1/ lnM was used in this paper).
Step 3. Calculate the mutation degree coefficient, di, of

the relative prediction error series of the i-th prediction
model as follows. Since the entropy of the relative
prediction error is the reverse of its mutation degree,
di is given by

di = 1− Ei, i = 1, · · · , I. (18)

Step 4. Calculate the weight wi:

wi =
1

I − 1

(
1− di∑I

i=1 di

)
(19)

Step 5. Calculate the prediction value ŷt of the inte-
grated prediction model.

ŷt =
I∑

i=1

wiŷit, t = 1, 2, · · · ,M. (20)

4. OPTIMIZATION METHOD FOR SINTERING
BLENDING

4.1 Blending Optimization

The blending process contains the primary and secondary
proportioning. In the primary proportioning, different
kinds of lead-zinc ore are blended according to prescribed
ratios to produce a mixture. This step adjusts the ratios
of Pb, Zn and SiO2 in the blended material. In order to
make the agglomerate component meet the requirement
of the smelting production, and to reduce the cost of
raw material, an optimal primary proportioning model,

which minimizes cost under the constraints of agglomerate
components, is as follows.

min f(x) = min
N∑

i=1

Cixi (21)

s.t.





[Pb]gC min ≤ [Pb]C =
N∑

i=1

xi [Pb]i ≤ [Pb]gC max

[Zn]gC min ≤ [Zn]C =
N∑

i=1

xi [Zn]i ≤ [Zn]gC max

[S]gC min ≤ [S]C =
N∑

i=1

xi [S]i ≤ [S]gC max

[CaO]gC min ≤ [CaO]C =
N∑

i=1

xi [CaO]i ≤ [CaO]gC max

1
1.7

[CaO]C ≤ [SiO2]C =
N∑

i=1

xi [SiO2]i ≤
1

1.4
[CaO]C

[Fe]C =
N∑

i=1

xi[Fe]i > 2 [SiO2]C

where Ci is the cost price of the i-th lead-zinc ore, [A]gC max
and [A]gC min are the upper and lower ratio indexes of
the component A in the blended material, respectively.
They are determined by the quality requirement of the
agglomerate. For example, consider the component Pb.
The relationship between its ratios in the blended material
component and the agglomerate is

[Pb]M = w [Pb]C + (1− w) [Pb]R , (22)

[Pb]S = fPNN+IGST (X), (23)

where w (∈ [0, 1]) is the ratio of Pb in the blended material
for the secondary proportioning. The relationship between
the component in the blended material of the primary and
secondary proportioning is shown in (22). fPNN+IGST (X)
denotes the integrated prediction model of the component
in the agglomerate. The subscripts M , C and R denote
the blended material of the secondary proportioning, the
blended material of the primary proportioning and the
returned powder, respectively.

4.2 Optimization of Ratios

On the basis of the above optimal model, according to
the following steps, the component ratios in the blended
material of the primary proportioning are determined by
an expert reasoning strategy as follows.

Step 1. Calculate the component index [A]gC max and
[A]gC min of the blended material. They are calculated
according to the requirement of the agglomerate compo-
nent index and by retro-reasoning of the expert reason-
ing. For example, Consider Pb component index of the
blended material. Suppose that [Pb]gM max and [Pb]gM min
are the Pb component index of the blended material
educed from the integrated prediction model of the
agglomerate component based on (23) using the rules
such as R1 ∼ R4.

R1: If [Pb]S > [Pb]gS max and [S]M are big, then
decrease [Pb]M .
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R2: If [Pb]S < [Pb]gS min and [S]M are big, then
increase [Pb]M and decrease [S]M .

R3: If [Zn]S > [Zn]gS min and [S]M are small, then
decrease [Zn]M and increase [S]M .

R4: If [Zn]S < [Zn]gS min and [S]M are big, then
increase [Zn]M and decrease [S]M .

According to the (22), we have

[Pb]C =
[Pb]M − (1− w) [Pb]R

w
. (24)

According to the optimal bounds [wmin, wmax] of the
secondary proportioning, we have

[Pb]gC max = max





[Pb]gM max − (1− wmin) [Pb]R
wmax

,

[Pb]gM max − (1− wmin) [Pb]R
wmin





,(25)

[Pb]gC min = min





[Pb]gM min − (1− wmax) [Pb]R
wmax

,

[Pb]gM min − (1− wmin) [Pb]R
wmin





.(26)

Step 2. Choose the initial values of xi (i = 1, · · · , N) from
the knowledge base.

Step 3. Calculate [A]C based on the selected xi:

[A]C =
N∑

i=1

xi [A]i (27)

Step 4. If [A]C satisfies (25) and (26), then go to the
next step. Otherwise, adjust them using the rules such
as R5 ∼ R8.

R5: If [Pb]C > [Pb]gC max and [Pb]i > [Pb]gC max, then
decrease xi.

R6: If [Zn]C > [Zn]gC max and [Zn]i > [Zn]gC max, then
decrease xi.

R7: If [S]C > [S]gC max and [S]i < [S]gC min, then
increase xi.

R8: If [Fe]C < 3.5 [SiO2]C and [Fe]C < 2.0 [SiO2]C ,
then decrease xi.

We take the condition in rule R5 as an example. When
[Pb]C > [Pb]gC max and [Pb]i > [Pb]gC max, xi is adjusted
by

xi = xi + δ ([Pb]gC max − [Pb]C)
∂f(x)
∂xi

, (28)

where δ is an experience coefficient which determines
the iterative velocity. Then return to Step 3.

Step 5. If the acquired xi is in the experience range, then
take xi as the optimal ratio of the primary proportion-
ing. Otherwise, choose another experience value as the
original value of xi from the knowledge base, then return
to the Step 3.

5. INDUSTRIAL APPLICATIONS

PNN and IGST prediction models were established using
the actual production data of the LZSP in a sintering
plant. The prediction of the Pb and Zn components in
the agglomerate was carried out. The weights wi (i = 1, 2)
for integration of prediction models of the Pb component
were chosen to be w1 = 0.5006 and w2 = 0.4994 according
to the steps given in Section 3. The integrated prediction
model of the Pb component was

ŷt = 0.5006ŷ1t + 0.4994ŷ2t.

22

21

20

19

18

[P
b

] S
%

50403020100

Sample No.

: Actual value, : IPM,

: PNN,            : IGS.

Fig. 2. Prediction Results of Pb component in the agglom-
erate.
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Fig. 3. Prediction Results of Zn component in the agglom-
erate.

Similarly, the integrated prediction model of the Zn com-
ponent was

ŷt = 0.5042ŷ1t + 0.4958ŷ2t.

The prediction results of the Pb and Zn components in the
agglomerate are shown in Figs. 2 and 3.

The component ratios in the blended material are calcu-
lated based on experts’ experience in a smelting plant. In
order to perform the optimization of the component ratios,
to decrease the production cost and to improve the Q&Q,
the above method was applied in the sintering blending
process of this plant. The application results are shown as
follows.

A group of data of the raw material condition are listed in
Table 1, and the optimization results for blending (Table
2) are yielded according to the raw material condition in
Table 1. The component indexes of the blended material
are shown in Table 3 at the blending process and the
component of the returned powder have been determined.

The percentage of acceptance for the component ratios in
the blended material by using our method is much higher
than experts. The cost of our method is also lower than
that of experts’ operation. In particular, 66.74 CNY are
saved per ton in the cost. Since the plant produces 750
ton agglomerate a day, the economical effect is large.
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Table 1. Component ratios in the blended
material (%) and price (CNY/t).

Material Pb Zn S CaO SiO2 Fe Price

K1 15.25 28.69 27.68 4.52 3.27 11.63 3120

K2 15.03 35.86 28.80 3.64 3.89 11.45 3640

K3 1.42 46.40 32.04 3.75 2.95 11.34 5300

K4 18.98 33.46 27.78 0.53 4.83 11.53 3500

K5 1.18 46.82 32.95 4.22 1.12 10.62 5120

K6 58.69 3.36 22.95 2.63 1.37 8.37 2120

K7 2.22 50.78 30.89 2.66 1.09 10.05 4880

K8 55.66 5.79 19.62 1.66 1.47 8.11 1700

K9 21.48 28.15 28.36 3.98 1.66 5.82 3700

K10 68.12 5.99 16.89 0.83 0.96 2.98 2510

Table 2. Comparison of the blending ratios
between the experts and optimization.

K2 K3 K5 K6 K7 K9 Cost

Experts’
ratio

0.30 0.12 0.08 - 0.14 0.36 4178

Optimal
ratio

0.30 - - 0.02 0.38 0.30 4111

Table 3. Comparison between the required
ratio indexed and optimized ratios.

Ratio
index

[Pb]C [Zn]C [S]C [CaO]C [SiO2]C [Fe]C

Upper
bound

16 39.5 31 5.5 3.5 10

Lower
bound

13 35 29 3 2 7

Experts’
ratio

13 38 30 1.1 3.2 9.4

Optimal
ratio

13 38 29 3.3 2.1 9.2

6. CONCLUSION

In this paper, a Q&Q synthetic methodology for the
optimization in the LZSP has been presented. The main
points of this study are as follows.

• Based on the PNN and IGST prediction models,
an intelligent integrated prediction model has been
established based on the concept of information en-
tropy. The model has been used to effectively predict
the agglomerate component.

• On the basis of the establishment of the blending op-
timization model, a Q&Q synthetic methodology has
been presented, which integrate the prediction model
of the agglomerate component, blending optimization
model and the expert reasoning strategy.

• The exact component ratios in the blended material
have been obtained and the problem of high cost and
low accuracy existed in conventional methods for the
lead-zinc sintering blending was solved successfully by
this methodology. The application results show that
the blending optimization methodology is effective.
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