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Abstract: We present in this paper a linear programming framework to address freeway control
applications such as ramp metering. After showing the equivalence between the LWR model and
a linear optimization problem, several extensions are introduced to model the ramp queues and
the capacity drop phenomenon. A wide range of objective functions which are relevant in traffic
engineering are then introduced and several optimization-based control strategies are discussed.
The effectiveness and versatility of this method is illustrated on a class of objective functions
for a ramp metering problem.
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1. INTRODUCTION

Throughout the world, roadways are notorious for their
congestions, from dense urban networks to large freeway
systems. In addition, this situation seems to get worse over
time, a tendency mainly due to the continuous increase
of transportation demand. The most obvious impacts of
traffic congestions are the increases of travel times, ac-
cidents and fuel consumption. An other critical and less
obvious effect is that the infrastructures are not operated
at their capacity when a congestion occurs. As a conse-
quence, they serve less vehicles that they were designed
for and the related investments are partially wasted. The
main alternatives to reduce the global congestion bill are
threefold: build more roads which is often not possible
due to the lack of space and public acceptability, use less
vehicles by promoting public transportation or improve
the traffic operation, which is the topic of this paper.
Freeways being less subject to the driver freewill than
other roads, they constitute a natural setting to design
Intelligent Transportation Systems (ITS) able to improve
the infrastructure efficiency. Papageorgiou and Schmidt
[1983] proposed an early contribution in this direction in
the 80’s and several control strategies have been proposed
since then. Ramp metering, which consists in controlling
the amount of vehicles released on the freeway at on-
ramps, is a control measure that have proven to be efficient
in practice and is used in many states. Nevertheless, the
field study of Levinson and Zhang [2006] claims that some
improvements are still necessary so that real time algo-
rithms really fulfill the traffic engineering requirements,
in particular by balancing the mainlane and ramp de-
lays. Relying on a suitable reinterpretation of the LWR
macroscopic model introduced by Lighthill and Whitham
[1955], we propose in this paper a generic linear program-
ming framework able to tackle a whole family of free-
way management problems. As an application, we present

a ramp metering algorithm that precisely addresses the
shortcomings mentioned by Levinson and Zhang [2006].
An other direct application is the production of guidelines
for freeway dimensioning using the sensitivity information
contained in the Lagrange multipliers. Working with linear
programs is very confortable here as it ensures that the op-
timal solution is global and it can be computed efficiently
on a computer using largely available softwares. One of
the main ingredients used to obtain a linear program is
the fundamental diagram relaxation introduced by Gomes
and Horowitz [2006]. This relaxation procedure is applied
at the on-ramps as well in order to model correctly the
ramp flows and the associated queue length. Moreover,
given the importance of the capacity drop phenomenon at
bottlenecks as illustrated by Cassidy and Bertini [1999],
we introduce a linear capacity drop model that improve
the relevance of the proposed ramp metering algorithm.
One of the main property of our model is it ability to
address weighted multi-objective criteria in the problem
formulation, such as the Vehicle Miles Traveled (VMT),
the Total Travel Time (TTT) on the mainlane, the Total
Served Vehicle (TSV) at on-ramps and the Total Waiting
Time (TWT) at ramps.

2. TRAFFIC FLOW AS A LINEAR PROGRAM

2.1 The LWR model and its discretization

The LWR model as introduced by Lighthill and Whitham
[1955] is the simplest macroscopic freeway model. It takes
the form of a nonlinear partial differential equation in-
volving only the traffic density ρ [veh/km] and the traffic
flow φ [veh/h] distributions along the freeway. This models
is parameterized by the fundamental diagram φ = Φ(ρ),
which is a phenomenological relationship between the den-
sity and the flow that may depend on space and time. The
fundamental diagram is taken to be concave in general
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and its maximum value Φm [veh/h] is called the capacity.
Along with its initial and boundary conditions, the LWR
model on an interval x ∈ (xL, xR) writes

{

∂tρ + ∂xΦ(ρ) = 0
ρ(0, x) = ρI(x)
ρ(t, xL) = ρL(t) and ρ(t, xR) = ρR(t)

(1)

Though Equation (1) may look simple, it exhibits complex
behaviors such as the interaction of forward and back-
ward waves, the propagation of discontinuous shock waves
and the possible non-applicability of boundary conditions.
These features require to use specific numerical schemes
as described by LeVeque [1992]. Introducing the grids
x = {xi}i=1,...,N and t = {tk}i=1,...,M with cells of size
{dxi}×dt, the discrete form of the LWR model can always
be written











ρk+1
i = ρk

i +
dt

dxi

[

φk
i−1 − φk

i

]

ρ0
i = ρI

i

ρk
1 = ρk

L , ρk
N = ρk

R

(2)

The discrete conservation law (2), with φk
i the flow at the

interface between cells i and i + 1 in the time interval
(tk, tk+1), rules the evolution of a piecewise constant
approximation of the solution of (1). Solving the LWR
model thus consists in providing a suitable expression
for φk

i . The Godunov scheme (see LeVeque [1992]) is a
classical choice for this class of equations, its convergence
being guaranteed if mini{dxi/dt} > maxξ{Φ

′(ξ)}. The
demand and supply paradigm introduced by Daganzo
[1994] and Lebacque [1996] for concave flow diagrams is
a interesting interpretation of the Godunov scheme often
used in practice. Defining the demand as the increasing
part of Φ(ρ) by

D(ρ) =

∫ ρ

0

max(Φ′(ξ), 0)dξ (3)

and the supply as its decreasing part by

S(ρ) = Φm +

∫ ρ

0

min(Φ′(ξ), 0)dξ (4)

the Godunov flow can be shown to be equivalent to

φk
i = min{D(ρk

i ), S(ρk
i+1)} (5)

In particular, the triangular fundamental diagram intro-
duced by Daganzo [1994] gives the CTM model

φk
i = min{vk

i ρk
i , ck

i , pk
i+1 − wk

i+1ρ
k
i+1, c

k
i+1}

with vk
i the free flow speed, wk

i the congestion wave speed,
pk

i the product of the maximal density with wk
i and ck

i

the capacity. The presence of the indices i and k on
these parameters allow to model spacial topology changes
along the freeway or to take into account an accident
that alters the fundamental diagram in time and space.
More generally, the same procedure can be applied to any
piecewise affine (PWA) fundamental diagram as the one
illustrated on Figure 1. Using the notations of this figure
and removing the possible dependency of the parameters
on time and space for readability, the Godunov flow writes

φk
i = min{a+

1 ρk
i , a+

2 ρk
i + b+

2 , ..., a+
N+ρk

i + b+
N+ ,

b0, a−

1 ρk
i + b−1 , ..., a−

N−
ρk

i + b−
N−

}

a+

1

a+

2

b+

2

b0

(a−

1 , b−1 )

(a−

2 , b−2 )

ρ

Φ(ρ)

Fig. 1. Piecewise affine fundamental diagram.

2.2 Concave relaxation of the LWR model

A third interpretation of the Godunov scheme can be
obtained by noticing that Equation (5) is equivalent to
the maximization problem

φk
i = max ξk

i

with

{

ξk
i ≤ D(ρk

i )
ξk
i ≤ S(ρk

i+1)

Replacing ξk
i by φk

i and disregarding the maximization
problem, we obtain a concave relaxation similar to the
one introduced by Gomes and Horowitz [2006] where the
equality φ = Φ(ρ) is replaced by the inequality φ ≤ Φ(ρ).
This relaxation writes

{

φk
i ≤ D(ρk

i )
φk

i ≤ S(ρk
i+1)

and the correct fundamental diagram is recovered when
the flow is maximized. Combining this concave relaxation
with the time stepping given is Equation (2), the solution
of the LWR model can be computed by solving the
following optimization problem

max
∑

i,k

φk
i

subject to



















φk
i ≤ D(ρk

i )
φk

i ≤ S(ρk
i+1)

ρk+1
i = ρk

i +
dt

dxi

[

φk
i−1 − φk

i

]

ρ0
i = ρI

i , ρk
1 = ρk

L , ρk
N = ρk

R

(6)

The traffic engineering interpretation of this reformulation
is that traffic evolves such that the aggregated flow is
maximized. Equation (6) is a variational formulation of the
traffic dynamics and is a linear program for piecewise affine
demand and supply functions. It will prove to be useful
to treat freeway management problems by introducing
additional control variables.

2.3 Extensions in the presence of on and off ramps

On and off ramps can be modeled by adding a set of ex-
ogenous flow contributions in the optimization framework
described previously. Only the on-ramp case is presented
in this section, the off-ramp case being treated without
difficulty using exit flows or split ratios. To stay consis-
tant with the original Godunov scheme, the ramp flow rk

i

released on the freeway should enter at the cell boundaries
as illustrated in Figure 2. In this setting, the demand at the
on-ramp location becomes Dr(ρ

k
i , rk

i ) = D(ρk
i ) + rk

i with
D(ρk

i ) the classical demand defined in Equation (3). The
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Fig. 2. Cell interface and ramp flows.

supply function (4) remains unchanged and the equations
for the discrete model becomes

ρk+1
i = ρk

i +
dt

dxi

[

φk
i−1 − ϕk

i

]

φk
i = min{D(ρk

i ) + rk
i , S(ρk

i+1)}
ϕk

i = φk
i − rk

i

with φk
i−1 and ϕk

i respectively the flow entering and leaving
cell i as illustrated on Figure 2. For more general freeway
management applications, the traffic demands and the
ramp queues should be modeled for each on-ramp. Given
the substantial imprecisions of the field data and the
freeway geometry, the model complexity should be kept
to its strick minimum in order to facilitate the parameter
tuning. To be relevant, the on-ramp model should:

• be equivalent to its LWR counterpart with no ramp,
• accounts for the on-ramp flow contribution,
• ensures that the maximal density is not exceeded,
• ensures that the queue length is always positive.

Several merge models have been proposed in the literature
by Gomes and Horowitz [2006] and Daganzo [1995] to
name a few but they usually require additional parameters
that may be cumbersome to set in practice. The model
presented in this section only relies on the flow conser-
vation principle and a set of inequations that bound the
flows involved in the system. The variables used in this
model with a CTM fundamental diagram can be classified
according to the following tables.

Unknowns variables
ρk

i vehicle density on mainlane veh/km
φk

i vehicle flow on mainlane veh/h
rk
j vehicles released from the on-ramp veh/h

qk
j vehicles queueing at the on-ramp veh

Geometric and discretization parameters
dxi cell length km
I(j) cell upstream of ramp j ·
J(i) ramp downstream of cell i ·
dt time step hour

Constitutive parameters
vk

i free wave speed km/h
wk

i congestion wave speed km/h
pk

i wk
i × (maximal density) veh/h

ck
i mainlane capacity veh/h

fk
j onramp capacity veh/h

Scenario parameters
ρ1

i initial density condition veh/km
ρk
1 upstream density condition veh/km

ρk
N downstream density condition veh/km

q1
j initial queue condition veh

dk
j traffic demand veh/h

In the above tables, the index i is for the mainlane cells,
the index j for the ramps and the index k for the time
sample. The scenario parameters, which are needed in the
computations, are measured or estimated in practice. With
the notations introduced above, the relaxed form of the
extended model writes

max
∑

i,k

φk
i

subject to

(7)

∀ i :















φk
i ≤ vk

i ρk
i + rk

J(i)

φk
i ≤ ck

i + rk
J(i)

φk
i ≤ pk

i+1 − wk
i+1ρ

k
i+1

φk
i ≤ ck

i+1

(8)

∀ j :























rk
j ≥ 0

rk
j ≤ pk

I(j)+1 − wk
I(j)+1ρ

k
I(j)+1

rk
j ≤ min

{

ck
I(j)+1, f

k
j

}

rk
j ≤

qk
j

dt
+ dk

j

(9)

∀ i : ρk+1
i = ρk

i +
dt

dxi

[

φk
i−1 − φk

i + rk
J(i)

]

(10)

∀ j : qk+1
j = qk

j + dt.
[

dk
j − rk

j

]

(11)

The constraints on rk
j in Equation (9) describe the admissi-

ble domain for the flow of vehicles released on the mainlane
from ramp j. First, it should be positive. Second, it should
be applicable in the sense that it is smaller than the
available supply. Third, each ramp flow is bounded by the
ramp capacity noted fk

j [veh/h]. Finally, the flow leaving a
ramp at most empties its queue, which is the last inequality
in (9). The inequalities in (8) are the ones in Equation
(6) for the CTM fundamental diagram. Equations (10)
and (11) implement the conservation of vehicles on the
mainlane and on the ramps as time evolves.

2.4 Capacity drop model

When a congestion occurs at a bottleneck such as an
on-ramp, it has been noticed by Cassidy and Bertini
[1999] that the flow downstream of the congestion is often
lower (up to 10%) than the freeway capacity. Taking this
capacity drop phenomenon into account is particularly
important when designing control strategies as this is pre-
cisely the bottleneck outflow that regulates its discharge.
Considering the mutual embrassement between the drivers
coming from the mainlane and the on-ramp, Haut et al.
[2005] proposed a capacity drop model able to predict flows
lower than the capacity during congestions. We propose
here a similar capacity drop model that can be used in the
linear programming framework developed so far. First, the
mutual embrassement is taken into account by lowering
the capacity when the on-ramp flow is larger than zero.
Second, the capacity drop is assumed to increase with
the mainlane demand, which seems reasonable from the
traffic engineering perspective. With these assumptions,
the capacity drop model for ramp j only consists in adding
the following flow constraint

φk
I(j) ≤ ck

I(j)+1 − zk
j .

(

ρk
I(j) − (ck

I(j)+1 − rk
j )/vk

I(j)

)

(12)

with zk
j a parameter measuring the severity of the capacity

drop phenomenon which should be set to reproduce field
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Criterion Symbol Definition

Vehicle Miles Traveled V MT
∑

i,k
φk

i
.dxi.dt

Total Travel Time TTT
∑

i,k
ρk

i
.dxi.dt

Total Served Vehicles TSV
∑

j,k
rk
j
.dt

Total Waiting Time TWT
∑

j,k
qk
j
.dt

Total Time Spent TTS TTT + TWT

Table 1. Classical performance criteria in traf-
fic engineering.

data near the on-ramps. Equation (12) means that the
freeway capacity can be achieved as soon as the total
demand is lower than capacity. Otherwise the capacity
is decreased proportionally to the ramp flow and the
mainlane flow.

3. TRAFFIC MANAGEMENT APPLICATIONS

3.1 Generic objective functions

Many traffic management problems can be casted as an
optimization problem using the objective function

max
(ρ,φ,r,q)

∑

i,k

αk
i .ρk

i +
∑

i,k

βk
i .φk

i +
∑

j,k

γk
j .rk

j +
∑

j,k

δk
j .qk

j (13)

which is completely described by the value of the parame-
ters αk

i , βk
i > 0, γk

j and δk
j . The constraint on βk

i is needed
so that the solution fulfills the fundamental diagram re-
lationship as discussed previously. Classical performance
measures in traffic engineering are summarized in Table 1.
The Vehicle Miles Traveled (VMT) and the Total Served
Vehicles (TSV) criteria are related to the infrastructure
efficiency whereas the Total Travel Time (TTT), the Total
Waiting Time (TWT) and Total Time Spent (TSS) are
indicators of the quality of service for the freeway users.
Weighing these criteria using scalarization in a composite
cost function enables to balance the utility fonctions of
the freeways operators and the freeway users. For instance,
TTT + κ.TWT with κ a scalar, weights the relative im-
portance of the waiting time at the onramps with respect
to the waiting time on the mainlane. In allocations prob-
lems such as ramp metering, such composite functions are
needed to assign a tradeoff between the two competing
objectives which are the shared ressource performance
(the freeway) and the quantity of buffered demand (the
on-ramp queues). The weights are tuned according to
the retained strategies and give a degree of freedom to
the freeway operators. The performance criteria listed in
Table 1 have an immediate meaning and are grounded on
classical traffic engineering practices. Other criteria may
be considered in our optimization framework as soon as
they can be expressed as an linear function of ρk

i , φk
i , rk

i

and qk
i . As an illustration, we propose in Table 2 several

exotic performance mesures that may be useful in freeway
management problems. The Weighted TSV (wTSV) and
Weighted TWT (wTWT) are weighted versions of the TSV
and TWT which give different levels of priority to the
on-ramps. For instance, we may want to serve business
districts with a better quality of service than residential
areas. The Total Mean Speed (TMS) is the freeway-wide
average velocity. Though this criterion looks nonlinear at
first sight, it can be casted as a linear program using a
classical procedure explained in Williams [1999]. In the
Safety Merit Function (SMF), m(·) is a piecewise affine

Criterion Symbol Definition

Weighted TSV wTSV
∑

j,k
wj .rk

j
.dt

Weighted TWT wTWT
∑

j,k
wj .qk

j
.dt

Total Mean Speed TMS (
∑

i,k
φk

i
)/(

∑

i,k
ρk

i
)

Safety Merit Function SMF
∑

i,k
m(ρk

i
).dxi.dt

Density Total Variation DTV
∑

i,k
|ρk

i+1
− ρk

i
|

Served Vehicle Tot. Var. SV TV
∑

j,k
|rk+1

j
− rk

j
|

Density Maximal Variation DMV maxi,k |ρk
i+1

− ρk
i
|

Table 2. Exotic performance criteria for free-
way management.

convex function that penalizes large density values as they
are notorious for increasing crash rates. The Density Total
Variation (DTV) and the Served Vehicle Total Variation
(SVTV) are two criteria that can be used to smooth the
density and the on-ramp flows respectively in space and
time. Finally, the Density Maximal Variation (DMV) can
be used to penalize large variations of the density along the
freeway. Again, these last three criteria, which are closely
related to the L1 and L∞ norms, can be manipulated to
give a linear program as presented by Boyd and Vanden-
berghe [2004].

3.2 Control strategies

There are basically 2 practical ways of using an optimiza-
tion algorithm to control a process:

(1) Either perform the optimization repetitively on a pre-
defined finite time horizon, possibly with a forgetting
factor. It is called Model Predictive Control (MPC).

(2) Or perform the optimization for the current time only,
which leads to a local structure for freeways. We call
this approach Local Instantaneous Control (LIC).

By considering a sufficiently long time horizon, the MPC
method can anticipate the propagation of a congestion and
take appropriate measures to reduce its effect. However, it
requires the knowledge of the upstream and downstream
conditions as well as the traffic demands at all ramps for
the full time horizon. As these data should be predicted
in practice, the validity of the MPC approach can be
questionable for large horizons. On the other hand, the
LIC method only needs to know in real time the traffic
density upstream and downstream of the onramp, noted
ρL and ρR respectively. The optimization problem writes

max φ + σr (14)

subject to
{

0 ≤ r ≤ min { pR − wRρR , cR , f , q/dt + d }
0 ≤ φ ≤ min { vLρL , cL } + r
0 ≤ φ ≤ min { pR − wRρR , cR }

(15)

with σ a parameter weighting the ramp flow with respect
to the mainlane flow. The solution of (14)-(15) can be com-
puted explicitly which provides a closed-form controller.
For instance, if we want to maximize the mainlane flow,
the objective function should be (φ − r) + φ, which gives
σ = −1/2. In that case, the ramp flow is the maximum
admissible flow that do not generate a congestion.

3.3 Sensitivity analysis

Even when no composite objective fonction is used, the op-
timization formulation (7)-(11) provides additional valu-
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able information with respect to the more classical Go-
dunov method. As for all convex optimization problems
(Boyd and Vandenberghe [2004]), the constraints of this
problem give rise to Lagrange multipliers, also called
shadow prices or marginal prices. When dimensioning a
freeway system, these Lagrange multipliers can be very
useful in guiding traffic engineers as they tells how the
relaxation of a given constraint would affect the objective
function value. For instance, looking at the Lagrange mul-
tipliers associated to the supply inequality in (8) informs
directly on the gains we can expect by adding a new lane.

3.4 Simulations for the ramp metering problem

We have developed a Java software called Karrus that
implements the optimization problems described in this
paper. As an illustration, we consider a virtual freeway
section constituted of 3 links of 500 meters, each of them
being discretized in 3 cells. The initial and boundary
conditions are taken such that a congestion enters from
the downstream boundary and two metered on-ramps
are considered, one between each link. The time horizon
is taken to be 5 minutes, which leads to a problem
of 1495 variables that is solved in less than a second.
Without ramp metering, the simulated density given in
Figure 3 clearly shows the congestion propagation. When

0

10

20

30

40

50

60

70

D
e
n
s
it
y
 [
v
e
h
/k

m
]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Space [km]
0

1

2

3

4

5

Time [min]

Fig. 3. Density on the freeway without ramp metering.

considering the VMT objective only, the optimizer is able
to stop the congestion at the first on-ramp as shown in
Figure 4. But Figure 5 shows that a large queue is building
up at the second on-ramp. To alleviate the drawbacks of
the VMT criterion, an objective fonction composed of the
sum of the VMT and the TSV is considered. As shown
in Figure 7, the queues are now emptied at the end of the
optimization horizon but at the expense of a congestion on
the mainlane, as illustrated on Figure 6. It is remarkable in
this case that the optimizer behaves similarly to a bang-
bang controller. Using a series of weights for the TSV
objective, we obtain the discrete front of optimal solutions
depicted on Figure 8. This figure provides a compact
representation of the degree of freedom available to the
designer to balance the different competing objectives.

4. CONCLUSION

We presented in this paper a linear programming frame-
work which is relevant to treat freeway management prob-
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Fig. 4. Density on the freeway with the VMT objective.

lems. The method is rather general and may be applicable
to other related field such as telecommunication networks
and supply chains. Ongoing researches concern the exten-
sion of this approach to bilinear optimization as many
traffic control problems can be expressed in this form,
among which the design of variables speed limit and route
choice controllers.
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Fig. 5. Ramp flows with the VMT objective.
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Fig. 6. Density with the VMT and TSV objectives.

Fig. 7. Ramp flows with the VMT and TSV objectives.

Fig. 8. Evolution of the VMT and TSV costs with the
weighting parameter (0 on the right and 1 on the left).
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