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Abstract: This paper is concerned with the solution of state feedback H∞ control for a single-
input-single-output plant with parameters, and an algebraic approach that utilizes the so-called
‘sum of roots’ is developed. A method is firstly devised that computes a polynomial which
contains the optimal cost as one of its roots. Furthermore it is shown that an optimal/sub-
optimal static feedback gain can be expressed in terms of plant parameters and the sum of
roots. The proposed approach thus suggests that the sum of roots is useful for characterizing
an achievable H∞ performance level as well as some H2 performance limitations.
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1. INTRODUCTION

It has been pointed out that the introduction of the
notion of the sum of roots (SoR) reveals an intriguing
relationship between polynomial spectral factorization and
an algebraic method called Gröbner bases [Kanno et al.,
2007b]. This observation can further be useful in that
the algebraic approach yields an algorithm that can carry
out polynomial spectral factorization for the parametric
case. Also interesting is the fact that the SoR, initially
introduced as an index of ‘average stability’ [Anai et al.,
2005], can give direct expressions for best achievable
performance levels of some H2 control problems [Kanno
et al., 2007a].

In this paper an attempt is made for the characterization
of the solution to an H∞ control problem. Polynomial
spectral factorization that has to be carried out in the
H∞ control problem exhibits a distinctive feature different
from the one appearing in the H2 control problem. It is
thus natural to expect that a different approach is required
to discover the characterization of the solution in terms
of the SoR. This paper suggests an approach that yields
the SoR characterization for H∞ control. The approach
further enables one to express an optimal/sub-optimal
feedback gain for the state feedback H∞ control problem.
The approach that makes use of the SoR has an advantage
in that it is based on an algebraic method called Gröbner
bases and thus compatible with the parametric case.

The paper is organized as follows. Section 2 reviews the
notion of the SoR and gives the solution of polynomial
spectral factorization by means of the SoR based on
Gröbner basis theory. Section 3 is devoted to the state
feedback H2 control problem, whose result is also applica-
ble to the state feedback H∞ control problem for unstable
plants. Section 4 then discusses the main problem of the
paper, i.e., a state feedback H∞ control problem, where

the difference in the optimal performance level between the
stable case and the unstable case is clarified. In Section 5,
the unstable case is considered, and how the sub-optimal
feedback gain is written in terms of the SoR is discussed.
Section 6 then deals with the stable case, and the best
achievable performance level is characterized in terms of
the SoR. Section 7 provides a numerical example and
Section 8 gives some concluding remarks.

2. EVEN POLYNOMIAL AND THE SUM OF ROOTS

The characteristic polynomial of the Hamiltonian matrix
arising from the H2 or H∞ control problem is an even poly-
nomial and the solution of the associated Riccati equation
is closely related to polynomial spectral factorization of the
characteristic polynomial. This section reviews the SoR
and how the problem of polynomial spectral factorization
may be related to the SoR and solved with the aid of an
algebraic method, namely, Gröbner bases. The result is
exploited in the following sections.

A monic even polynomial f(s) of degree 2n can be decom-
posed as

(−1)nf(s) = g(s)g∼(s) , (1)

where g(s) is a polynomial of degree n, and g∼(s) := g(−s)
is the conjugate polynomial of g(s). Notice that there are
a number of g(s) satisfying (1). Also, since f(s) is monic,
it is enough to consider monic g(s). Polynomial spectral
factorization is a special case of this decomposition. The
task in that case is to find a special g(s) under the
assumption that f(s) does not have any roots on the
imaginary axis, and the stable g(s) is to be calculated.

There are various numerical approaches to find g(s) (stable
g(s), in particular), but an algebraic approach based on
Gröbner basis theory is employed here. Write

g(s) = sn + σsn−1 + mn−2s
n−2 + · · · + m1s + m0 . (2)
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Note the coefficient σ of sn−1. The quantity is called the
sum of roots since −σ is (literally) the sum of roots of g(s).
It is shown that all the polynomials g(s) satisfying (1) is
characterized by this quantity [Kanno et al., 2007b]. By
comparing the coefficients on the both sides of (1), a set
of algebraic equations in σ and mi is obtained. The task of
finding g(s) thus becomes solution of this set of algebraic
equations. Denote by G the set of the polynomials obtained
from the polynomial parts of the equations. This set of
polynomials has an interesting property that facilitates the
use of the powerful theory of Gröbner bases.

Proposition 1. (Kanno et al. [2007b]). The set G of the
polynomials forms the reduced Gröbner basis of the ideal
generated by itself with respect to the graded reverse
lexicographic order σ � mn−2 � · · · � m0. Further,
generically, the ideal 〈G〉 has a Gröbner basis of so-
called shape form with respect to any elimination ordering
{m0, . . . ,mn−2} �� σ:

{

Sf (σ), mn−2−hn−2(σ), . . . , m0−
h0(σ)

}

, where Sf (σ) is a polynomial of degree exactly 2n

and hi(σ) are polynomials of degree strictly less than 2n.

It is noted that Sf (σ) and hi(σ) are polynomials in σ only.
Also the set G of polynomials that is directly obtained
from the problem immediately yields a Gröbner basis and
thus conversion to the shape basis can be performed in an
efficient manner [Faugère et al., 1993]. This intriguing and
useful property is observed through Gröbner basis theory.

Remark 1. To be precise, Gröbner basis theory deals with
sets of polynomials (algebraic expressions) and discusses
zeros of sets of polynomials (rather than solutions of
polynomial equations). However this paper supposes that
a set of polynomials and a set of polynomial equations are
in essence identical and considers them interchangeable.

Proposition 1 suggests that all g(s) are characterized by
the roots of Sf (σ). Once roots of Sf (σ) are found, the
rest of the computation is straightforward; all the other
coefficients mi of g(s) are expressed as polynomials hi in σ
and substitution of σ in hi with a particular root of Sf (σ)
gives the corresponding g(s). It can be shown that the
stable g(s) is obtained from the largest real root of Sf (σ).

3. STATE FEEDBACK H2 CONTROL PROBLEM

3.1 Problem Formulation and Optimal Performance

The focal point of this paper is an H∞ control problem,
but a state feedback H2 control problem is considered in
this section. The reason is twofold:

• To see how the solution to the H2 control problem is
characterized in terms of the SoR, in comparison to
the H∞ control problem case.

• To present an approach that can in fact be utilized
when dealing with the case of unstable P (s) in the
H∞ control problem.

The H2 control problem is formulated as follows. In Fig. 1,
P (s) is the single-input-single-output (SISO) plant to be
controlled and F is the constant feedback gain. The signals
x, u, y, and d are the plant state, the control input, the
control output, and the disturbance input, respectively.
The control input u is computed by u = Fx. The task is
to find a feedback gain F that stabilizes the closed-loop

F P (s)- - ?d - -u

d

x

y

Fig. 1. State feedback system configuration

system and further minimizes the H2-norm of the transfer
function matrix Td→( y

u ) from d to ( y
u ).

The problem can be solved as follows [Zhou et al., 1996].
Write the state-space representation of n-th order P (s) as

P (s) =

[

A B
C 0

]

, (3)

where A ∈ R
n×n, B ∈ R

n×1, and C ∈ R
1×n, and (A,B)

and (C,A) are assumed to be controllable and observable,
respectively. Define the associated Hamiltonian matrix as

H2 :=

[

A −BB∗

−C∗C −A∗

]

. (4)

The eigenvalues of H2 are symmetric about the imagi-
nary axis. The controllability and observability assump-
tion guarantees that H2 has no eigenvalues on the imag-
inary axis. Then there are n eigenvalues in the open left
and right half planes (LHP/RHP) each. Stack the eigen-
vectors corresponding to the LHP eigenvalues and create
the matrix

[

XT
a XT

b

]T
, (5)

where Xa, Xb ∈ C
n×n. The now standard result shows the

following [Zhou et al., 1996, Subsection 14.8.1].

Lemma 2. In the state feedback H2 control problem for-
mulated above, Xa is invertible and X2 := XbX

−1
a ≥ 0.

Moreover, X = X2 is the stabilizing solution to the alge-
braic Riccati equation

A∗X + XA − XBB∗X + C∗C = 0 . (6)

That is,

A2 := A − BB∗X2 (7)

has eigenvalues in the open LHP only. Finally the optimal
feedback gain is given as F2,opt := −B∗X2, and the
achieved minimum H2-norm is

min
F stabilizing

∥

∥Td→( y
u )

∥

∥

2
=

(

tr {B∗X2B}
)

1

2 .

3.2 Characterization in Terms of the Sum of Roots

The state feedback H2 control problem can be solved by
way of the SoR and also the solution can be characterized
by the SoR [Hara and Kanno, 2008]. As is mentioned
the Hamiltonian matrix H2 does not have eigenvalues on
the imaginary axis and thus its characteristic polynomial
f2(s) := det(sI − H2) does not have imaginary axis roots
either, which is one of features in the H2 control problem.
This case allows a stable monic g2(s) to be obtained such
that (−1)nf2(s) = g2(s)g

∼

2 (s), and this polynomial spec-
tral factor g2(s) in fact coincides with the characteristic
polynomial of A2. Moreover a closer relationship between
g2(s) and X2 can be revealed. Without loss of generality it
can be assumed that P (s) is given in controllable canonical
form. That is, if P (s) is written as a transfer function

P (s) =
cn−1s + · · · + c0

sn + an−1s + · · · + a0
,
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where the numerator and the denominator are assumed to
be coprime, then its state-space representation is given as

P (s) =











−an−1 · · · −a1 −a0 1
1 · · · 0 0 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 · · · 1 0 0

cn−1 · · · c1 c0 0











.

Note that the ‘A’ matrix is a companion matrix and
that its characteristic polynomial (i.e., the denominator of
P (s)) can immediately be determined from the first row.

Now it is shown that the stabilizing solution can be
constructed from g2(s). Due to the special structure of the
matrices A and B arising from the controllable canonical
form assumption, A2 shows a useful structure. Write X2 as

X2 =









x1,1 x1,2 · · · x1,n

x1,2 x2,2 · · · x2,n

.

.

.
.
.
.

. . .
.
.
.

x1,n x2,n · · · xn,n









. (8)

Then,

A2 = −









an−1 + x1,1 · · · a1 + x1,n−1 a0 + x1,n

1 · · · 0 0
.
..

. . .
.
..

0 · · · 1 0









.

Namely, A2 is also a companion matrix and it is immediate
to relate the coefficients of g2(s) and the first row of X2.
If g2(s) is written as in the right hand side of (2), then

x1,1 = σ − an−1 , x1,i = mn−i − an−i , i = 2, . . . , n . (9)

Moreover the structure of the ‘B’ matrix implies that the
optimal cost can be expressed as

√
x1,1. Then the above

relationship reveals the following, which provides the SoR
characterization for the optimal H2 cost.

Proposition 3. The best achievable H2-norm by state feed-
back is represented by

min
F stabilizing

∥

∥Td→( y
u )

∥

∥

2
=

√

σ − an−1 .

Note that other elements of X2 can also be expressed in
terms of mi, ai and ci. However they are not required here
and hence not pursued.

Finally the characterization in terms of the SoR is dis-
cussed. Stable g2(s) that is to be found here corresponds
to the largest real root of Sf (σ) and moreover the largest
real root of Sf (σ) is always simple [Kanno et al., 2007b].
Also the optimal feedback gain is simply obtained from
the first row of X2 which has a simple relationship (9) to
the SoR σ and the coefficients mi of g2(s). Since mi can be
expressed as polynomials in σ, the optimal feedback gain
is also expressed explicitly in terms of σ. Lastly, σ gives a
simple expression for the optimal cost; the optimal cost is
the square root of the difference between σ and an−1.

4. STATE FEEDBACK H∞ CONTROL PROBLEM

4.1 Problem Formulation and Solution

Now consider the main problem of this paper, namely, the
H∞ control problem with state feedback. The problem
formulation is identical to that of the H2 control problem
dealt with in Section 3, except that the H∞-norm is used
instead of the H2-norm. The same feedback configuration

in Fig. 1 is used and again a feedback gain F is sought
that stabilizes the closed-loop system and also minimizes
the H∞-norm of the transfer function matrix Td→( y

u ).

Given the state-space representation of P (s) in (3), where
(A,B) and (C,A) are assumed controllable and observable,
respectively, the Hamiltonian matrix associated to the sub-
optimal problem with the H∞-norm level γ > 0, i.e.,

∥

∥Td→( y
u )

∥

∥

∞
< γ (10)

is written as

H∞ :=

[

A (γ−2 − 1)BB∗

−C∗C −A∗

]

. (11)

Superficially the only difference from H2 in (4) is the (1, 2)-
block element. The eigenvalues of H∞ are symmetric about
the imaginary axis as well. However there are a number of
differences between H∞ and H2:

• The matrix H∞ contains a real parameter γ that is
related to the performance level.

• The (1, 2)-block element of H∞ can be both positive
and negative semi-definite, depending on the value of
γ, while that of H2 is always negative semi-definite.

• The matrix H∞ may have imaginary axis eigenvalues,
depending on the value of γ, while H2 is always free
from eigenvalues on the imaginary axis.

When H∞ does not have eigenvalues on the imaginary
axis, the matrix (5) can be constructed based on the
eigenvectors corresponding to the LHP eigenvalues, as in
the H2 control problem case. The following is immediate
from the standard result [Zhou et al., 1996, Theorem 16.9].

Lemma 4. There exists a stabilizing feedback gain F sat-
isfying (10) if and only if

a) H∞ has no eigenvalues on the imaginary axis;
b) Xa is invertible; and
c) X∞ := XbX

−1
a ≥ 0 .

Furthermore, when the above conditions are satisfied, a
(sub-optimal) stabilizing feedback gain achieving the norm
requirement is given by

F∞,sub := −B∗X∞ . (12)

Also, X = X∞ is the stabilizing solution to the following
algebraic Riccati equation:

A∗X + XA + (γ−2 − 1)XBB∗X + C∗C = 0 . (13)

4.2 Optimal Performance

Given γ, Lemma 4 yields a method that determines
whether the condition (10) can be achieved and, if achiev-
able, finds a feedback gain satisfying it. Thus, by way of a
bi-section approach, one may find the best possible γ, i.e.,

γopt := inf
F stabilizing

∥

∥Td→( y
u )

∥

∥

∞
.

Nevertheless this approach of finding γopt is not suited in
case of parametric P (s) since the eigenvalues/eigenvectors
cannot in general be computed explicitly. Indeed it has not
been clear whether there is a tractable way to link plant
parameters and the optimal performance γopt.

This section provides a result that serves as a basis when
devising a method that can express γopt in the parametric
case. The following result shows that characterizing γopt

is relatively easy in the state feedback H∞ control prob-
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lem and also indicates which condition to investigate for
finding γopt. The proof is omitted due to space limitation.

Lemma 5. In the H∞ state feedback problem formulated
in Subsection 4.1, the best achievable performance level
γopt is strictly less than 1 when P (s) is stable, and is equal
to 1 when P (s) is unstable:

γopt

{

< 1 P (s) stable ,

= 1 P (s) unstable .

Moreover, for stable P (s), when γ = γopt, Condition a) is
violated, i.e., H∞ has eigenvalues on the imaginary axis.

Lemma 5 first suggests that the stable and unstable cases
should be treated differently. For unstable P (s), one can
deduce that γopt = 1 without any calculation, and it may
be proven that γopt = 1 cannot in general be accomplished.
Thus the main task in this case will be to derive an
expression of the sub-optimal gain F∞,sub for γ > 1.

On the contrary Lemma 5 implies that finding γopt for
stable P (s) requires some computation. Lemma 5 also
suggests an idea on how to compute γopt. More specifically
candidates for γopt can be found by investigating the
condition under which H∞ has imaginary axis eigenvalues.
This point is exploited in Section 6.

Before closing this section, new variables are introduced
to simplify expressions appearing in the sequel:

ρ := 1 − γ−2 , ρopt := 1 − γ−2
opt .

The following relationship between γ and ρ is immediate:

γ ≥ 1 ⇐⇒ 0 ≤ ρ ≤ 1 , 0 < γ < 1 ⇐⇒ ρ < 0 .

The sign of ρ directly indicates which case, stable or unsta-
ble P (s), is treated, and thus this notation is also expected
to facilitate to clarify the stable/unstable situation.

5. SUM OF ROOTS CHARACTERIZATION FOR THE
UNSTABLE CASE

This section discusses the unstable case. It is immediate
that ρopt = 0 from Lemma 5 and the optimum cannot in
general be achieved. Therefore the only interest may be
how the feedback gain (12) is expressed in terms of ρ > 0.

With the ‘ρ’ notation, H∞ in (11) is expressed as

H∞ :=

[

A −ρBB∗

−C∗C −A∗

]

.

Since ρ > 0, this Hamiltonian matrix is considered identi-
cal in essence to the Hamiltonian matrix H2 appearing in
the H2 control problem by considering

√
ρB as B in (4).

Hence the approach stated for the H2 control problem in
Section 2 is directly applicable for finding the feedback
gain (12) for any ρ > 0, or, equivalently, γ > 1.

A simple numerical example is provided to demonstrated
how the performance level ρ and the ‘average stability’
σ may be related by using the techniques presented in
Sections 2 and 3. Consider the plant P (s) = p+s

s(p−s) , p > 0.

The associated Hamiltonian matrix is

H∞ :=





p 0 −ρ 0
1 0 0 0
−1 −p −p −1

−p −p2 0 0



 .

This is an unstable plant and thus ρ should be taken
to be ρ > 0. The characteristic polynomial of H∞ is

f∞(s) = s4 − (p2 + ρ)s2 + p2ρ. The approach in Section 2
gives a polynomial equation relating σ and ρ : σ4 − 2(p2 +
2ρ)σ2 + p4 − 2p2ρ + ρ2 = 0. This equation can in fact
be solved for σ and the largest real root is σ = p +

√
ρ.

This suggests that the ‘average stability’ σ monotonically
increases as ρ increases from 0 to 1. In this particular
example, one of the close-loop poles is −p irrespective of
the value of ρ, and thus the other pole moves from 0 to 1
as ρ increases from 0 to 1.

6. SUM OF ROOTS CHARACTERIZATION FOR THE
STABLE CASE

This section focuses on the case of stable P (s) where,
unlike the unstable case, ρopt depends on P (s). An attempt
is made to characterize ρ in terms of the SoR and it is
shown that such characterization is possible for P (s) with
parameters. Subsection 6.1 considers the non-parametric
case and discusses how σ and ρ can be related. Subsec-
tion 6.2 then deals with the parametric case and shows that
the main task is to divide the parameter region into several
sub-regions of identical property. A method of computing
the optimal feedback gain is discussed in Subsection 6.3.

6.1 Characterization of γopt: Non-parametric Case

This subsection states a condition derived from Lemma 5
that shows how the existence of imaginary axis eigenvalues
of the Hamiltonian matrix H∞ can be characterized in
terms of the SoR σ. The result can then yield an expression
linking ρopt and σ. Denote by f∞(s) the characteristic
polynomial of H∞ in (11), i.e.,

f∞(s) := det(sI − H∞) , (14)

and consider its polynomial spectral factorization
(−1)nf∞(s) = g∞(s)g∼

∞
(s). Write g∞(s) as in the right

hand side of (2). A set of polynomial equations in terms of
σ and mi can be obtained by comparing the coefficients of
the both sides of the equation. The shape basis of the set
of equations is then computed. Denote by Sf (σ) the poly-
nomial in σ only in the shape basis, as in Proposition 1.

Theorem 6. For stable P (s), the following holds.

1) When ρ is fixed such that ρ > ρopt, or, equivalently,
when H∞ does not have eigenvalues on the imaginary
axis, there exists at least two real roots in Sf (σ) and
the largest real root is always simple.

2) When ρ is ρopt (i.e., when H∞ has multiple eigenval-
ues on the imaginary axis), Sf (σ) has at least one real
root and the largest real root of Sf (σ) is repeated.

3) For a fixed ρ < ρopt, either
a) [Generic Case] Sf (σ) does not have any real

roots; or
b) [Degenerate Case] Sf (σ) has real roots and the

largest real root is repeated.

The above theorem is stated to elucidate the mode tran-
sition as ρ decreases from 0. However the case ρ = ρopt

can in fact be considered as a special case of 3-b). In the
generic situation, when ρ is reduced from 0, the largest
real root of Sf (σ) which is initially a simple root becomes
repeated at ρ = ρopt and then the repeated roots leave
the real axis to become a pair of complex conjugate roots.
Also, at that time, Sf (σ) does not have real roots.
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Theorem 6 gives an algorithm deriving a polynomial one of
whose roots is ρopt. When ρ = ρopt, Sf (σ) has a multiple
root, so a condition that ρopt has to satisfy can be obtained
from the discriminant h(ρ) of Sf (σ) with respect to σ. One
can further choose the correct ρopt from the roots of h(ρ)
based on the property of the SoR stated in Case 1).

Algorithm O (Preparation)

Step O-1: Construct the Hamiltonian matrix H∞ in (11)
from the state-space representation of P (s). Compute
the characteristic polynomial f∞(s) of H∞ in (14).

Step O-2: Write g∞(s) as in the right hand side of (2).
Compare the both sides of (1) to get G. Compute the
shape basis for 〈G〉. Compute the discriminant h(ρ) of
Sf (σ) with respect to σ.

Algorithm I

Step I-1: Compute the negative roots of h(ρ). They are
candidates for ρopt.

Step I-2: Compute the middle points of these candi-
dates. From the largest middle point, substitute the
value of each middle point in ρ of Sf (σ) and check
whether there exist real roots in Sf (σ). If yes, then pick
up the next largest middle point and repeat this step.
Otherwise, set to ρopt the candidate which is just above
the chosen middle point and terminate.

6.2 Characterization of γopt: Parametric Case

This subsection discusses the case of parametric P (s) and
indicates that the crucial point in this case is to identify the
regions of parameters exhibiting identical properties for
ρopt in each region. This is in fact cylindrical algebraic de-
composition (CAD) [Collins, 1975], an established method
of computer algebra. Once such parameter regions are
obtained, one has to select a sample point from each region
and then to examine the property for h(ρ) constructed
from those sample points. In that sense the parametric
case requires an outer loop for Algorithm I.

The discussion in the sequel is confined to the one pa-
rameter case for simplicity, but it is emphasized that a
more general multiple parameter case can be dealt with
by the CAD approach in a systematic manner. Denote the
only parameter as α. Note first that Algorithm O works for
the parametric case without any change. The discriminant
h(ρ) of Sf (σ) is a polynomial in ρ and α in this case.
Compute further the discriminant of h(ρ) with respect to
ρ, which is a polynomial in α. The real roots α of this
polynomial indicate at which values of α the discriminant
h(ρ) has multiple roots when seen as a polynomial in ρ, and
further those roots divide parameter regions. Taking (any)
one value from each region, one can examine which root
of h(ρ) corresponds to ρopt throughout the region. The
examination can be carried out by means of Algorithm I.
To sum up the outer loop required for the parametric case
is written as follows.

Algorithm II

Step II-1: Compute the discriminant of h(ρ) with re-
spect to ρ. Compute the real roots αi of the discrim-
inant.

Step II-2: Choose arbitrarily a value between two con-
secutive αi and substitute α in h(ρ) by that value.

Execute Algorithm I to find out which root of h(ρ)
corresponds to ρopt.

6.3 Characterization of the Feedback Gain

Now consider the computation of the feedback gain F . To
this end the solution X∞ to the Riccati equation (13) is
constructed from g∞(s), as in the H2 problem stated in
Section 3, and it is shown that X∞ is also characterized
in terms of σ. So as to ensure the existence of the positive
semi-definite X∞, it is assumed that ρ ≥ ρopt throughout.

Again it is assumed that P (s) is given in controllable
canonical form. Also write X∞ as in the right hand side
of (8). First note that the characteristic polynomial of

A − ρBB∗X∞ (15)

is identical to g∞(s). Again, due to the special structure
of the matrices A and B arising from the controllable
canonical form assumption, it is easy to see that

A − ρBB∗X∞ =








−an−1 · · · −a1 −a0

1 · · · 0 0
..
.

. . .
..
.

0 · · · 1 0









− ρ









x1,1 · · · x1,n−1 x1,n

0 · · · 0 0
..
.

..

.
..
.

0 · · · 0 0









.

Notice thus that (15) is a companion matrix as well.
Therefore the following relationship can be observed:

{

ρx1,1 = σ − an−1 ,

ρx1,i = mn−i − an−i , i = 2, . . . , n .
(16)

The optimal feedback gain is the first row of X∞ and hence
it can be seen that the elements of the feedback gain matrix
can be characterized in terms of the SoR.

7. ILLUSTRATIVE EXAMPLE

This section demonstrates the developed approach by way
of the following numerical example:

P (s) = 1
s2+s+α

, α > 0 ,

where α is a parameter. For any value of α > 0, P (s) is
stable and hence ρopt < 0. Thus an investigation is made
on how the value of ρopt changes as α changes by means
of Algorithms O, I, and II. Algorithms O is executed first.

Step O-1: The state-space representation of P (s) in
controllable canonical form is given as

P (s) =

[

−1 −α 1
1 0 0

0 1 0

]

.

The associated Hamiltonian matrix is then

H∞ :=





−1 −α −ρ 0
1 0 0 0
0 0 1 −1
0 −1 α 0



 .

Its characteristic polynomial is

f∞(s) := det(sI − H∞) = s4 + (2α − 1)s2 + ρ + α2 .

Step O-2: Write g∞(s) as g∞(s) = s2 + σs + m0, and
compare the coefficients of the both sides of (1) to get

σ2 − 2m0 + 2α − 1 = 0 , m2
0 − ρ − α2 = 0 .

Then, Sf (σ) is obtained as

Sf (σ) = σ4 + (4α − 2)σ2 − 4ρ − 4α + 1 .

Take the discriminant of Sf (σ) with respect to σ and
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compute its square-free part to get

h(ρ) = (4ρ + 4α − 1)(ρ + α2) . (17)

Since this is a parametric case, Algorithm II is invoked.
Step II-1: Compute the square-free part of the discrimi-
nant of h(ρ) with respect to ρ:

2α − 1 . (18)

This suggests that, at α = 1
2 , the polynomial (17) has

multiple roots when seen as a polynomial in ρ. The two
roots of (17) are plotted against α in Fig. 2, which confirms
that (17) has multiple roots when α = 1

2 (= 0.5). For
other values of α, there are two distinctive roots. One
of the two roots is the true ρopt, which can be selected
based on Theorem 6. For each region, (0, 1

2 ) and ( 1
2 ,+∞),

it is invariant which root (the larger or the smaller)
corresponds to the true ρopt. Thus one has to choose a
sample point from each region and examine the two roots
of (17) in order to identify the true ρopt. Technically, (18)
helps to find out delineable regions. As is mentioned before
the approach is CAD [Collins, 1975] manually carried out.
Step II-2: Now that two parameter regions to be exam-
ined are identified, a sample point is selected from each
region and Algorithm I is then invoked. Here two values
of α, α = 1

5 (= 0.2), 4
5 (= 0.8), are investigated.

α = 1
5 :

Step I-1: In this case, (17) has two roots: ρ = 1
20 (=

0.05), − 1
25 (= −0.04).

Step I-2: There is only one root below 0 and it is
clear that the negative root corresponds to the true ρopt.
However here it is confirmed based on Theorem 6. Let
ρ = 1

25 (= 0.04). Then, Sf (σ) = σ4 − 6
5σ2 + 1

25 , and this

has 4 simple real roots, which concludes that ρopt < 1
25 .

Next let ρ = − 1
20 (= −0.05). Then, Sf (σ) = σ4 − 6

5σ2 + 2
5 .

This polynomial has no real root, i.e., ρopt > − 1
20 . These

facts conclude that ρopt = − 1
25 .

α = 4
5 :

Now consider the other region. This time, (17) has two
negative roots: ρ = − 11

20 (= −0.55), − 16
25 (= −0.64), and

thus the both roots are candidates for ρopt. The following
sample values of ρ are examined in turn: ρ = − 3

5 (=

−0.6), − 4
5 (= −0.8).

• ρ = − 3
5 : This case yields Sf (σ) = σ4 + 6

5σ2 + 1
5 .

This one has purely imaginary roots only and it can
be conclude that ρopt > − 3

5 . That is the larger root
of (17) corresponds to the true ρopt in the region
( 1
2 ,+∞) for α.

• ρ = − 4
5 : Just to make sure, this case is examined and

Sf (σ) = σ4 + 6
5σ2 + 1. Again this one has no real

roots, confirming that ρopt > − 4
5 .

The above examination allows one to draw the solid curve
in Fig. 2 for the true ρopt against α.

8. CONCLUDING REMARKS

This paper has considered the characterization of the solu-
tion to the parametric state feedback H∞ control problem
in terms of the sum of roots. An approach is developed
that can link the optimal performance level and also the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2
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α

ρ

Fig. 2. Roots ρ of (17) against α

optimal/sub-optimal feedback gain with plant parameters
by means of the sum of roots and the Gröbner basis
technique. In this way the sum of roots characterization
is shown possible to some H∞ control problem.

It is expected that optimization of the best performance
level over parameters can be formulated in an algebraic
manner, just as in the H2 control problem [Kanno et al.,
2007b]. Then the suggested approach would work as a
preprocessor to algebraic optimization methods such as the
one based on quantifier elimination [Weispfenning, 1997].
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