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Abstract: Potential function method has been used extensively to navigate robotic vehicles in the form of 
a closed-loop control law. One problem associated with the potential function method is the presence of 
local minima in the navigation space. This paper presents a novel approach of using switching in order to 
avoid the local minima and hence achieving global convergence to the desired configuration. This method 
is applied to electromagnetically actuated satellites formations having nonlinear dynamics and shown to 
achieve collision-free reconfiguration with a low computational burden. 

 

1. INTRODUCTION 

The Artificial Potential Function Method (APFM) is an 
algorithm that allows the guidance and control of 
autonomous vehicles with very little computational burden 
and hence is suitable for real-time control of complex 
systems such as a formation or swarm of robotic vehicles. 
This method is most popular for the terrestrial robotic 
trajectory planning and is based on the design of a potential 
function with a global minimum at the desired configuration 
of the system and maxima at the location of obstacles 
[Khatib, McInnes, Rimon]. This potential function is used to 
formulate a Control Lyapunov Function to generate a 
feedback control law that can reconfigure the system from a 
given initial state to a desired terminal state while avoiding 
collisions. The usefulness of this method stems from the fact 
that it combines the functions of guidance and control, with a 
low computational burden, and generates a feedback control 
law with robustness guarantees. 

Generally the motion planning algorithm can be divided into 
three distinct sections [LaValle]. Given the geometry of the 
vehicle formation, obstacles, initial state, and terminal state a 
collision free geometric curve is found in the “path-planning” 
part of the algorithm that completely ignores the dynamics of 
the formation. Secondly, given this collision free path, a 
reference trajectory is determined for the formation that is 
based on the time parameterization of the collision free path. 
This reference trajectory is such that the “dynamics” of the 
formation can actually execute it using trajectory following 
algorithms, which is the last piece of this algorithm. 

The feedback motion planning algorithm, on the other hand, 
combines all these functions and generates a feedback plan 
which produces control inputs for the vehicles in the 
formation for each state in the state space such that the 
formation reaches its desired or goal states. The Artificial 

Potential Function Method (APFM) generates the feedback 
plan by defining a potential function that has simultaneously 
the properties of a navigation function [LaValle] and a 
Lyapunov Function [Khalil]. The gradient of such a function 
defines a vector field that defines the descent directions 
towards the global minimum. Since we have maxima defined 
at the locations of obstacles, the vehicles avoid these 
obstacles automatically as they move along these descent 
directions. 

This formulation has at least three limitations. One well 
documented limitation is the existence of local minima in the 
potential function. One way of preventing local minima in the 
potential function is to construct the potential function in 
such a way that it has only one unique global minimum. See 
[LaValle] for one such method. Another method is to 
generate the potential function as a harmonic function which 
is the solution of Laplace’s equation [Conner]. It should be 
noted that all these methods require a-priori computation of 
the potential function over the geometry of the problem 
which may become computationally expensive for complex 
problems. This paper uses the hybrid system approach by 
adding an obstruction maneuvering term to the potential 
function gradient as explained in a later section. 

The second limitation of APFM is that it can result in the 
saturation of the actuators. Limited control authority implies 
that the desired acceleration at each point in the state-space 
must remain less than or equal to what the system can 
actually achieve. This can be ensured by appropriately 
shaping the potential function in the regions where the 
acceleration requirements might be higher due to larger 
position errors. 

The third limitation of the APFM method is that it generates 
non-optimal trajectories. For space missions, the optimality 
of the trajectories is very important since non-optimality 
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directly translates into penalties to the mass metric for the 
propulsion system. Nevertheless, from the point of view of 
the computational complexity, APFM is much more efficient 
as compared to optimal trajectory generation and 
implementation. Moreover, APFM can generate feasible 
trajectories that can be optimized by nonlinear optimization 
techniques. Thus feasible trajectories, for quite complex 
formation maneuvers, can be generated by APFM and used 
as initial starting guesses for the nonlinear optimizer.  

Electromagnetic Formation Flying (EMFF) is a novel 
concept for the control of satellite formations that uses high 
temperature superconducting (HTS) wire technology to 
create magnetic dipoles on each satellite in the formation to 
generate forces and torques in order to maintain and 
reconfigure the satellite formation. A steerable magnetic 
dipole on each satellite can be created by using three 
orthgonogal coils on each satellite in the formation. Force on 
each satellite in the formation can be applied in any arbitrary 
direction by using these steerable magnetic dipoles. Since 
these forces are internal, the center of mass of the formation 
cannot be moved (momentum is conserved). This can be 
easily seen for a two satellite formation in which each 
satellite experiences equal but opposite force due to magnetic 
dipoles on each satellite. Since satellite formation control 
involves controlling the relative positions between the 
satellites, the inability to move the center of mass of the 
formation is not a limitation in itself. See  [Kong], [Ahsun] for 
a more detailed introduction to the concept of EMFF. 

The rest of the paper is arranged as follows. Section 2 
presents in detail the reconfiguration algorithm and section 3 
presents some simulation results based on the algorithm. 

2. RECONFIGURATION OF EM FORMATIONS USING 
APFM 

The purpose of this section is to present an algorithm for the 
reconfiguration of a fully-actuated EM formation. In the 
reconfiguration problem, the formation needs to be 
reconfigured from a known initial state to a known terminal 
state while avoiding collisions, with the following 
assumptions: 

1. Well-posedness 
2. Full actuation 
3. Convex satellite shapes 
4. Perfect knowledge of full state and dynamics 
5. Perfect attitude control 

 
Well-posedness assumption is required since EM actuation 
cannot change the total linear momentum of the formation. 
Therefore, any formation reconfiguration problem that 
requires a net change in the formation linear momentum does 
not belong to well-posed problems for EMFF. This 
assumption also excludes formations that require satellites on 
top of each other and other such scenarios in both the initial 
and terminal conditions. Full actuation means that, in 3\ , 
each satellite has three orthogonal coils and three orthogonal 
reaction wheels, therefore enabling the control of all the 
relative degrees of freedom. Convex shape for the satellites is 

required since the obstruction functions used in the algorithm 
are elliposiodal. Although, the satellite itself can be of any 
shape, the reconfiguration problem assumes that the collision 
avoidance region is an ellipsoid centered at each satellite in 
the formation. Perfect knowledge of state and dynamics is 
assumed, nevertheless the algorithm is based on Lyapunov 
function which is inherently robust and the method will work 
for small uncertainties. Lastly, perfect attitude control is 
assumed to simplify the dipole solutions. 

Let the satellites in the formation be numbered from 0 to N-1. 
We can write the translational dynamics of the N-satellite EM 
formation, with respect to the formation center of mass, in an 
inertial frame as follows [Ahsun]: 

,
i i

i i i

p = v

v = f (p, v µ)

�

�
 (1) 

where 3 3 3 3: N N N× × →if \ \ \ \  represents the nonlinear 

dynamics of the ith satellite in the formation, ip  is the 

position vector of satellite-i, iv  is the velocity vector of 
satellite-i, p  is the position vector of the whole formation 
and µ  is the control vector of the whole formation. 

Define a scalar potential function for satellite-i with a unique 
global minimum (at the desired final configuration) as 
follows: 

( )
1

1 1
1 22 2

0,

( ) exp{ ( ) ( )}
N

T
i i i i i j i j

j j i

φ λ λ
−

= ≠

= + −∑Tp p M p p - p N p - p� �  (2) 

where: 0i i i= −p p p�  is the position error for the ith satellite 

0ip  = desired terminal location, Mi = a constant symmetric 
positive definite scaling matrix, 1 2, λ λ  = positive scaling 
constants for the obstruction function, N = a constant 
symmetric positive definite matrix for the obstruction 
function. Such a potential function for a four-satellite 
formation (in 2D) is shown in Figure 1. 

 

Fig. 1. A potential function for one satellite in a 4-satellite 
formation 

Using these N potential functions (one for each satellite in the 
formation), the formation Lyapunov Function can be written 
as follows: 
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where the Pi’s are symmetric, positive-definite scaling 
matrices. Note that the Lyapunov function does not include a 
potential function, of the form given by (2), for satellite-0. 
This is appropriate for EMFF since total linear momentum of 
the formation cannot be changed using EM actuation as 
discussed earlier. 

The time derivative of (3) can be written as: 

( )
1 1

1 0,

( , ) ( , )
N N

i i i i i i ij i j i j
i j j i

V O
− −

= = ≠

⎡ ⎤
⎢ ⎥= + + ∇ −
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where: 

{ }1 2 2

( , )

exp ( ) ( ) ( )     

ij i j

T T
i j i j i j

O

i jλ λ λ

∇ =

− − ≠

p p

p - p N p - p p - p N
 (5) 

is the gradient of the obstruction function of satellite-i due to 
satellite-j (note that in the above equation the gradient is 
defined as a row vector). From (5) it is clear that the gradient 
of the obstruction function is a skew-symmetric function, i.e.: 

( , ) ( , )     ij i j ji j iO O i j∇ = −∇ ≠p p p p  (6) 

Using the above relationship, (5) can be written as: 

1 1

0 0
1 0,

( , ) 2 ( )
N N

i i i i i i ij i i i
i j j i

V O O
− −

= = ≠

⎡ ⎤
⎢ ⎥= + + ∇ − ∇ +
⎢ ⎥⎣ ⎦

∑ ∑T Tv p v P v p M v v v v� ��  (7) 

As discussed in Section 1, the potential function defined by 
(7) can possibly have a thin set in the state-space where the 
satellites can get “stuck” in the local minima. Define a set iT  
for each satellite (except satellite-0) comprising of the 
neighborhoods of all such local minima as follows: 
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00
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where ( )iBε p  defines a sphere of radius 0 1ε< �  centered 
at ip , 3∈κ \  is defined below, and im  is mass of the ith 
satellite. In order to avoid the local minima, a hybrid 
switching1 control law for each satellite (except satellite-0) is 
defined as follows: 
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where Ki is a positive-definite control gain scaling matrix 
that may be dependent on the current state to tailor the 
descent rate according to the position and velocity of the 
satellite, iγ  is a positive scaling constant, and 3

imt ∈g \  is a 
unit vector orthogonal to the velocity of satellite-i: 
                                                 
1 See [Branicky] and [Haddad] for an introduction to hybrid 
and switched system stability theory. 

0,             1imt i imt= =g v gi  (11) 

The switching control law is defined such that if the satellite-i 
is not in the neighborhood of the local minima, i.e. not in the 
set iT , then control is computed according to (9), and if the 
satellite-i is in the set iT  then (10) is used. Note that if 
velocity of satellite-i is zero then the term imtg  is not well-
defined. This is the reason that the formations with their 
initial or terminal conditions at or near to the local minima of 
the potential function are not considered as well-posed for 
this algorithm. 

With this selection of the accelerations, the time derivative of 
the Lyapunov function can be written as: 

1 1 1

0 0
01 1 1

1( , )       if ,   1... 1
N N N

T
i i i i i i i i

i i i

V O m T i N
m

− − −

= = =

− − ∇ − ∉ = −∑ ∑ ∑Tv p = v K v v v κ p�  (12) 
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= = = ∈

− − ∇ − + ∀ ∈∑ ∑ ∑ ∑T Tv p = v K v v v κ v g p�  (13) 

where the index set I is defined such that it contains the 
indices of all the satellites for which the control law given by 
(10) is used. By construction, the obstruction maneuvering 
term imtg  is always orthogonal to the velocity of satellite iv , 
therefore the last term in  (13) is zero. Thus, in both the cases, 
the time derivative of the Lyapunov function becomes: 

1 1 1

0 0
01 1 1

1( , )
N N N

T
i i i i i i

i i i

V O m
m

− − −

= = =

− − ∇ −∑ ∑ ∑Tv p = v K v v v κ�  (14) 

Since the linear momentum of the EM formation is conserved 
in the absence of external perturbations, we have: 

1

0 0
1

N

i i
i

m m
−

=

= −∑ v v  (15) 

Using this relation, (14) can be written as: 

1 1

0 0 0
1 1

( , )
N N

T
i i i i

i i

V O
− −

= =

− − ∇ −∑ ∑Tv p = v K v v v κ�  (16) 

In order to make the Lyapunov function negative semi-
definite, the parameter κ  is chosen according to the 
following relation: 

1

0
1

N
T
i

i

O
−

=

= − ∇∑κ  (17) 

With this choice of κ , the time rate of change of the 
formation Lyapunov function becomes: 

1

( , ) 0
N

i i i
i

V
=

− ≤∑ Tv p = v K v�  (18) 

Note that if the controlled system were not a switched system 
then Lyapunov stability would follow from the negative 
semi-definiteness of (18). However, since the controlled 
system is switched, Lyapunov stability does not follow from 
the negative semi-definiteness of the individual Lyapunov 
functions (see Example 2.1 in [Branicky]). To prove stability 
for switched systems, an additional condition is required such 
that each individual Lyapunov function is strictly 
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monotonically non-increasing on the sequences of all the 
switching times (see Theorem 2.3 in [Branicky]). For the case 
of EMFF, the same Lyapunov function is used for both 
instances of the switched controlled system, i.e. with and 
without the obstruction maneuvering term. Equation (18) 
shows that this Lyapunov function is negative semi-definite 
for all times and in particular at any switching times that 
could occur. Therefore, the switched control system is stable 
in the sense of Lyapunov. To show asymptotic stability for 
well-posed formations, the Invariance Principle or LaSalle’s 
Theorem [Khalil], with additional conditions for asymptotic 
stability of switched dynamical systems [Li], [Bacciotti], will 
be used. 

The basic argument in LaSalle’s theorem is that if the global 
minimum is asymptotically stable then the formation cannot 
get “stuck” at any configuration other than the global 
minimum due to the inherent dynamics and control law 
formulation. Let 6[ ]T N= ∈x p v� \  be a point in the state-

space { }6NX = ∀ ∈x \ . Then by construction the Lyapunov 
function given by (3) is positive-definite in X. Define the set: 

{ }| ( , ) 0S X V= ∈ =x v p�  (19) 

as the set of points where the time derivative of the Lyapunov 
function is zero. According to LaSalle’s theorem, assuming 
that there are no accumulation points of switching times, all 
solutions in the state-space converge to the largest invariant 
set in the set of points where the time derivative of the 
Lyapunov function is zero, i.e. set S as defined above. To 
determine the largest invariant set in S, it can be seen from 
(18) that: 

( , ) 0           ( ) 0         ( ) 0         i iV t t i= ⇒ = ⇒ = ∀v p v v� �  (20) 

From the switched feedback control law, given by (9) and 
(10), zero velocity for all times implies that: 
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2 0     if 
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m
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j
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m
O O T

m
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−

=
≠

+ ∇ − ∇ + + = ∈∑M p κ g p�  (22)  

By construction, (21) is never satisfied except when 0i =p�  
(which is the desired equilibrium condition) otherwise if it is 
true for 0i ≠p�  then i iT X∈ ⊂p  which is a contradiction. In 
the neighborhood around the local minima, i.e. set iT , (22) is 
applicable and no value of i iT X∈ ⊂p  can satisfy this 
equation due to the obstruction maneuvering term i imtγ g  
which is added for this specific purpose. Thus, it can be seen 
that the velocity of all the satellites cannot be zero 
simultaneously and in particular, in the set kT  the velocity of 
the kth satellite would be nonzero, forcing the Lyapunov 
function to be strictly negative-definite and consequently 
decreasing from one switching time to the next. In summary 
due to the combination of the two facts namely, 

1. 0i =p�  is the only zero velocity solution of (21), 
2. Lyapunov function is strictly decreasing in between 

any possible switching times (see Theorem 2 in 
[Li]), 

the largest invariant set in the set S (19) is: 

{ }0E = p  (23) 

hence the formation converges to this set asymptotically for 
almost all initial conditions. 

In the above algorithm, it was assumed that the acceleration 
given by (9) and (10) can actually be realized by the EM 
actuation system. These equations are a set of 3N-3 nonlinear 
polynomial equations in an unknown dipole strength vector 
µ . The methods of solving this set of equations are discussed 
in [Ahsun] where it is shown that these can be solved 
efficiently in real-time. 

3. SIMULATION RESULTS 

In order to test the algorithm developed in the last section for 
the reconfiguration of general EM formations using APFM, a 
nonlinear simulation was built to simulate EM formations in 
2D. In all the results presented in this section, each satellite is 
assumed to have same mass of 30 kg and each coil is 
assumed to have a value of 100 turns-m2. 

First simulation result is presented for a five-satellite 
formation in which some of the satellites are already present 
at their final positions. Despite this fact, as fig. 2 shows, they 
move aside to give way to other satellites in such a way that 
the formation achieves its desired configuration. Figure 3 
shows the Lyapunov function values as a function of time for 
the formation and shows that although the Lyapunov function 
for an individual satellite may increase during the maneuver, 
the total formation Lyapunov function monotonically 
decreases for all times. 
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Fig. 2. Trajectories for the five-satellite formation 
reconfiguration. 
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Fig. 3. functions for the five-satellite formation. 

The second simulation result is presented for a four-satellite 
square formation with terminal conditions as mirror image of 
the initial conditions. The trajectories for the formation are 
shown in fig. 4, which shows that the satellites initially 
descend down the potential function and are repelled due to 
the obstruction functions and as a result approach the 
neighborhoods of the local minima. Due to the presence of 
obstruction maneuvering term in the controller, a circulation 
starts as an “emergent behavior” and formation reconfigures 
itself while avoiding the local minima. The Lyapunov 
function of the formation is given in fig. 5 and again shows 
that the total formation Lyapunov function is monotonically 
decreasing for all times. 
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Fig. 4. Trajectories for the four-satellite square formation 
reconfiguration. 
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Fig. 5. function for the four-satellite square formation. 

 

 

 

4. CONCLUSIONS 

This paper has presented a switching control law that can be 
used for closed-loop navigation of a formation or swarm of 
vehicles using potential functions. Although the method was 
used to reconfigure electromagnetic satellite formations, the 
method is applicable in general to fully-actuated non-
holonomic robots having nonlinear dynamics. This method 
can be used to generate feasible trajectories for 
reconfiguration of formations and an optimizer can optimize 
these trajectories. Potential function shaping [Ahsun] can be 
used to reduce the sub-optimality of the trajectories generated 
by this algorithm.  
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