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Abstract: Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that 
represents the main obstacle for MR image segmentation and registration methods. Various techniques 
have been proposed to eliminate or compensate the INU, most of which are embedded into clustering 
algorithms. This paper proposes a pre-filtering technique for Gaussian and impulse noise elimination, and 
a smoothening filter that assists the fuzzy c-means (FCM) algorithm at the estimation of inhomogeneity as 
a slowly varying additive or multiplicative noise. The segmentation is produced by FCM algorithm 
together with the INU estimation. The slowly varying behaviour of the bias or gain field is assured by a 
smoothening filter that performs a context dependent averaging, based on a morphological criterion. The 
experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides 
accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent 
support for 3-D registration and segmentation techniques.  

 

1. INTRODUCTION 

Magnetic resonance imaging (MRI) is a very popular medical 
imaging technique, mainly because of its high resolution and 
contrast, which represent great advantage above other 
diagnostic imaging modalities. Besides all these good 
properties, MRI also suffers from three considerable 
obstacles: noises (mixture of Gaussian and impulse noises), 
partial volume artefacts (pixels containing at least two types 
of tissues), and intensity inhomogeneity (Siyal and Yu, 
2005). This latter one, also known as intensity non-
uniformity (or INU artefact), manifests as a spatially slowly 
varying function, that makes pixels belonging to the same 
tissue be observed having different intensities. In order to 
produce a correct segmentation or registration of MR images, 
the INU artefact needs to be modelled and compensated.  

INU has two different types of sources: those related to the 
MRI device, and those related to the imaged patient’s shape, 
position and orientation. While the first type of source has 
efficient compensation and calibration methods, the second 
type of INU artefacts are much more difficult to handle 
(Vovk et al., 2007). A widely used technique, handling 
mostly the first type of INU, consists of the usage of a 
uniform phantom to produce prior information (Axel et al., 
1987).  

Homomorphic filtering represents a popular compensation 
method (Johnston et al., 1996; Brinkmann et al., 1998), built 
on the theoretical assumption, that the frequency spectra of 
the image structures and of the INU artefact are non-
overlapping each other. The efficiency of such methods are 
limited because the initial assumption does not hold. 

Although several INU compensation approaches exist 
(Leemput et al., 1999; Pham and Prince, 1999b; Zhang et al., 
2001), one of the most widely used methods is the adaptation 
of the fuzzy c-means (FCM) clustering algorithm to 
iteratively approximate the INU as a smooth varying bias or 
gain field. In this order, Pham and Prince (1999a, 1999b) 
introduced a modified objective function producing bias field 
estimation and containing extra terms that force this artefact 
vary smoothly. They also provided a multigrid technique to 
speed up the computationally heavy algorithm, but even this 
way, the algorithm performs slowly. A probabilistic approach 
leading to the same objective function was given in (Li et al., 
2005). Liew and Hong (2003) created a log bias field 
estimation technique that models the INU with smoothing B-
spline surfaces. 

Further FCM-based bias field estimation techniques were 
introduced recently by Ahmed et al. (2002) and Siyal and Yu 
(2005). The modification introduced by Ahmed et al. allows 
the labelling of a voxel to be influenced by its immediate 
neighbours. This approach has reduced some of the 
complexity of its ancestors, but the zero gradient condition 
that was used for bias field estimation leads to several 
misclassifications (Siyal and Yu, 2005). The other approach 
provided a mean spread filtering method to smoothen the 
estimated bias field in every cycle of the FCM algorithm. 
This approach reduces the amount of necessary 
computations, but the result of the segmentation is not 
deterministic due to the nature of the smoothing filter. 

In this paper we propose two filtering techniques to 
accompany the FCM-based bias- or gain field estimation of 
the intensity inhomogeneity, and show their efficiency in MR 
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brain image segmentation using real MR slices and artificial 
phantoms. 

The rest of the paper is organized as follows: section 2 
describes the proposed filtering techniques and the FCM-
based bias- and gain field estimation approaches. Section 3 
provides a qualitative analysis and short discussion of 
segmentation results. In section 4 the conclusions are 
formulated. 

2. METHODS 

2.1. Context dependent pre-filtering 

Impulse and Gaussian noise is removed from the original MR 
image using a context dependent local filtering, which 
combines averaging and median filtering effects based on 
physical distances and grey level differences between 
neighbour pixels.  

The proposed technique acts like a low-pass masking, but the 
mask weights are separately computed for each pixel, based 
on the distances and grey level differences encountered 
within a neighbourhood. The weight of each neighbouring 
pixel is the product of two terms: a distance term that 
decreases exponentially with Euclidean distance measured 
from the middle pixel; and a grey level term, which is high 
for pixels that have similar intensities with the middle pixel 
and low if they differ significantly. The middle pixel gets its 
weight based on the reliability of its grey level intensity. 
Details of such techniques are described in (Cai et al., 2007; 
Szilágyi et al., 2007).  

2.2. Conventional FCM clustering and derivations 

The conventional FCM algorithm has been applied 
successfully in a wide variety of clustering problems. This 
algorithm optimally partitions a set of object data into a 
previously set number of c clusters based on the iterative 
minimization of a quadratic objective function. When applied 
to segment greyscale images, FCM clusters the intensity 
value of each pixel kx , nk K1= . The objective function to 
be minimized is given as follows: 
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where 1>m  is the fuzzy exponent or fuzzyfication 
parameter, iv  represents the centroid or prototype of the ith 
cluster, and ]1,0[∈iku  is the fuzzy membership function 
indicating the degree to which pixel k belongs to cluster i. 
The definition of fuzzy logic implies, that ∑ =
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constrained optimization of the objective function is achieved 
using Lagrange multipliers. In this order, we need to 
minimize the following function:  
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which we obtained by adding a zero term to the objective 
function. The minimization is reached by alternately applying 
the optimization of FCMF over }{ iku  with iv  fixed, ci K1= , 
and the optimization of FCMF over }{ iv  with iku  fixed, 

ci K1= , nk K1=  (Bezdek and Pal, 1991). In each cycle, 
optimal fuzzy membership and optimal centroid values are 
computed using the formulas: 
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for any ci K1=  and nk K1= . After adequate initialization 
of cluster prototype values iv , (3) and (4) are alternately 
applied until the norm of the variation of the vector v, 
composed of the centroid values, stays within a previously set 
bound ε . 

The above presented algorithm clusters the set of data }{ kx , 
which was recorded among ideal circumstances, containing 
no noise. However, in the real case, the observed data }{ ky  
differs from the actual one }{ kx : there are impulse and 
Gaussian noises, which were treated in the previous 
subsection, and there is the intensity non-uniformity (INU) 
artefact, which will be handled here.  

Literature recommends two different data variation models 
for intensity inhomogeneity: the bias and the gain field 
model. If we consider the INU as a bias field, for each pixel k 
we will have kkk bxy += , where kb  represents the bias 
value at pixel k. In case of gain field modelling, there will be 
a gain value kg for each pixel k, such that kkk xgy = . In case 
of both models, the variation of the intensity between 
neighbour pixels has to be slow. This is assured by the 
smoothing filter presented in the next section. 

In case of modelling INU as a bias field, the objective 
function becomes: 
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Taking the derivatives of the Lagrange multiplier formula 
that corresponds to bJ , with respect to iku , iv  and kb , 
respectively, and equalling them to zero, we obtain the 
following optimization formulas: 
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If we approximate the INU artefact as a gain field, the 
objective function should be: 
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Because the derivatives of this function are hard to handle, 
we slightly modify this objective function the following way: 
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This approach distorts the function such a way, that it gives 
higher impact to lighter pixels (as their gain field value will 
probably be over unity). Taking the derivatives of the 
Lagrange multiplier that corresponds to gJ , with respect to 

iku , iv  and kg , respectively, and equalling them to zero, we 
obtain the following optimization formulas: 
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Similarly to the conventional FCM, these optimization 
formulas are applied alternatively in each iteration. 

2.3. Smoothening filter 

The intensity inhomogeneity artefact varies slowly along the 
image. This property is ignored by both the bias or gain field 
approaches presented above. To avoid this problem, a 
filtering technique is applied in each computation cycle, to 
smoothen the bias or gain field. This filtering introduces an 
extra step into each optimization cycle, after proceeding with 
(8) or (13). 

Several, not only FCM-based INU compensation approaches 
apply large sized, 11-31 pixels wide averaging filters 
performed once or several times in each cycle (Wells et al., 
1996; Zhao et al., 2007). These filters efficiently hide tissue 
details, which may appear in the estimated kb  or kg  values, 
but also transfer bias or gain components to distantly situated 
pixels. Using larger averaging windows amplifies this latter 
undesired effect. In order to reduce the transfer of bias data to 
distant pixels, we need to check the necessity of averaging at 
all locations, and decide to proceed or skip the averaging 
accordingly. Averaging is declared necessary or not, based on 
the maximum intensity difference encountered within a small 
neighbourhood of the pixel. The computation of the 
maximum difference is accomplished by a morphological 

gradient operation using a 3×3 square or slightly larger cross-
shaped structuring element. Wherever the morphological 
gradient value exceeds the previously set threshold value θ , 
the averaged bias or gain value will be used; otherwise the 
estimated value is validated. The proposed filter can be easily 
implemented and efficiently performed by batch-type image 
processing operations. 

2.4. Multi-stage bias and gain field estimation 

Bias or gain field estimation using the previous FCM-based 
approaches (Ahmed et al., 2002; Siyal and Yu, 2005; Zhao et 
al., 2007) can only handle the INU artefact to a limited 
amplitude. For any pixel, the FCM algorithm assigns the 
highest fuzzy membership to the closest cluster. 
Consequently, when the INU amplitude is comparable with 
the distance between clusters, these pixels will be attracted by 
the wrong cluster, and the bias or gain field will be estimated 
accordingly. The smoothening of the bias and gain field may 
repair this kind of misclassifications, but the larger these 
wrongly labelled spots are, the harder will be to eliminate 
them via smoothing. 

In order to deal with high-amplitude INU artefacts, we 
propose performing the bias or gain field estimation in 
multiple stages. When the FCM-based algorithm given by 
(6)-(8) of (11)-(13) has converged, we modify the input 
(observed) image according to the estimated bias or gain 
field: 

k
old

kk byy −= )( , or k
old

kk gyy /)(= , (14) 

and then restart the algorithm from the beginning, using the 
modified input image. 

2.5. Algorithm 

The presented algorithm can be summarized as follows: 

1. Remove the Gaussian and impulse noises from the MR 
image using the context dependent pre-filtering technique.  

2. Initialize cluster prototypes iv  with random values that 
differ from each other. 

3. Initialize the bias (gain) field values with 0-mean (1-mean) 
random numbers having reduced variance, or simply set 

0=kb  ( 1=kg ) for any pixel k. 

4. Compute new fuzzy membership function values iku , 
ci K1= , nk K1= ,  using (6) or (11),. 

5. Compute new cluster prototype values iv , ci K1= , using 
(7) or (12). 

6. Perform new bias or gain field estimation for each pixel k 
using (8) or (13). 

7. Smoothen the bias or gain field using the proposed 
smoothing filter. 
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8. Repeat steps 4-7 until there is no relevant change in the 
cluster prototypes. This is tested by comparing any norm of 
the difference between the new and the old vector v with a 
preset small constant ε. 

9. Modify the input image according to the estimated bias or 
gain field using (14), and repeat steps 2-8 until the INU 
artefact is compensated. The algorithm usually requires a 
single repetition. 

3. RESULTS AND DISCUSSION 

We applied the presented filtering and segmentation 
techniques to several T1-weighted real MR images, 
artificially contaminated with different kinds of noises. Fig. 
1. demonstrates the efficiency of the pre-filtering technique 
on a real MR slice taken from Internet Brain Segmentation 
Repository (Worth, 2000). 

 

Fig. 1. Elimination of impulse and Gaussian noises 
demonstrated with a real T1-weighted MR brain image 
contaminated with artificial noise: (a) original, (b) filtered, 
(c) FCM segmentation after correction 

 

Fig. 2. Inhomogeneity correction using a phantom: (a) 
original, (b) FCM segmentation result without correction, (c) 
estimated bias field, (d) segmentation result based on bias 
field estimation, (e) estimated gain field, (d) segmentation 
result based on gain field estimation 

The results of bias and gain field estimation performed on a 
phantom image are shown in Fig. 2. Conventional FCM is 
unable to compensate the INU artefact, but with the use of 
smoothed bias or gain field, this phenomenon is efficiently 
overcome.   

In case of low-amplitude inhomogeneity, a single stage of 
bias or gain field estimation is sufficient. Fig. 3. shows the 

accuracy and efficiency of the proposed segmentation 
technique, using a real T1-weighted MR brain slice. The 
presence of the smoothening filter supports the accurate 
segmentation, while the pre-filter has a regularizer effect on 
the final result. 

 

Fig. 3. Inhomogeneity correction demonstrated on an 
artificially contaminated real MR image: (a) original, (b) 
FCM segmentation without correction, (c) result of FCM-
based segmentation with no pre-filtering, (d) result of FCM-
based segmentation with context sensitive pre-filtering 

 

Fig. 4. Segmentation of a heavily inhomogeneous real MR 
image: (a) original, (b) segmentation without compensation, 
(c) bias field estimated in the first stage, (d) compensated MR 
image after first stage, (e) FCM-based segmentation after first 
stage, still unusable, (f) bias field estimated in the second 
stage, (g) final compensated image, (h) segmented image, (i) 
a smoothening mask computed by the proposed filter 

Fig. 4. shows the intermediary and final result of a 
segmentation process, performed on a heavily INU-
contaminated MR image. The inhomogeneity correction 
succeeds after two stages. Fig. 4(i) shows the behaviour of 
the proposed filtering technique: white pixels indicate places 
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which required averaging in a given computational cycle, 
while black ones signifies those places where averaging was 
unnecessary.  

Table 1.  Misclassification rates (in %) with 
various  smoothening filters, in case of heavily 

INU-contaminated MR images 

Averaging 
window size 11 

Averaging 
window size 19

Structuring 
element 

once 3 times  Once 3 times
Averaging 7.357 5.766 4.368 7.141 
3×3 square 6.281 6.201 2.852 3.379 
5×5 cross 6.711 5.674 3.873 3.938 
7×7 cross 6.254 5.518 3.470 5.029 
11×11 cross 6.351 4.432 3.271 6.437 
 

Table 1. shows the misclassification percentages of the 
proposed INU compensation and MR image segmentation 
method, depending on the size of the averaging window 
expressed in pixels, the structuring element of the 
morphological criterion of the proposed filter, and the 
number of smoothening iterations performed in each cycle of 
the modified FCM algorithm. The experimental data reveal 
that the proposed filtering technique improves the 
segmentation quality assured by the averaging filter. The best 
segmentation was obtained using a 3×3 square shaped 
structuring element used by the morphological criterion, 
combined with averaging using a window size of 19×19 
pixels. 

Using several repetitive stages during INU compensation 
may reduce the intensity difference between tissue classes, 
which leads to misclassifications. That is why the estimation 
is limited to two steps, performing several stages is not 
recommendable.   

4. CONCLUSIONS 

A novel smoothing filter has been proposed to assist bias or 
gain field estimation embedded into the conventional FCM 
algorithm scheme. The proposed method proved to segment 
accurately and efficiently MR images in the presence of 
intensity non-uniformity. Although the proposed method 
segments 2-D MR brain slices, it gives a relevant 
contribution to the accurate volumetric segmentation of the 
brain, because the segmented images and the obtained fuzzy 
memberships can serve as excellent input data to any level set 
method that constructs 3-D cortical surfaces. Further works 
aim at developing a context sensitive pre-filter for the 
elimination of INU artefacts, too, so that the segmentation 
can be performed using a histogram-based quick FCM 
algorithm.  
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