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Abstract: The following major aspects of the problem of Input–Output Triangular Decoupling (TD) for 
general neutral multi–delay systems, via proportional realizable state feedback, are resolved for the first 
time: The necessary and sufficient conditions for the problem to have a realizable solution and the general 
analytical expressions of the proportional realizable TD controller matrices. The conditions and the 
solution of the controller matrices are computed using a finite step pure algebraic approach. 

 

1. INTRODUCTION 

1.1 Time delay systems 

Time delay systems are of great importance particularly in 
describing complex and/or distributed processes, where 
transition phenomena (mass/energy transfer) take place, as 
well as distributed manufacturing systems (Gu et al.,2003). 
Here we study the general class of linear neutral multi–delay 
differential systems 
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where ( ) nx t ∈ \  denotes the vector of state variables, 

( ) mu t ∈ \  the vector of control inputs, ( ) my t ∈ \  the 

vector of performance outputs, iτ  ( 1, ,i q= … ) are positive 

real numbers denoting point delays, and ,j iq  ( 01, ,j q= … ; 

1, ,i q= … ) is a finite sequence of integers with regard to i  
and j . The quantities q  and 0q  are positive integers. Clearly, 

if the quantity ,
1

q

j i i
i

q τ
=
∑  is negative then it denotes prediction. 

The real matrices jE� , jA� , jB�  have n  rows while the real 

matrices jC , jC�  have m  rows. Without loss of generality, 

the delays 1, , qτ τ ∈… \  are considered to be rationally 

independent (Koumboulis et al., 2005), namely linearly 
independent among themselves over the field of rational 
numbers, i.e. there are no rational numbers (dependence 
coefficients) expressing one delay as a linear combination of 
the others. If the delays were not rationally independent, 
namely one delay was linearly dependent to the others then, 

after dividing each independent delay by the denominator of 
the respective dependence coefficient (rational number), a 
new set of independent delays would occur. So, the 
dependent delay could be substituted by a combination (via 
integer coefficients) of the new independent delays, thus 
yielding an equivalent description of system (1) involving at 
the most 1q −  delays. If there were more than one 
dependent delays then a number of dependence relations 
would occur. In this case each independent delay should be 
divided by the least common multiplier of the denominators 
of the dependence coefficients (rational numbers) multiplying 
the particular independent delay in the dependence relations. 
This way a new set of independent delays is derived. For the 
special case of rationally dependent delays where all delays 
are multiple of one, with dependence coefficients being 
integers, the delays are called commensurate (Jacubow and 
Bayoumi, 1977). Note that for the special case where 

1 nE I=� , 0jE =�  ( 1j ≠ ), 1 mC I= , 0jC =  ( 1j ≠ ), 

1q =  and ,1 1jq j= −  the case of retarded delay systems is 

derived (Jacubow and Bayoumi, (1977), Rekasius and 
Milzarek, (1977), Kono, (1983), Liu, (1989), Sename and 
Lafay, (1993), Sename et al. (1995), Sename and Lafay, 
(1997)), where kI  is the k –dimensional unitary matrix. For 

the special case where 1q =  and ,1 1jq j= −  with 1 nE I=�  

and 1 mC I=  the standard category of neutral delay systems 

is derived, see (Picard et al., 1998). The  case of regular 
systems without delays is also covered by the description in 

(1) with ,1 0jq = , 1 nE I=� , 0jE =�  ( 1j ≠ ), 0jA =�  

( 1j ≠ ), 0jB =�  ( 1j ≠ ), 1 mC I= , 0jC =  ( 1j ≠ ), 

0jC =�  ( 1j ≠ ).  

In the frequency domain the forced behavior of the system 
(1) is governed by the following algebraic system of 
equations  
 

( ) ( ) ( )( ) ( ) ( )sE X s A X s B U s= +-sT -sT -sTe e e�� �                   (2a) 

( ) ( )( ) ( )C Y s C X s=-sT -sTe e�                                              (2b) 
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where, ( ) ( ){ } X s x t−= L , ( ) ( ){ } U s u t−= L ,  

( ) ( ){ } Y s y t−= L  with { }
 − •L  denoting the Laplace 

transform of the argument signal, while 
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and where 1 qτ τ⎡ ⎤= ⎢ ⎥⎣ ⎦T " , 

( ) ( )1exp exp qs sτ τ⎡ ⎤= − −⎢ ⎥⎣ ⎦
-sTe " , where [ ]

[ ]exp e ⋅⋅ =  

denotes the exponential of the argument quantity. The 

elements of the matrices ( )E -sTe� , ( )A -sTe� , ( )B -sTe� , 

( )C -sTe  and ( )C -sTe� , are multivariable polynomials of 

1 , , qsse e ττ −− …  (or more compactly of -sTe ). It is important to 
note that a characteristic of general neutral time delay 

systems is (Picard et al., 1998) ( )det 0E⎡ ⎤ ≡/⎢ ⎥⎣ ⎦
-sTe�  and 

( )det 0C⎡ ⎤ ≡/⎢ ⎥⎣ ⎦
-sTe . Hence, the algebraic system of equations 

(2) may equivalently be written as 
 

( ) ( )( ) ( ) ( )sX s A X s B U s= +-sT -sTe e                                 (3a) 

( )( ) ( )Y s C X s= -sTe                                                           (3b) 

 
Where 
 

( ) ( ) ( )
1

A E A
−⎡ ⎤= ⎢ ⎥⎣ ⎦

-sT -sT -sTe e e�� , 

( ) ( ) ( )
1

B E B
−⎡ ⎤= ⎢ ⎥⎣ ⎦

-sT -sT -sTe e e� � , 

( ) ( ) ( )
1

C C C
−⎡ ⎤= ⎢ ⎥⎣ ⎦

-sT -sT -sTe e e� .  

 
The elements of ( )A -sTe , ( )B -sTe  and ( )C -sTe , are 

multivariable rational functions of 1 , , qsse e ττ −− …  (or more 

compactly of -sTe ). ( )e
-sTe\  denotes the set of these 

multivariable rational functions 

1.2 Proportional feedback time delay controller 

Several types of controllers involving time delays have been 
proposed in the literature. Here we focus on frequency 

domain controllers. One general class of controllers is that of 
a static feedback where the elements of the feedback matrices 
belong to the field of rational functions of the delay operator, 
which may or may not require prediction (Jacubow and 
Bayoumi, (1977), Rekasius and Milzarek, (1977)). The 
controller is static in the sense that it does not incorporate 
derivatives of the variables to be measured or of the external 
command. Another class is that of static feedback with 
elements over the ring of polynomials of the delay operator 
which of course does not require any prediction (Kono, 
(1983), Liu, (1989), Sename and Lafay, (1993), Conte et al., 
(1998), Conte and Perdon., (1998)). A third class of feedback 
laws is a static feedback with elements over the field of 
rational functions of the delay operator restricted not to be 
predictive (Koumboulis et al., (2005), Jacubow and Bayoumi, 
(1977), Sename et al., (1995), Sename and Lafay, (1997), 
Koumboulis and Panagiotakis, (2005)). Also dynamic 
feedback laws have been proposed in the literature (Kono, 
(1983), Liu, (1989), Picard et al., (1998), Conte et al., 
(1998)). The elements of the feedback matrices are proper 
rational functions of the complex variable with coefficients 
being rational functions (Picard et al., 1998) or polynomials 
(Kono, (1983), Liu, (1989), Conte et al., (1998)) of the delay 
operator. In the case of coefficients being rational functions 
of the delay operator the realizability of the controller is 
guaranteed through the properness with regard to the delay 
operator. It is important to mention that the aforementioned 
classes of time delay feedback laws have been used to control 
retarded systems (Jacubow and Bayoumi, (1977), Rekasius 
and Milzarek, (1977), Kono, (1983), Liu, (1989), Sename and 
Lafay, (1993), Sename et al., (1995), Sename and Lafay, 
(1997), Conte et al., (1998), Conte and Perdon., (1998)), 
while others have been used to control neutral systems 
(Jacubow and Bayoumi, (1977), Picard et al., (1998)).  
Here we consider the most general class of proportional 
controllers, not involving continuous time dynamics, but 
involving delays (i.e. “discrete time dynamics” of the delays 

1 qτ τ" ) to be 

 
( ) ( )( ) ( ) ( )U s F X s G s= + Ω-sT -sTe e                                     (4) 

 
where ( )sΩ  is the Laplace transform of the 1m×  vector of 

external inputs ( )tω  and where the elements of ( )F -sTe  and 

( )G -sTe  are multivariable rational functions of 1 , , qsse e ττ −− …  

(or more compactly of -sTe ). It is noted that even though the 

elements of the matrices ( )A -sTe , ( )B -sTe  and ( )C -sTe  are 

not restricted to be realizable rational functions of 
1 , , qsse e ττ −− … , the implementability of the controller requires 

that the elements of ( )F -sTe  and ( )G -sTe  must be realizable 

(i.e. ( )lim :
s
s

F
+

→∞
∈

⎡ ⎤⎢ ⎥⎣ ⎦
-sTe

\

finite and  ( )lim :
s
s

G
+

→∞
∈

⎡ ⎤⎢ ⎥⎣ ⎦
-sTe

\

finite). Finally 

to ensure the independence of the external inputs the 

following necessary condition is derived ( )det 0G⎡ ⎤ ≡/⎢ ⎥⎣ ⎦
-sTe . 
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1.3 Problem Formulation 

Here, the design goal is that of I/O Triangular Decoupling 
(TD), namely to derive a closed loop system with triangular 
and invertible transfer function matrix. The TD problem is 
formally stated as follows 
 

( ) ( ) ( ) ( )
( ) ( ) ( ){ }

1

,                triang ,

n

i j

C sI A B F

B G h s

−⎡ ⎤− −⎢ ⎥⎣ ⎦

× =

-sT -sT -sT -sT

-sT -sT -sT

e e e e

e e e
     (5) 

 

( ), , 0i ih s ≡/-sTe   ( 1, ,i m= … ). Here, { }triang •  denotes an 

m m×  lower triangular matrix with elements belonging to a 
field or a vector space. The ( , )i j  element of this matrix is 

equal to zero if i j< . Hence, it holds  
 

( ){ }
( )

( ) ( ) ( )

1,1

,

,1 ,2 ,

, 0 0

triang , 0

, , ,

i j

m m m m

h s

h s

h s h s h s

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

-sT

-sT

-sT -sT -sT

e

e

e e e

"

# # %

"
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The elements of the triangular matrix in (5) belong to 

( ),e s
-sTe\ , i.e. they are rational functions of s  with 

numerator and denominator polynomials having coefficients 
that they are multivariable rational functions of -sTe .  It is 
reminded that even though the elements of the matrices 

( )A -sTe , ( )B -sTe , ( )C -sTe  and ( ), ,i jh s -sTe ( i j≤ ) are not 

restricted to be realizable rational functions of 1 , , qsse e ττ −− … , 
the implementability of the controller requires that the 

elements of ( )F -sTe  and ( )G -sTe  must be realizable (i.e. 

( )lim :
s
s

F
+

→∞
∈

⎡ ⎤⎢ ⎥⎣ ⎦
-sTe

\

finite and  ( )lim :
s
s

G
+

→∞
∈

⎡ ⎤⎢ ⎥⎣ ⎦
-sTe

\

finite). 

TD is a very attractive design problem (Wang, (1972), 
Descusse and Lizarzaburu, (1979), Koumboulis et al., (1991), 
Koumboulis, (1996)). It appears to have some of the 
advantages of diagonal decoupling. One of these is that each 
output is still controlled by only one external input. 
Furthermore, TD has the distinct advantage of being 
applicable to a wider class of systems as compared to that of 
diagonal decoupling. For time delay systems TD has not as 
yet been studied. For the special case of commensurate 
retarded delay systems the diagonal decoupling problem has 
been studied (indicatively see the results in (Rekasius and 
Milzarek, 1977), (Sename and Lafay, 1997)). For diagonal 
decoupling of standard neutral commensurate delay systems 
of standard form, some first results have been presented in 
(Jacubow and Bayoumi, 1977). In (Conte et al., 1998) and 
(Conte and Perdon., 1998) the diagonal decoupling problem 
has been studied for normal systems with system and 
controller matrices having their elements in a Noetherian 
ring. In (Paraskevopoulos et al., 2005) the combined problem 
of diagonal decoupling with disturbance rejection has been 
studied for general neutral multi–delay differential systems. 
Before closing the presentation of results for diagonal 

decoupling, it is important to mention that all the 
aforementioned results focus towards a realizable controller, 
namely a controller not involving predictions. 
Here, the TD problem of general neutral multi–delay 
systems, via proportional realizable state feedback is studied 
for the first time. Using a new algebraic technique providing 
simple and elegant results, the necessary and sufficient 
solvability conditions for the problem to have a solution are 
established and the general solution of the realizable 
controllers solving the problem is derived. 

2. PRELIMINARY DEFINITIONS 

A multivariable rational function of 

( ) ( )1exp , , exp qs sτ τ− −…  is realizable (Rekasius and 

Milzarek, (1977), Kono, (1983)) if no predictors are required 
for its realization, i.e. the limit of the rational function, for 
s being a positive real number and for s  tending to infinity, 
is finite. The set of multivariable realizable rational functions 

of ( ) ( )1exp , , exp qs sτ τ− −… , denoted by ( )r
-sTe\ , is 

clearly a ring. 
Lemma 2.1 (Koumboulis et al., 2005): Let 

( ) ( )e

α β×⎡ ⎤Θ ∈ ⎢ ⎥⎣ ⎦
-sT -sTe e\  be of full row rank over ( )e

-sTe\ , 

then there exist two invertible matrices, let ( )MΘ -sTe  and 

( )ΞΘ -sTe , with ( )ΞΘ -sTe  bi–realizable, i.e. ( )ΞΘ -sTe  is 

realizable ( ( ){ }lim :
s
s +

Ξ→∞
∈

Θ -sTe
\

finite) and ( )
1−

Ξ
⎡ ⎤Θ⎢ ⎥⎣ ⎦

-sTe  is 

realizable ( ( ){ }1
lim :
s
s +

−

Ξ→∞
∈

⎡ ⎤Θ⎢ ⎥⎣ ⎦
-sTe

\

finite), having the property  

( ) ( ) ( ) 0M aIΞ
⎡ ⎤Θ Θ Θ = ⎢ ⎥⎣ ⎦

-sT -sT -sTe e e .                            � 

Explicit formulae for ( )MΘ -sTe  and ( )ΞΘ -sTe  are given in 

(Koumboulis et al., 2005). The above transformation, being 
of great importance for the study of realizability issues for 
time delay systems, is called right bi–realizable unitarizing 
transformation (Koumboulis et al., 2005). The matrices 

( )MΘ -sTe  and ( )ΞΘ -sTe  are called (Koumboulis and 

Panagiotakis, 2005) the Left and the Right Multiples with 
regard to the Right birealizable unitarizing transformation of 

the full row rank, over ( )e
-sTe\ , matrix ( )Θ -sTe and they are 

denoted by ( ){ }LMR Θ -sTe  and ( ){ }RMR Θ -sTe , 

respectively. 
Following the definition of the LMR and the RMR of a full 
row matrix, the Left and the Right Multiples of a full column 

rank matrix (over ( )e
-sTe\ ), coming from a Left Bi–

realizable Unitarizing Transformation, denoted by 

{ }LML • and { }RML • respectively (with { }LML •  being 
bi–realizable) can be defined. Hence, for the full column rank 

matrix ( )ΤΘ -sTe , we may define 
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( ){ } ( )
0

LML
0

I

I

β α

α

−Τ Τ
Ξ

⎡ ⎤
⎢ ⎥Θ = Θ⎢ ⎥
⎢ ⎥⎣ ⎦

-sT -sTe e  and 

( ){ } ( )RML M
Τ ΤΘ = Θ-sT -sTe e . Then, it holds that 

( ){ } ( ) ( ){ }T T T
0

LML RML
aI

⎡ ⎤
⎢ ⎥Θ Θ Θ = ⎢ ⎥
⎢ ⎥⎣ ⎦

-sT -sT -sTe e e . 

3. SOLUTION OF THE TD PROBLEM VIA 
CONTROLLERS POSSIBLY INVOLVING PREDICTORS 

From the definition of the problem, namely from the design 
equation (5), it can readily be concluded that the system (3) 
must be invertible i.e. the following necessary condition must 

be satisfied ( ) ( ) ( )
1

det 0nC sI A B
−⎡ ⎤⎡ ⎤− ≡/⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sTe e e . Then, 

following the methodology presented in (Koumboulis, 1996) 
for systems without delays and based on the necessary 

condition ( ) ( ) ( )
1

det 0nC sI A B
−⎡ ⎤⎡ ⎤− ≡/⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sTe e e , leading 

to the condition ( ) ( ) ( )
1

1 0nc sI A B
−⎡ ⎤− ≡/⎢ ⎥⎣ ⎦

-sT -sT -sTe e e , the 

following definitions can be introduced  
 

( ) ( ) { }{ }( )
1 1min : 0,  0,1,..., 1jj c B j nρ = ≡/ ∈ −-sT -sTe e , 

( ) ( )1( )
1 1C c ρ∗ =-sT -sTe e ,

( ) ( ) ( )( )
1 1   ( 0,1,..., 1)

jjc c A j n⎡ ⎤= = −⎢ ⎥⎣ ⎦
-sT -sT -sTe e e  

 
where, ( )ic

-sTe  is the thi −  row of ( )C -sTe  ( 1,..., )i m= . 

Clearly it holds that ( ) ( )1rank 1e C B∗⎡ ⎤ =⎢ ⎥⎣ ⎦
-sT -sTe e  and 

( ) ( ) ( )

( ) ( ) ( )

1

1

e 1

2

Rank 2
n

n

C sI A B

c sI A B

−∗

−

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ =
⎢ ⎥⎡ ⎤−⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sT

-sT -sT -sT

e e e

e e e
, where the 

operator [ ]ranke ⋅  denotes the rank of the argument matrix 

over the field ( )e
-sTe\  and where [ ]Ranke ⋅  denotes the 

rank of the argument matrix over the field ( ),e s
-sTe\ . The 

respective definitions for 2,...,i m=  will be presented 
inductively, following the respective definitions in 
(Koumboulis, 1996). If 
 

( ) ( )1rank 1e iC B i∗
−

⎡ ⎤ = −⎢ ⎥⎣ ⎦
-sT -sTe e , ( 2,..., )i m=  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

eRank

i n

i n

m n

C sI A B

c sI A B
m

c sI A B

−∗
−

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤−⎢ ⎢ ⎥ ⎥⎣ ⎦ =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤−⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sT

-sT -sT -sT

-sT -sT -sT

e e e

e e e

e e e

#
,  

( 2,..., )i m=  

we may define for 2,...,i m=  

( )
( )

( )

1( )
1

( )i

i

i

c

C

c

ρ

ρ

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

-sT

-sT

-sT

e

e

e

# , 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
1 1

1

1 1                

i i

i i

N C B

C B C B

Τ∗
− −

−Τ∗ ∗
− −

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤× ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-sT -sT -sT

-sT -sT -sT -sT

e e e

e e e e
 

( ) ( )(0)  i ic c=-sT -sTe e  

( ) ( ) ( ) ( ) ( )
( )

( ) ( 1)
1 1

                                             ( 1,2,...)

j j
i i m i ic c I B N C

A j

− ∗
− −

⎡ ⎤= −⎢ ⎥⎣ ⎦
× =

-sT -sT -sT -sT -sT

-sT

e e e e e

e
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

{ }

1

( )

1

( )

min : rank , 0, , 1

1 rank 1,

                                              0,..., 1

i

e j
i

i

i

e j
i

C B
j i j n

c B

C B
n if i

c B

j n

ρ

∗
−

∗
−

⎧ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪= = −⎪ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪⎪ ⎪⎣ ⎦⎩ ⎭

= ⎨ ⎡ ⎤
⎢ ⎥− = −⎢ ⎥
⎢ ⎥
⎣ ⎦

∀ ∈ −

-sT -sT

-sT -sT

-sT -sT

-sT -sT

e e

e e

e e

e e

…
⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 
Based on the above definitions and similarly to (Koumboulis, 
1996) the following properties can readily be proven  
 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

,

                   

n

m n

M s C sI A B

C sI A B

−

−∗

⎡ ⎤−⎢ ⎥⎣ ⎦
⎡ ⎤= −⎢ ⎥⎣ ⎦

-sT -sT -sT -sT

-sT -sT -sT

e e e e

e e e
      (7a) 

 
( ) ( )ranke mC B m∗⎡ ⎤ =⎢ ⎥⎣ ⎦
-sT -sTe e                                         (7b) 

 

where ( ) ( )
1

1 0

, ,
im

ij
i j

M s M s
ρ −

= =

=∏∏-sT -sTe e  and where 

( ) ( )
-1-1

( )

- -

0 00 0

, 0 0 1 0

0 0 0 0

ii

j
ij i

m i m i

II

M s s c

I I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-sT -sTe e ;  

( ) ( ) ( ) ( )( ) ( )
1

j j
i i ic c B N −=-sT -sT -sT -sTe e e e . 

 
For the special case where 0iρ =  the following expression 

is derived 

( )
1

0

,
i

ij m
j

M s I
ρ −

=

=∏ -sTe  

Using (7a), the equation (5) can be expressed more 
compactly as follows  
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ){ }

1

,                                  , triang ,

m n

i j

C sI A B F B G

M s h s

−∗ ⎡ ⎤− −⎢ ⎥⎣ ⎦

=

-sT -sT -sT -sT -sT -sT

-sT -sT

e e e e e e

e e

; ( ), , 0i ih s ≡/-sTe                                                                  (8) 

 
Define 
 

( ) ( )

( ) ( ) ( ) ( ) ( )
1

            

C

m m

A A

B C B C A
−∗ ∗

=

⎡ ⎤− ⎢ ⎥⎣ ⎦

-sT -sT

-sT -sT -sT -sT -sT

e e

e e e e e
 

( ) ( ) ( ) ( )
1

mB C B
−∗⎡ ⎤Δ = ⎢ ⎥⎣ ⎦

-sT -sT -sT -sTe e e e  

Note that  

( ) ( ) ( )
1

m
m n C

I
C sI A

s

−∗ ⎡ ⎤− Δ =⎢ ⎥⎣ ⎦
-sT -sT -sTe e e  

Also define  

( ) ( ) ( ) ( )c mG C B G∗=-sT -sT -sT -sTe e e e                                 (9a) 

( ) ( ) ( ) ( ) ( ) ( )* *
c m mF C B F C A= +-sT -sT -sT -sT -sT -sTe e e e e e   (9b) 

( ) ( ) ( ){ }
1

,, , triang ,i jP s sM s h s
−⎡ ⎤= ⎢ ⎥⎣ ⎦

-sT -sT -sTe e e                (9c) 

 
Making use of the definitions following (8) the design 
equation (8) takes the following equivalent form 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

,

0

m n C

n C

sP s C sI A

sI A

−∗

−

⎡ ⎤− Δ⎢ ⎥⎣ ⎦
⎡ ⎤−Γ +Φ − Δ⎢ ⎥⎣ ⎦

-sT -sT -sT -sT

-sT -sT -sT -sT

e e e e

e e e e =
          (10) 

where 

( )
( )

( )
( )

1

1

c

m

G

γ

γ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥Γ = = ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

-sT

-sT -sT

-sT

e

e e

e

#                                  (11a) 

( )
( )

( )
( ) ( )

1

1
 c c

m

G F

ϕ

ϕ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥Φ = = ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

-sT

-sT -sT -sT

-sT

e

e e e

e

#                 (11b) 

 
From (10) and the condition ( ) ( )det 0mC B∗⎡ ⎤ ≡/⎢ ⎥⎣ ⎦

-sT -sTe e , it is 

observed that ( ),P s -sTe  is a proper matrix with regard to s . 

The quantity in the left–hand side of (10) is a rational 
function of s  with coefficients rational functions of 

( ) ( )1exp exp qs sτ τ− −" . With respect to s  the order of 

this rational function is n . Making use of the fact that s  and 

( ) ( )1exp exp qs sτ τ− −"  are independent functions it is 

concluded that the quantity in the left–hand side of (10) is 
equal to zero if and only if the first n  coefficients of its 

expansion in negative power series of s , being rational 

functions of ( ) ( )1exp exp qs sτ τ− −" , are equal to zero.  

Making use of this last remark the following equations 
governing the general form of the controller matrices 
proposed in (Koumboulis, 1996) are derived 
 

( ) ( ) ( ) ( )0, ,1 0, ,2 0, , 1 ( ), , , , 0i i i i i m ip p pγ × −
⎡ ⎤= ⎢ ⎥⎣ ⎦

-sT -sT -sT -sTe e e e"  
                                                               ( 1, ,i m= … )     (12a) 

( ) ( ) ( ) ( ) ( ) ( )
1

0
n

i i C i C iA Aϕ
−⎡ ⎤⎡ ⎤Δ Δ Δ =⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sT -sT -sT -sTe e e e e e"

                                                               ( 1, ,i m= … )     (12b)  
 
where ( ), ,k i jp

-sTe  is the ij th−  element of the lower 

triangular matrix ( )kP
-sTe  0,...,2k n=  and 

( ) ( ) ( )0 1
0 1,P s P s P s−= + +-sT -sT -sTe e e … ,  and where 

( ) ( ) ( ) ( )1 2i i i mδ δ δ+ +
⎡ ⎤Δ = ⎢ ⎥⎣ ⎦

-sT -sT -sT -sTe e e e"  with 

( )iδ
-sTe  denoting the i − th column of the matrix ( )Δ -sTe .  

The invertibility of ( )Γ -sTe coming from the problem 

definition is now translated to ( )0, , 0i ip ≡/-sTe  ( )1,...,i m= . 

The solution of the controller matrices proposed in 
(Koumboulis, 1996) does not facilitate the derivation of the 
conditions under which there exist realizable controllers 
solving the problem. To circumvent this difficulty, an 
alternative general solution possibly involving predictors is 
proposed.  

To derive the new general solution of ( )iϕ
-sTe  the following 

definitions are made: 
 

( ) ( ) ( ) ( ) ( )
1

rank

i

n

i C i C i

n

A A

σ
−

=

⎡ ⎤⎡ ⎤− Δ Δ Δ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
-sT -sT -sT -sT -sTe e e e e"

 

                                                                ( 0,1,..., 1i m= − ) , 
m nσ =  

The controllability indices of ( ) ( )( ), CA Δ-sT -sTe e , from m  

to 1 , are denoted by iυ  ( 1-i i iυ σ σ −= ; 1,...,i m= ). Since 

( ) ( )m mC I∗ Δ =-sT -sTe e  it is observed that 1iυ ≥  

( 1,...,i m= ). Furthermore, it can readily be observed that 

1i i mnσ υ υ+= − − −"  ( 0,..., 1i m= − ). Define  

 

( ) ( ) ( ) ( )
1i

i i C iR A
υ

δ δ
−⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sT -sTe e e e"  

 ( 1,..., )i m=  

( )
( ){ } ( ){ }

2

2LML 0 LML 0

0 0
m

m

n n

S S
S

I Iσ σ− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-sT -sT

-sT
e e

e "  

where 
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( ) ( )  m mS R=-sT -sTe e  

( ) ( ) ( ) ( )1 ,  ( 1, ,1)i i m iS R i m+= Π Π = −-sT -sT -sT -sTe e e e" …

 
and where 
 

( ) ( ){ }
1 1 1( )0 LML

i i ii n iI Sσ σ σ− − −× −
⎡ ⎤Π = ⎢ ⎥⎣ ⎦

-sT -sTe e ( ,...,1)i m=  

 
It can readily be observed that ( )S -sTe  is the product of bi–

realizable matrices. Using all above definitions the following 
theorem will be established. 
Theorem 3.1: The TD problem is solvable if the condition 

( ) ( ) ( )
1

det 0nC sI A B
−⎡ ⎤⎡ ⎤− ≡/⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sTe e e  is satisfied, and 

the general analytic expressions of the proportional controller 
matrices possibly involving predictions are: 
 

( ) ( ) ( ) ( ){ }
11

0, ,triangm i jG C B p
−−∗ ⎡ ⎤⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-sT -sT -sT -sTe e e e    (13a) 

( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( ){ }

1*

*
0 ,triang

m

i j m

F C B

Q q S C A

−⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤× −⎢ ⎥⎣ ⎦

-sT -sT -sT

-sT -sT -sT -sT -sT

e e e

e e e e e
 

(13b) 

where the only free parameters are the elements of the 

arbitrary matrix ( ) ( ) 01

0 eQ
σ×⎡ ⎤∈ ⎢ ⎥⎣ ⎦

-sT -sTe e\ , the scalars 

( )0, ,i jp
-sTe  ( 1,2,...,   1,..., )i m j i= =  (being arbitrary over 

( )e
-sTe\  with the restriction ( )0, , 0i ip ≡/-sTe ) and the vectors 

( ) ( )
1

,

j

i j eq
υ×⎡ ⎤∈ ⎢ ⎥⎣ ⎦

-sT -sTe e\  ( 1,2,...,   1,..., )i m j i= =  with 

arbitrary elements over ( )e
-sTe\ . 

Proof: From (12a) and (11a) the general solution for 

( )cG
-sTe is ( ) ( ){ }

1

0, ,triangc i jG p
−⎡ ⎤= ⎢ ⎥⎣ ⎦

-sT -sTe e . Substituting 

this last relation in (9a) formula (13a) is proven to be the 

general solution for ( )G -sTe . Regarding the general solution 

for ( )F -sTe  we will first determine the general solution for 

( )iϕ
-sTe , 1,...,i m= . Equation (12b) can be reduced as 

follows  
 

( ) ( ) ( ) ( )1 2 0 i i i mR R Rϕ + +
⎡ ⎤ =⎢ ⎥⎣ ⎦

-sT -sT -sT -sTe e e e"  

                                                                       ( 1,..., 1i m= − ) 

while the solution for ( )mϕ
-sTe  is given by the relation  

( ) ( ) ( ) ( ),0 ,1 ,m m m m mϕ τ τ τ⎡ ⎤= ⎢ ⎥⎣ ⎦
-sT -sT -sT -sTe e e e"   

where ( ) ( )
1

,

j

m j e

υ
τ

×⎡ ⎤∈ ⎢ ⎥⎣ ⎦
-sT -sTe e\  ( 1,2,..., )j m=  and 

( ) ( ) 01

,0m e

σ
τ

×⎡ ⎤∈ ⎢ ⎥⎣ ⎦
-sT -sTe e\  are arbitrary row vectors over 

( )e
-sTe\ . Using the definitions just before Theorem 3.1 the 

general solution of ( )iϕ
-sTe  is expressed for 1,..., 1i m= −  

as follows  
 

( ) ( ) ( ) ( ),0 ,1 , | 0 0i i i i iϕ τ τ τ⎡ ⎤= ⎢ ⎥⎣ ⎦
-sT -sT -sT -sTe e e e" "

( ){ } ( ){ }

1

1LML 0 LML 0
 

0 0
i m

i m

n n

S S

I Iσ σ+

+

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥×
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-sT -sTe e
"  

where ( ) ( )
1

,

j

i j e

υ
τ

×⎡ ⎤∈ ⎢ ⎥⎣ ⎦
-sT -sTe e\ ( 1,... 1;  1,..., )i m j i= − =  

and ( ) ( ) 01

,0i e

σ
τ

×⎡ ⎤∈ ⎢ ⎥⎣ ⎦
-sT -sTe e\ ( 1,... 1)i m= −  are arbitrary. 

The arbitrary vector 

( ) ( ) ( ),0 ,1 ,ˆ ˆ ˆ | 0 0i i i iq q q⎡ ⎤
⎢ ⎥⎣ ⎦

-sT -sT -sTe e e" "  for 

1,..., 1i m= −  and i m=  is defined to be  
 

( ) ( ) ( ),0 ,1 , | 0 0i i i iτ τ τ⎡ ⎤ =⎢ ⎥⎣ ⎦
-sT -sT -sTe e e" "  

 

( ) ( ) ( )

( ){ } ( ){ }

2

,0 ,1 ,

2

ˆ ˆ ˆ | 0 0

LML 0 LML 0

0 0
i

i i i i

i

n n

q q

S S

I Iσ σ− −

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥×
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-sT -sT -sT

-sT -sT

e e q e

e e

" "

"
 

( ) ( ) ( )

( ) ( ) ( ) ( )

,0 ,1 ,

,0 ,1 ,ˆ ˆ ˆ

m m m m

m m m mq q q

τ τ τ⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦

-sT -sT -sT

-sT -sT -sT -sT

e e e

e e e S e

"

"
.  

 
Substitution of the general solution  
 

( ) ( ) ( ){ } ( )0 ,
ˆ ˆtriang i jQ q S⎡ ⎤Φ = ⎢ ⎥⎣ ⎦

-sT -sT -sT -sTe e e e   

( where ( )
( )

( )

1,0

0

,0

ˆ

ˆ

m̂

q

Q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

-sT

-sT

-sT

e

e

e

#  ) in (11b), yields 

( ) ( ) ( )c cF G= Φ =-sT -sT -sTe e e       

( ){ } ( ) ( ){ } ( )
1

, 0 ,
ˆ ˆtriang triangi j i jp Q S

− ⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
-sT -sT -sT -sTe e q e e

( ) ( ){ } ( )0 ,triang i jQ q S⎡ ⎤= ⎢ ⎥⎣ ⎦
-sT -sT -sTe e e .  

 
Substituting this last relation into (9b), the relation (13b) is 

derived to be the general solution for ( )F -sTe .                  � 

4. SOLUTION OF THE TD PROBLEM VIA REALIZABLE 
SOLUTION 

4.1  Necessary and sufficient conditions 

To solve the problem at hand, namely the TD problem via 
realizable controllers, the following definitions are made 
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( ) ( ) ( ){ }* LMRL mB C B∗=-sT -sT -sTe e e , 

( ) ( ) ( ){ }* RMRR mB C B∗=-sT -sT -sTe e e ;  
 
Note that ( ) ( ) ( ){ } ( )* *

L m R mB C B B I∗ =-sT -sT -sT -sTe e e e . 

Theorem 4.1: The TD problem for general neutral multi–
delay systems is solvable, via a proportional realizable 
controller, if and only if the following conditions are 
satisfied: 

(i) ( ) ( ) ( )
1

det 0nC sI A B
−⎡ ⎤⎡ ⎤− ≡/⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

-sT -sT -sTe e e , and  

(ii) ( ) ( ) ( ) ( ){ }1* * -

,

sT
L m

i j
B C A e S

−⎡ ⎤⎢ ⎥⎣ ⎦
-sT -sT -sTe e e  ( 1,..., 1i m= −     

1,...,ij nσ= + ) are realizable, where the symbol { } ,i j•  

denotes the ( , )i j th−  element of the argument matrix.  

Proof: Condition (i) is the necessary and sufficient condition 
for the solvability of the problem via controllers, involving 
possibly predictors. To establish the necessary and sufficient 
conditions via realizable controllers, assume that (i) holds and 
then rewrite (13a) as follows 

( ) ( ) ( ) ( ){ }
1

* *
,triangR L i jG B B p

−⎡ ⎤= ⎢ ⎥⎣ ⎦
-sT -sT -sT -sTe e e e . Since 

( )*
RB

-sTe  is bi–realizable and ( )*
LB

-sTe  is lower triangular 

and invertible, ( )G -sTe  can always be made realizable by 

appropriate choice of ( ),i jp
-sTe . The general form of such a 

choice is 

( ){ } ( ) ( ){ }
1 1*

, ,triang triangi j L i jp B k
− −⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

-sT -sT -sTe e e  

where the scalars ( ),i jk
-sTe  ( )1,...,   1,...i m j i= =  are 

arbitrary over ( )r
-sTe\ with ( ), 0i ik ≡/-sTe . With regard to 

( )F -sTe , rewrite (13b) as follows:  

 

( ) ( ) ( )

( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ) ( )

* *

0 ,

1* * *

triang

R L

i j

R L m

F B B

Q q S

B B C A S S
−

=

⎡ ⎤×⎢ ⎥⎣ ⎦
⎡ ⎤− ⎢ ⎥⎣ ⎦

-sT -sT -sT

-sT -sT -sT

-sT -sT -sT -sT -sT -sT

e e e

e e e

e e e e e e

 

 
Since ( )*

RB
-sTe  and ( )S -sTe  are both bi–realizable, the 

realizability of ( )F -sTe  depends entirely upon the 

realizability of ( ) ( ) ( ){ }*
0 ,triangL i jB Q q⎡ ⎤

⎢ ⎥⎣ ⎦
-sT -sT -sTe e e  

( ) ( ) ( ) ( )
1* *

L mB C A S
−⎡ ⎤− ⎢ ⎥⎣ ⎦

-sT -sT -sT -sTe e e e .  

The matrix ( )*
LB

-sTe  is an invertible lower triangular matrix 

and hence ( ) ( ) ( ){ }*
0 ,triangL i jB Q q⎡ ⎤

⎢ ⎥⎣ ⎦
-sT -sT -sTe e e  has the 

block triangular form of ( ) ( ){ }0 ,triang i jQ q⎡ ⎤
⎢ ⎥⎣ ⎦

-sT -sTe e . 

Thus, condition (ii) is proven to be necessary and sufficient 

for the existence of a realizable ( )F -sTe .                              � 

4.2  General form of the realizable controller matrices 

In this subsection and under the assumption that the system 
satisfies the conditions of Theorem 4.1, the set of all 

realizable controller matrices ( )G -sTe  and ( )F -sTe , let 

( )rG
-sTe  and ( )rF

-sTe , will be derived. To this end, consider 

the m n× matrix  
 

( ) ( ) ( ) ( )0 1 mW W W W⎡ ⎤= ⎢ ⎥⎣ ⎦
-sT -sT -sT -sTe e e e"  

 
where the im υ×  submatrices ( )iW

-sTe ( 1,..., )i m=  are 

( ) ( ) ( )

( ) ( )
1

( 1) ( 1)
* *

1

( )
1

( )

0 0

0

0

                      

0

i i

i

i i

i i

i L m
m i

n

W B CI

A S I

σ υ

υ

σ υ

−

− × −

− +

×
−

− ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥× ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

-sT -sT -sT

-sT -sT

e e e

e e

 

while the 0m σ×  matrix  ( )0W
-sTe  is defined as follows 

( ) ( ) ( ) ( ) ( )
0

0 0

1* *
0

( )0L m
n

I
W B C A S

σ

σ σ

−

− ×

⎡ ⎤
⎢ ⎥⎡ ⎤= ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

-sT -sT -sT -sT -sTe e e e e  

Theorem 4.2: If conditions (i)–(ii) of Theorem 4.1 are 
satisfied, then the general analytic expressions of the 
proportional realizable controller matrices solving the TD 
problem are 
 
 ( ) ( ) ( ){ }*

,triangr R i jG B k⎡ ⎤= ⎢ ⎥⎣ ⎦
-sT -sT -sTe e e                      (14a) 

 
( )

( ) ( ) ( ){ } ( ){ }
( ) ( ) ( )
( ) ( ) ( ) ( )

*
0 i,j

*

* * *

  triang

     

     

r

R

R

R L m

F

B S

B W S

B B C A

λ⎡ ⎤= Λ⎢ ⎥⎣ ⎦
+

−

-sT

-sT -sT -sT -sT

-sT -sT -sT

-sT -sT -sT -sT

e

e e e e

e e e

e e e e

  (14b) 

 
where the only free parameters are the elements of the 

arbitrary realizable matrix ( ) ( ) 0

0

m

r

σ×⎡ ⎤Λ ∈ ⎢ ⎥⎣ ⎦
-sT -sTe e\ , the 

scalars ( ),i jk
-sTe  ( )1,...,   1,...i m j i= =  being arbitrary 

over ( )r
-sTe\  with the restriction ( ), 0i ik ≡/-sTe  and the 

vectors ( ) ( )
1

,

j

i j r

υ
λ

×⎡ ⎤∈ ⎢ ⎥⎣ ⎦
-sT -sTe e\  ( )1,...,   1,...i m j i= =  

with arbitrary realizable elements over ( )r
-sTe\ .   
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Proof: The general solution for ( )G -sTe  comes from the 

proof of Theorem 4.1. Using the proof of Theorem 4.1 the 

degrees of freedom yielding realizable solution for ( )F -sTe  

are given by the following formula for 1,...,i m=   
 

( )

( )

( )
( )

( )

( 1) ( 1)

, ,1*

, ,

0 0
i ii i

i i i i

L

m i m i

q
B

q

υ υ

λ

λ

− × − ×

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎡ ⎤⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

-sT -sT

-sT

-sT -sT

e e
e

e e

# #

( )
( 1) ( 1)1*

1

0 0
                    

0

i i

L
m i

B
I

− × −−

− +

⎡ ⎤
⎢ ⎥⎡ ⎤+ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

-sTe

( ) ( ) ( ) ( )
1 0

0

( )
1* *

( )

      0

    

0

i i

i

i i

L m

n

B C A S I

σ σ υ

υ

σ σ υ

− − ×
−

− + ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤× ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

-sT -sT -sT -sTe e e e

( ) ( ) ( ) ( ) ( ) ( )
1 1* *

0 0L mQ B C A S
− −⎡ ⎤ ⎡ ⎤= Λ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-sT -sT -sT -sT -sT -sTe e e e e e

0

0 0( )

             
0 n

Iσ

σ σ− ×

⎡ ⎤
⎢ ⎥× ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Substituting the above formula to (13b) and using the 

definition of ( )W -sTe , the formula for ( )rF
-sTe  in (14b) is 

derived.                                                                    � 

5. CONCLUSIONS  

The following aspects of the TD problem for general neutral 
multi–delay systems, via proportional realizable state 
feedback, have been established for the first time: The 
necessary and sufficient conditions for the problem to have a 
solution and the general analytical expressions of the 
realizable TD controller matrices. The derived results are 
simple and elegant thus facilitating their extension to other 
familiar design problems in the field. This way, for the 
solution of the TD problem for general neutral multi–delay 
systems, the presence of delays does not significantly 
increase the order of multiplicity of the solution.  
 
Acknowledgement: The present work has been funded by the 
Greek General Secretariat for Research and Technology, 
Joint Research and Technology Programmes, Greece-Spain, 
Project: E-Science for Control Engineering 

REFERENCES 

Conte, G., and A.M. Perdon (1998) ‘The block decoupling 
problem for systems over a ring’, IEEE Trans. Automat.  
Cont., 43, pp. 1600–1604. 

Conte, G., A.M. Perdon and A. Lombardo (1998). ‘Dynamic 
Feedback Decoupling Problem for Delay Differential 
Systems via systems over rings’, Mathematics and 
Computers in Simulation, 45, pp. 235–244. 

Descusse, J., and R. Lizarzaburu (1979). ‘Triangular 
Decoupling and pole placement in linear multivariable 

systems: a direct algebraic approach’, Int. J. Control, 30, 
pp. 139–152. 

Gu, K., V. Kharitonov, and J. Chen, (2003) ‘Stability of 
Time–Delay Systems’, Birkhauser, Boston. 

Jacubow, R.P., and M.M. Bayoumi (1977). ‘Decoupling of 
differential–difference systems using state feedback’, Int. 
J. Systems Sci, 8, pp.587–599. 

Kono, M. (1983). ‘Decoupling and arbitrary coefficient 
assignment in time delay systems’, Syst. Control Lett., 3, 
pp. 349 –354. 

Koumboulis, F.N, P.N. Paraskevopoulos, K.G. Tzierakis and 
R.E. King (1991). ‘Disturbance rejection with 
simultaneous triangular decoupling for linear time 
invariant systems’, Proc. 30th IEEE Conf. On Decision 
and Control, Brighton, U.K., pp. 581–582. 

Koumboulis, F.N. (1996). ‘Input–output triangular 
decoupling and data sensitivity’, Automatica, 32, pp. 
569–573. 

Koumboulis, F.N., G.E. Panagiotakis and P.N. 
Paraskevopoulos (2005). ‘Exact Model Matching of Left 
Invertible Neutral Time Delay Systems’, Proc. of the 13th 
Mediterranean Conf. on Control and Automation (2005 
ISIC–MED), Limassol, Cyprus, pp. 1548–1555. 

Koumboulis, F.N., and G.E. Panagiotakis (2005). ‘Exact 
Model Matching and Disturbance Rejection for general 
linear time delay systems via measurement output 
feedback’, Proc. of the 10th IEEE Int. Conf. on Emerging 
Technologies and Factory Automation (ETFA 2005), 
Catania, Italy, pp.545–554. 

Liu, M.Z. (1989). ‘Decoupling and coefficient assignment for 
(A, B, C, D) time delay systems’, Int. J. Control, 50, pp. 
1089–1101. 

Paraskevopoulos, P.N., F.N. Koumboulis and G.E. 
Panagiotakis (2005) ‘Disturbance Rejection with 
Simultaneous Decoupling of Neutral Time Delay 
Systems’, Proc. of the Int. Conf. on Computational 
Intelligence for Modeling Control and Automation 
(CIMCA 2005), Vienna, Austria, I, pp. 350–357. 

Picard, P., J.F. Lafay and V. Kucera (1998). ‘Model 
Matching for linear systems with delays and 2–D 
Systems’, Automatica, 34, pp. 183–191. 

Rekasius, Z.V., and R.L. Milzarek, (1977). ‘Decoupling 
without prediction of systems with delays’, JACC, pt. II, 
pp. 1470–1475. 

Sename, O., and J.F. Lafay (1993). ‘A sufficient condition for 
static decoupling without prediction of linear time–
invariant systems with delays’, Proc. of the 2nd European 
Control Conference  (ECC 93), Groningen, the 
Netherlands, 2, pp. 673–678. 

Sename, O., and J.F. Lafay (1997). ‘Decoupling of Square 
linear systems with delays’, IEEE Trans. Automat. Cont., 
42, pp. 736–742. 

Sename, O, R. Rabah and J.F. Lafay (1995). ‘Decoupling 
without prediction of linear systems with delays: A 
structural approach’, Syst. Cont.  Letters, 25, pp. 387–
395. 

Wang, S.H. (1972). ‘Relationship between triangular 
decoupling and invertibility’, Int. J. Control, 15, pp 395–
399. 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1286


