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Abstract: We consider a linear programming problem in which the constraint matrix is
uncertain. Each element of the constraint matrix is modeled as a random variable whose range
is asymmetrically bounded around its mean. We construct a formulation that yields a solution
with a better objective value, compared to the classical robust optimization approach, while
taking the risk that the solution may become infeasible to the original problem. We address
the risk by establishing upper bounds on the probability that it violates the constraints of the
problem. These bounds exploit full distributional information on the random elements or limited
distributional information such as the true means or sample means of the random elements. We
explore the application of our methodology to the optimal control of linear uncertain systems
with constraints.

1. INTRODUCTION

When real-world applications are formulated as mathe-
matical optimization problems, sometimes problem data
are subject to uncertainty due to their random nature,
measurement errors, or other reasons. In this case, ignoring
data uncertainty and solving an optimization problem with
fixed (nominal) values for the uncertain data often results
in a non-robust solution, in the sense that even small
changes in the problem data can easily render the solution
infeasible. For some applications, such a solution could be
totally useless.

Robust optimization is a methodology for dealing with op-
timization problems with data uncertainty. In the classical
sense, the goal of robust optimization is to find a “safe”
solution that is immune to data uncertainty (i.e., a solution
with guaranteed feasibility). Soyster [1973] is an early work
on this topic, and more recent results include El Ghaoui
et al. [1998], Ben-Tal and Nemirovski [1998, 1999, 2002].

Clearly the classical robust optimization approach is ap-
propriate for applications where infeasibility of a solution
cannot be accepted at all (e.g., design of engineering struc-
tures like bridges, dams, tunnels, etc.). When an applica-
tion can tolerate a small chance of infeasibility, however, a
solution from this approach tends to be too conservative.
For the latter class of applications, methods that produce
a less conservative solution with a certain probabilistic
guarantee of feasibility could prove to be useful.

Toward this end, a relaxed robust optimization approach
has recently emerged. In essence, this approach produces
a solution with an improved objective value by taking
into consideration only partial realizations of the uncertain
data in the optimization process, while taking a certain
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risk of the solution becoming infeasible. Bertsimas and Sim
[2004] considered a linear programming (LP) problem in
which each element of the constraint matrix is modeled as
a random variable. The range of each random element was
assumed to be symmetrically bounded around its mean;
in other words, the mean is equal to the midpoint of the
range. They assumed that the probability distributions of
the random elements are unknown except that they are
symmetric. They proposed a formulation that excludes
certain realizations of the random elements. As such, the
solution of the formulation is not guaranteed to be feasible
to the original LP problem. Instead, they endowed the
solution with a probabilistic guarantee of feasibility by
establishing an upper bound on the probability that it
violates the constraints of the problem.

Paschalidis and Kang [2005, 2006] improved the results
of Bertsimas and Sim [2004] by exploiting distributional
information on the random elements. They developed
several new upper bounds on the constraint violation
probability, which make use of full or limited distribu-
tional information. They showed that these bounds are
stronger than the one given by Bertsimas and Sim [2004].
This result is significant for real-world applications be-
cause stronger bounds leads to improved solutions, under
the same probabilistic guarantee of feasibility. This was
numerically demonstrated through an inventory control
problem with quality of service constraints in Paschalidis
and Kang [2005].

The work of Bertsimas and Sim [2004] and Paschalidis and
Kang [2005, 2006] both assumed symmetric data uncer-
tainty : the ranges of the random elements are symmetri-
cally bounded around their means. This assumption is nat-
ural and satisfactory when the probability distributions of
the random elements are symmetric over their ranges (e.g.,
uniform distributions or truncated normal distributions).
Moreover, it renders convenience when constructing the
formulation and establishing bounds on the constraint vi-
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olation probability. In many real-world applications, how-
ever, it is often found that the probability distributions of
random data are asymmetric over asymmetrically bounded
ranges. This paper deals with robust optimization of LP
problems under this asymmetric data uncertainty.

In Section 2, we consider an LP problem in which each el-
ement of the constraint matrix is a random variable whose
range is asymmetrically bounded around its mean. We
construct a formulation that yields a solution with a better
objective value compared to the classical robust optimiza-
tion approach. Section 3 is concerned with the probability
that the solution of the formulation may become infeasible
to the original LP problem by violating its constraints.
We establish an upper bound on the constraint violation
probability, which uses full distributional information on
the random elements. We also derive a bound that re-
quires only limited distributional information, namely the
means of the random elements and their range informa-
tion. Sometimes the true means of the random elements
are not known, but sample means are available instead.
For this case, we develop another bound that utilizes the
sample means. Unlike other bounds, this one holds with a
certain probability. After we conduct brief numerical tests
in Section 4, we explore the application of our methodology
to the optimal control of linear uncertain systems with
constraints in Section 5.

2. THE ROBUST FORMULATION FOR
ASYMMETRIC DATA UNCERTAINTY

Consider the LP problem with data uncertainty

max c′x (1)

s. t. Ax ≤ b

l ≤ x ≤ u,

where c, l,u ∈ R
n, b ∈ R

m, A = (aij) is an m×n matrix,
x ∈ R

n is the vector of decision variables, and c′ denotes
the transpose of the vector c. We assume, without loss
of generality, that only the elements of the matrix A are
subject to uncertainty. It is assumed that aij ∈ [aL

ij , a
U
ij ],

where aL
ij ≤ aU

ij . Let aij , E[aij ], and define the forward

deviation as dF
ij = aU

ij − aij and the backward deviation

as dB
ij = aij − aL

ij . Using these deviations, we can rewrite

aij ∈ [aij − dB
ij , aij + dF

ij ]. For each row i of A, we define

Ji , {j | aL
ij < aU

ij}, i.e., Ji , {j | aij is random}. We
assume that aij , for all i and j ∈ Ji, are independent
random variables.

The classical robust optimization approach seeks a maxi-
mizing x that is also guaranteed to satisfy the constraints
for all realizations of A. Such an x is obtained by solving
the formulation

zF = max c′x (2)

s. t. maxai∈Ui

{
a′

ix
}
≤ bi, ∀ i

l ≤ x ≤ u,

where the uncertainty set for the ith row, Ui, is given by

Ui ,
{
ai | aij ∈ [aij − dB

ij , aij + dF
ij ], ∀ j

}
.

We refer to the formulation (2) as the classical robust
formulation or “fat” formulation. It is not difficult to show
that (2) can be rewritten as the LP formulation

zF = max c′x (3)

s. t.
∑

j aijxj +
∑

j∈Ji
yij ≤ bi, ∀ i

yij ≥ dF
ijxj , ∀ i, ∀ j ∈ Ji

yij ≥ −dB
ijxj , ∀ i, ∀ j ∈ Ji

yij ≥ 0, ∀ i, ∀ j ∈ Ji

l ≤ x ≤ u.

An optimal solution (and other feasible solutions as well)
of (2) never violates the constraints Ax ≤ b of (1). This
guaranteed feasibility, however, comes with a degradation
of objective value. We are interested in another formula-
tion that yields a solution with a better objective value,
in exchange for a possibility of the solution becoming
infeasible. To that end, for each row i of A, we introduce
a parameter, called the uncertainty budget, Γi ∈ [0, |Ji|].
We then define the restricted uncertainty set Ri(Γi) ⊆ Ui

as

Ri(Γi) ,
{
ai | aij ∈ [aij − βijd

B
ij , aij + βijd

F
ij ], ∀ j;

0 ≤ βij ≤ 1, ∀ j;
∑

j∈Ji
βij ≤ Γi

}
. (4)

The Γi restricts the “variability” of the random elements
in row i. One may envision that it excludes those cases
where every random element simultaneously takes a value
far from its mean, which can be presumed rare from a
practical perspective.

Our goal is to find a maximizing x that is guaranteed to
satisfy the constraints Ax ≤ b as long as the uncertain
vector ai belongs to the set Ri(Γi) for all i. For that
purpose, we construct the robust formulation

zR(Γ) = max c′x (5)

s. t. maxai∈Ri(Γi)

{
a′

ix
}
≤ bi, ∀ i

l ≤ x ≤ u.

Since the robust formulation (5) can be viewed as a relax-
ation of the fat formulation (2), zR(Γ) ≥ zF . However, an
optimal solution of (5) may violate the constraint Ax ≤ b.
This constraint violation probability will be addressed in
Section 3.

We now show that (5) can be recast as an equivalent LP
formulation. For any x, the maximization problem in the
ith constraint of (5) is written as

max a′
ix (6)

s. t. aij ≤ aij + βijd
F
ij , ∀ j (6a)

aij ≥ aij − βijd
B
ij , ∀ j (6b)∑

j∈Ji
βij ≤ Γi (6c)

βij ≤ 1, ∀ j (6d)

βij ≥ 0, ∀ j,

where aij and βij are the decision variables. Let λij , µij ,
zi, and pij be the dual variables for the constraints (6a)–
(6d), respectively. Then the dual of (6) is given by (after
some simplifications)

min
∑

j aijxj + Γizi +
∑

j pij (7)

s. t. λij − µij = xj , ∀ j

zi + pij ≥ dF
ijλij + dB

ijµij , ∀ j

λij , µij , pij ≥ 0, ∀ j

zi ≥ 0.

Theorem 1. The robust formulation (5) is equivalent to
the LP formulation

zR(Γ) = max c′x (8)
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s. t.
∑

j aijxj + Γizi +
∑

j pij ≤ bi ∀ i

λij − µij = xj , ∀ i, j

zi + pij ≥ dF
ijλij + dB

ijµij , ∀ i, j

λij , µij , pij ≥ 0, ∀ i, j

zi ≥ 0, ∀ i

l ≤ x ≤ u.

Proof. Let (x∗, λ∗
ij , µ

∗
ij , z

∗
i , p∗ij) be an optimal solution of

(8). Let x̃ be an optimal solution of (5). The equivalence
will be established by showing that x∗ is feasible to (5)
and c′x∗ = c′x̃. Fix x = x∗ in (6) and (7), and let (a∗

i , β
∗
ij)

be an optimal solution of (6). Since (λ∗
ij , µ

∗
ij , z

∗
i , p∗ij) is a

feasible solution of (7), the weak duality between (6) and
(7) yields

a∗
i
′
x∗ ≤

∑
j aijx

∗
j + Γiz

∗
i +

∑
j p∗ij .

Since a∗
i
′x∗ = maxai∈Ri(Γi){a

′
ix

∗} and (x∗, λ∗
ij , µ

∗
ij , z

∗
i , p∗ij)

is feasible to (8), we have, for all i,

maxai∈Ri(Γi)

{
a′

ix
∗
}
≤

∑
j aijx

∗
j + Γiz

∗
i +

∑
j p∗ij ≤ bi.

This shows that x∗ is feasible to (5), implying that c′x∗ ≤

c′x̃. Next, set x = x̃ in (6) and (7), and let (ãi, β̃ij) be an
optimal solution of (6). By the strong duality, there exists

a feasible (λ̃ij , µ̃ij , z̃i, p̃ij) to (7) such that

maxai∈Ri(Γi)

{
a′

ix̃
}

= ã′
ix̃ =

∑
j aij x̃j + Γiz̃i +

∑
j p̃ij .

Since x̃ is feasible to (5), we have, for all i,

bi ≥ maxai∈Ri(Γi)

{
a′

ix̃
}

=
∑

j aij x̃j + Γiz̃i +
∑

j p̃ij .

This shows that (x̃, λ̃ij , µ̃ij , z̃i, p̃ij) satisfies the first set of
the constraints of (8). Since the other constraints of (8) are

also satisfied by (x̃, λ̃ij , µ̃ij , z̃i, p̃ij), it is a feasible solution
of (8), from which we have c′x̃ ≤ c′x∗.

Since the robust formulation (5) is parameterized by Γi,
i = 1, . . . ,m, one can expect that adjusting values for Γi’s
gives a flexibility for the formulation. Indeed, if Γi = |Ji|
for all i, Ri(Γi) = Ui for all i. Consequently, (5) becomes
the fat formulation (2). On the other hand, if Γi = 0 for
all i, Ri(Γi) = {ai} for all i. In this case, (5) is simply
reduced to the nominal formulation

max c′x (9)

s. t.
∑

j aijxj ≤ bi ∀ i

l ≤ x ≤ u.

3. BOUNDS ON THE CONSTRAINT VIOLATION
PROBABILITY

Unless Γi = |Ji| for all i, an optimal solution x∗ of the
robust formulation (5) (which is obtained by solving the
equivalent LP formulation (8)) may violate the constraints
Ax ≤ b of (1). Let us consider the ith constraint viola-
tion probability P [a′

ix
∗ > bi]. Computing this probability

exactly is often a challenging task. Therefore we are inter-
ested in establishing (easily computable) upper bounds on
this probability.

3.1 A Distribution-Dependent Bound

One of such bounds can be obtained as follows.

P
[
a′

ix
∗ > bi

]
= P

[∑
j∈Ji

aijx
∗
j +

∑
j /∈Ji

aijx
∗
j > bi

]

= P
[∑

j∈Ji
x∗

jaij > Bi(x
∗)

]

≤ P
[∑

j∈Ji
x∗

jaij ≥ Bi(x
∗)

]
,

where Bi(x
∗) = bi−

∑
j /∈Ji

aijx
∗
j . Using Markov’s inequal-

ity and the independence of aij ’s, ∀ j ∈ Ji, we have, for
any θ ≥ 0,

P
[∑

j∈Ji
x∗

jaij ≥ Bi(x
∗)

]
≤ e−θBi(x

∗)E
[
e
θ
∑

j∈Ji
x∗

jaij
]

= e−θBi(x
∗) ∏

j∈Ji
E

[
eθx∗

j aij
]

= exp
[
−θBi(x

∗) +
∑

j∈Ji
Λaij

(θx∗
j )

]
,

where Λaij
(θx∗

j ) , log E[eθx∗

j aij ]. Optimizing over θ ≥ 0,
we obtain the following result.

Proposition 2. The ith constraint violation probability is
upper bounded as follows:

P
[
a′

ix
∗>bi

]
≤ exp

[
− sup

θ≥0

{
θBi(x

∗)−
∑

j∈Ji

Λaij
(θx∗

j )
}]

. (10)

Because the log moment generating function Λaij
(θx∗

j ) is
convex in θ, supθ≥0{·} in (10) is a convex optimization
problem, which is efficiently solvable from the computa-
tional complexity standpoint.

3.2 A Bound with Limited Distributional Information

The bound in (10) requires full distributional information

on aij ’s in order to compute E[eθx∗

j aij ]. In some appli-
cations, however, only limited distributional information,
such as the means of aij ’s, might be available. To derive a
bound for this case, we employ the idea of upper bounding
E[eθx∗

j aij ] using the means of aij ’s and their range infor-
mation (instead of computing it exactly). To that end, we
will use the following inequality due to Bennett [1962] (also
see Dembo and Zeitouni [1998]): Let X ≤ b is a random
variable with x = E[X] and E[(X − x)2] ≤ c2 for some
c > 0. Then for any θ ≥ 0,

E
[
eθX

]
≤ eθx

[
(b−x)2

(b−x)2+c2 e−
θc2

b−x + c2

(b−x)2+c2 eθ(b−x)
]
. (11)

Now suppose that we know aij ∈ [aij − dB
ij , aij + dF

ij ], but
do not know the probability distribution of aij . Consider
the following probability distribution

faij
(a) =

{
dF

ij/(d
F
ij + dB

ij) if a = aij − dB
ij ,

dB
ij/(d

F
ij + dB

ij) if a = aij + dF
ij .

(12)

This probability distribution yields E[aij ] = aij . Notice
that among all the probability distributions that yield
E[aij ] = aij , (12) has the maximum variance. Hence for
any such probability distribution for aij , we have E[(aij −
aij)

2] ≤ dF
ijd

B
ij , where dF

ijd
B
ij is the variance of (12).

Let X = x∗
jaij . Then X ≤ aijx

∗
j +max{−dB

ijx
∗
j , d

F
ijx

∗
j} and

E[(X − x)2] ≤ x∗
j
2dF

ijd
B
ij . Using the inequality (11), it can

be shown that

E
[
eθx∗

j aij
]
≤

dF
ij

dF
ij

+dB
ij

eθx∗

j aL
ij +

dB
ij

dF
ij

+dB
ij

eθx∗

j aU
ij .

Then following the same steps used for the bound in (10),
we obtain, for any θ ≥ 0,

P
[
a′

ix
∗ > bi

]
≤ e−θBi(x

∗) ∏
j∈Ji

E
[
eθx∗

j aij
]

≤ e−θBi(x
∗) ∏

j∈Ji

{
dF

ij

dF
ij

+dB
ij

eθx∗

j aL
ij +

dB
ij

dF
ij

+dB
ij

eθx∗

j aU
ij

}

= exp
[
−θBi(x

∗) +
∑

j∈Ji
log

(
gije

θx∗

j aL
ij + hije

θx∗

j aU
ij

)]
,

where gij , dF
ij/(d

F
ij +dB

ij) and hij , dB
ij/(d

F
ij +dB

ij). Again,
optimizing over θ ≥ 0, the following result is attained.
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Proposition 3. The ith constraint violation probability is
upper bounded as follows:

P
[
a′

ix
∗ > bi

]
(13)

≤ exp
[
− sup

θ≥0

{
θBi(x

∗)−
∑

j∈Ji

log
(
gije

θx∗

j aL
ij + hije

θx∗

j aU
ij

)}]
.

From the way the bound in (13) was established, one
can infer that it will be weaker than the bound in (10).
Nonetheless, we believe that the former can be useful in
many cases.

3.3 A Bound Based on Sample Data

The underlying assumption for the bound in (13) is that
the true means of the random aij ’s are known. One may
argue that this assumption is problematic because in some
applications only estimates of the true means could be
available from observed data. We now present a bound
that is suitable for this situation.

Let a1
ij , . . . , a

Nij

ij be Nij samples of a random aij . Let ãij =
1

Nij

∑Nij

k=1 ak
ij be the sample mean of ak

ij ’s. Hoeffding’s

inequality (Hoeffding [1963]) yields that for t > 0,

P
[
x∗

j ãij − E[x∗
jaij ] ≤ −t

]
≤ exp

[
−

2Nijt2

x∗

j
2(dF

ij
+dB

ij
)2

]
.

Letting ǫij = exp
[
−

2Nijt2

x∗

j
2(dF

ij
+dB

ij
)2

]
and then solving for t,

we obtain

P
[
x∗

j ãij − E[x∗
jaij ] ≤ −

√
x∗

j
2(dF

ij
+dB

ij
)2

2Nij
log 1

ǫij

]
≤ ǫij .

In other words, the unknown true mean E[x∗
jaij ] is upper

bounded by

E[x∗
jaij ] ≤ x∗

j ãij +

√
x∗

j
2(dF

ij
+dB

ij
)2

2Nij
log 1

ǫij
(14)

with probability at least 1 − ǫij .

Now consider the following inequality that follows from the
convexity of the exponential function ex: If X is a random
variable such that a ≤ X ≤ b, then for any real number θ,

E
[
eθX

]
≤ b−E[X]

b−a eθa + E[X]−a
b−a eθb. (15)

Applying the inequality (15) to X = x∗
jaij , it can be seen

that

E
[
eθx∗

j aij
]
≤ E[x∗

jaij ]
eθsij −eθrij

|x∗

j
|(dF

ij
+dB

ij
)
+

sijeθrij−rijeθsij

|x∗

j
|(dF

ij
+dB

ij
)

, (16)

where rij , min{x∗
ja

L
ij , x

∗
ja

U
ij} and sij , max{x∗

ja
L
ij , x

∗
ja

U
ij}.

Since eθsij − eθrij ≥ 0 for all θ ≥ 0, we replace E[x∗
jaij ] in

(16) with the upper bound in (14) and conclude that for
any θ ≥ 0

E
[
eθx∗

j aij
]
≤

{
x∗

j ãij +

√
x∗

j
2(dF

ij
+dB

ij
)2

2Nij
log 1

ǫij

}
eθsij −eθrij

|x∗

j
|(dF

ij
+dB

ij
)

+
sijeθrij −rijeθsij

|x∗

j
|(dF

ij
+dB

ij
)

(17)

with probability at least 1−ǫij . Denote the right hand side
of the inequality (17) by fij(θ). Following the same steps
used for the bound in (13), we obtain the following result.

Proposition 4. Let 0 < ǫij < 1 for all j ∈ Ji. The following
bound on the ith constraint violation probability holds
with probability at least

∏
j∈Ji

(1 − ǫij):

P
[
a′

ix
∗> bi

]
≤exp

[
− sup

θ≥0

{
θBi(x

∗)−
∑

j∈Ji

log fij(θ)
}]

. (18)

We emphasize that unlike the bounds in (10) and (13)
that hold deterministically, the bound in (18) is valid with
a certain probability.

4. NUMERICAL RESULTS

We consider a 10 × 10 matrix A, where all elements are
assumed to be random, i.e., |Ji| = 10 for all i. A data set
(c,b, l,u, aU

ij , a
L
ij), which constitutes a problem instance, is

specified as follows: cj is randomly selected from [−30, 30]
for all j; bi is randomly selected from [5, 15] for all i; lj
and uj are set to −10 and 10, respectively, for all j; aU

ij

is randomly chosen from [−10, 30] for all i and j; aL
ij is

set to aU
ij − δij , where δij is randomly drawn from [1, 10]

for all i and j. In this way, we generate 5 data sets (i.e., 5
problem instances). We assume that each random aij takes
the following linearly decreasing density function over its
range:

faij
(a) = 2

(aU
ij
−aL

ij
)2

(aU
ij − a), aL

ij ≤ a ≤ aU
ij .

Given a problem instance, let zF be the optimal objective
value of the fat formulation (2). Let zR(7.5) denote the
optimal objective value of the robust formulation (5) when
Γi = 7.5, i = 1, . . . , 10. We define zR(5.0) and zR(2.5)
similarly. Table 1 shows zF , zR(7.5), zR(5.0), and zR(2.5)
for each problem instance. As Γi’s take a smaller value,
the robust formulation becomes less conservative, yielding
a higher objective value.

Table 1. Optimal objective values

Instance zF zR(7.5) zR(5.0) zR(2.5)

1 1548.88 1558.85 1595.91 1665.22

2 1263.90 1278.91 1310.90 1362.31

3 969.39 979.63 1040.84 1146.12

4 257.25 262.48 291.98 380.81

5 1149.24 1181.40 1273.51 1421.42

Average 1037.73 1052.25 1102.63 1195.18

Given an optimal solution x∗ of the robust formulation
(5), let Pi be the value of the bound in (10) for the ith
constraint. Then the probability that x∗ remains feasible
to (1) is at least

∏m
i=1(1 − Pi). In Table 2, we report this

probability of feasibility of x∗ for each problem instance
when Γi = 5.0 for all i. We also use the bound in (13)
instead of the bound in (10) and report the results. As
one might expect, the bound in (10), which is stronger
than the bound in (13), results in a higher probability of
feasibility. When the bound (10) is used, the probability
of feasibility of x∗ is almost 1.0 for each problem instance;
in other words, it is extremely unlikely that x∗ violates
any of the constraints Ax ≤ b of (1). Meanwhile, as can
be seen in Table 1, the robust formulation (5) improves
the objective value by 6.3% on average, compared to
the fat formulation (2). This demonstrates that when an
application can tolerate a small chance of infeasibility of
a solution, our robust optimization approach would be
preferred to the classical robust optimization approach.

5. ROBUST CONTROL OF LINEAR UNCERTAIN
SYSTEMS WITH CONSTRAINTS

In this section, we apply the robust optimization approach
of Section 2 to linear uncertain systems with constraints.
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Table 2. Probability of feasibility when Γi =
5.0 for all i

Instance From (10) From (13)

1 0.999971 0.804643

2 0.999665 0.597228

3 0.999970 0.713272

4 0.999981 0.652228

5 0.999980 0.761439

Consider the discrete-time linear uncertain system

xk+1 = Axk + Buk, k = 0, . . . , N − 1

subject to the constraints

uL ≤ uk ≤ uU , k = 0, . . . , N − 1,

xk ∈ X k, k = 0, . . . , N,

where A ∈ R
n×n is a given matrix, uU ,uL ∈ R

m are given
vectors, and xk ∈ R

n and uk ∈ R
m are the state and

control vectors at time k, respectively. We assume that
the matrix B ∈ R

n×m is uncertain within the range

B − DB ≤ B ≤ B + DF , (19)

where B is a nominal matrix and DF ,DB > 0. The sets
X k are defined as

X k =





{
xk | xk ≥ xL

}
if k = N,{

xk | xk ≥ xL and

∃uk,Axk + Buk ∈ X k+1, ∀B
}

otherwise,

where xL is a given vector.

For given matrices Q,P ∈ R
n×n and R ∈ R

n×m, we
consider the control synthesis based on the closed-loop
optimal control problem (cf. Bemporad et al. [2003])

J∗
k (xk)=min

uk

∥∥Qxk
∥∥

1
+

∥∥Ruk
∥∥

1
+J∗

k+1(Axk+Buk) (20)

s. t. uL ≤ uk ≤ uU

xk ≥ xL

Axk + Buk ∈ X k+1

for k = 0, . . . , N − 1 and with the boundary conditions
J∗

N (xN ) =
∥∥PxN

∥∥
1

and xN ≥ xL. As can be seen from the
objective function, the goal of this problem is to regulate
the system to the origin, given the initial state vector x0.
To solve (20), a multiparametric LP solver (Kvasnica et al.
[2004]) is used. The constraint Axk +Buk ∈ X k+1 is then
explicitly written as

Lk+1(Axk + Buk) ≥ fk+1, (21)

where the matrix Lk+1 and the vector fk+1 are returned
from the multiparametric LP solver after it solves (20) for
time k + 1. It can be shown that X k = {xk | Lkxk ≥ fk}
(Bemporad et al. [2003]).

Given an uncertainty budget Γ ∈ [0, nm], we define

R(Γ) ,
{
B | bij ∈ [ bij − βijd

B
ij , bij + βijd

F
ij ], ∀ i, j;

0 ≤ βij ≤ 1, ∀ i, j;
∑

i

∑
j βij ≤ Γ

}
, (22)

where bij , dB
ij , and dF

ij are the (i, j)th components of B,

DB , and DF , respectively. Recall that in Section 2 we
introduced Γi for each row i of the uncertain constraint
matrix A (see (4)), because each constraint of Ax ≤ b
has a distinct set of random elements. That is not the case
for the constraints (21): The presence of Lk+1 may cause
different constraints to have common random elements.
For instance, the uncertain bij may appear not only in

the ith constraint of (21), but also in other constraints.
Therefore, it is more appropriate to use a single (global)
uncertainty budget.

We construct the robust formulation of the closed-loop
optimal control problem (20) as follows (cf. (5)):

J∗
k (xk)=min

uk

∥∥Qxk
∥∥

1
+

∥∥Ruk
∥∥

1
+J∗

k+1(Axk+Buk) (23)

s. t. uL ≤ uk ≤ uU

xk ≥ xL

min
B∈R(Γ)

{
(Lk+1Buk)r

}
≥(fk+1−Lk+1Axk)r,∀ r, (23a)

where (y)r denotes the rth element of the vector y. If
Γ = 0, then R(Γ) = {B} and consequently (23) becomes
the nominal formulation (cf. (9)). If, on the other hand,
Γ = nm, then (23) becomes the fat formulation (cf. (2))
which represents the classical worst-case approach.

For any uk, the minimization problem in the rth constraint
of (23a) can be written as

min

m∑

j=1

n∑

i=1

ℓk+1
ri biju

k
j (24)

s. t. bij ≤ bij + βijd
F
ij , i = 1, . . . , n, j = 1, . . . ,m (24a)

bij ≥ bij − βijd
B
ij , i = 1, . . . , n, j = 1, . . . ,m (24b)

n∑

i=1

m∑

j=1

βij ≤ Γ (24c)

βij ≤ 1, i = 1, . . . , n, j = 1, . . . ,m (24d)

βij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m,

where ℓk+1
ri is the (r, i)th element of Lk+1. Let λk

rij , µk
rij ,

zk
r , and pk

rij be the dual variables for the constraints (24a)–
(24d). Then the dual of (24) is (after some simplifications)

max

n∑

i=1

m∑

j=1

bijℓ
k+1
ri uk

j − Γzk
r −

n∑

i=1

m∑

j=1

pk
rij

s. t. − λk
rij + µk

rij = ℓk+1
ri uk

j , ∀ i, j

zk
r + pk

rij ≥ dF
ijλ

k
rij + dB

ijµ
k
rij , ∀ i, j

λk
rij , µ

k
rij , p

k
rij ≥ 0, ∀ i, j

zk
r ≥ 0.

The following proposition shows that the robust formu-
lation (23) can be recast as a formulation with linear
constraints. The proof technique is similar to that of The-
orem 1 and is omitted due to space limitations.

Proposition 5. The robust formulation (23) is equivalent
to the formulation

J∗
k (xk)=min

uk

∥∥Qxk
∥∥

1
+

∥∥Ruk
∥∥

1
+J∗

k+1(Axk+Buk) (25)

s. t. uL ≤ uk ≤ uU

xk ≥ xL

n∑

i=1

m∑

j=1

bijℓ
k+1
ri uk

j −Γzk
r−

n∑

i=1

m∑

j=1

pk
rij ≥(fk+1−Lk+1Axk)r,∀ r

− λk
rij + µk

rij = ℓk+1
ri uk

j , ∀ r, i, j

zk
r + pk

rij ≥ dF
ijλ

k
rij + dB

ijµ
k
rij , ∀ r, i, j

λk
rij , µ

k
rij , p

k
rij ≥ 0, ∀ r, i, j

zk
r ≥ 0, ∀ r.
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Our robust formulation (23) of the closed-loop optimal
control problem (20) distinguishes itself from the work of
Bemporad et al. [2003] in two aspects: First, the uncer-
tainty budget Γ provides the formulation with flexibility so
that it can produce different control laws without changing
its underlying structure. Second, its equivalent formulation
(25) offers computational advantages over the formulation
of Bemporad et al. [2003] which requires the enumeration
of all the vertices of the uncertainty set.

For numerical tests, we use the following data: N = 4,

A =
[

0.8 0.4
−0.4 0.8

]
, B =

[
0
1

]
, DB =

[
0.4
0.4

]
, DF =

[
0.7
0.7

]
,

uU = 3, uL = −3, xL =
[
−1.5
−1.5

]
, Q = P =

[
1 1
0 1

]
, R = 0.4.

With four different values for Γ (0.8, 1.0, 1.5, and 2.0), we
solve (25) recursively from k = N−1 to k = 0. As a result,
for each value of Γ, a piecewise affine control law of the
following form is obtained:

uk = h′
ix

k + gi for xk ∈ Pi, i = 1, . . . , s,

k = 0, . . . , N − 1,

where s is the number of partitions of the admissible set
for xk, Pi’s are polytopes such that

⋃s
i=1 Pi = X k, and

hi and gi are a vector and a scalar determined by the
multiparametric LP solver for partition i.

We then simulate the system with the control law associ-
ated with each value of Γ, where the control is applied in a
receding horizon manner: namely, only u0 is used at each
time. The time horizon of a simulation is set to 20. For each
control law, we perform 200 simulations by creating 200
random pairs of (x0, {Bk}20

k=1), where Bk is a realization
of B at time k. The components of x0 are uniformly
distributed in the ranges [−2, 4] and [0, 6], respectively.
The Bk are generated assuming that each component has
a triangle distribution over the corresponding range (cf.
(19)). Table 3 lists the average cost of the 200 simulations
for each control law. It is demonstrated that as the value
of Γ gets smaller, the corresponding control law leads to
cost savings.

Table 3. Simulated costs

Γ 0.8 1.0 1.5 2.0

Average cost 8.3960 8.5989 8.6525 9.1385

Fig. 1 shows two sample trajectories of the state vector xk

and the control uk when Γ = 0.8 and Γ = 2.0, respectively.
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Parametric Toolbox (MPT), 2004. URL
http://control.ee.ethz.ch/ mpt/.

I. Ch. Paschalidis and S.-C. Kang. Robust linear optimiza-
tion: On the benefits of distributional information and
applications in inventory control. In Proceedings of the
44th IEEE Conference on Decision and Control, pages
4416–4421, Seville, Spain, 2005.

I. Ch. Paschalidis and S.-C. Kang. On the benefits of
distributional information in robust linear optimization.
In Proceedings of the 5th IFAC Symposium on Robust
Control Design, Toulouse, France, 2006.

A. L. Soyster. Convex programming with set-inclusive con-
straints and applications to inexact linear programming.
Operations Research, 21(5):1154–1157, 1973.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10074


