
     

An Implementation Environment for Automated Manufacturing Systems 
 

Ricardo A. Diogo, Carlos A. Vicari, Eduardo de F. R. Loures, Marco A. Busetti,  

Eduardo A. P. Santos 
 

Pontifical Catholic University of Paraná, Curitiba, CO 80215-901 Brazil 

(Tel: +55(41)3271-1333; e-mail: r.diogo, carlos.vicari, eduardo.loures, marco.busetti, eduardo.portela@pucpr.br) 

Abstract: This paper presents an implementation environment applied to reconfigurable processes in 

automated manufacturing systems. This environment is based on a methodology which consists of a cyclic 

three-stage development – modeling, synthesis and implementation – until the real system accomplishes 

the required specification, resulting in the project of the automated system. This kind of development 

allows a continuous result revision of each stage. The present paper describes the methodology and details 

of components of the proposed environment.  

 

1. INTRODUCTION 

In order to be competitive, manufacturing, more than any 

other activity area in economy, needs to continuously adapt to 

changes in the market. The increase in global competition is 

pushing enterprises to reduce the time response when 

launching new products and to offer competitive prices. 

Diversity, fluctuations in demand, the short life cycle of 

products due to the frequent introduction of new needs, in 

addition to the increase in the client’s expectations in terms of 

quality and delivery time, are nowadays the main challenges 

with which companies have to deal in order to keep 

competitiveness and stay in the market. 

Moore et al. (2003) add that the system flexibility is related to 

a control system’s implementation time. Generally, the 

system’s flexibility imposes that the implementation time for 

new applications, which can demand the reconfiguration of 

software and hardware, be as short as possible, since new 

products invariably have new requirements and specifications 

related to automation, layout and integration. In order to 

approach the flexibility issue in the context of reconfigurable 

processes, it is essential to establish systematic procedures 

that may characterize the development cycle of a control 

system. This systematization consists of using formal models 

for analysis, synthesis and implementation of control systems 

for Discrete Event Systems (DES). A DES can be defined as a 

dynamic system that evolves according to the occurrence of 

events. A classical example of DES is a manufacturing system 

(Cassandras & Lafortune, 1999). 

The model proposed by Ramadge & Wonham (1989) allows 

an automatic control synthesis process instead of the usual 

manual and heuristic procedures. In addition to this 

advantage, the synthesis procedure demands that the obtained 

supervisor must always fulfill the control specifications. This 

way, new control systems may be rapidly and automatically 

designed when modifications, such as redefinition of 

specifications and physical changes, are necessary. For these 

reasons, the present work uses the Supervisory Control 

Theory (SCT) as a formal tool to obtain the supervisors for 

the manufacturing automated systems. 

This work initially presents an approach for the project and 

for the development of the control system in a context of 

reconfigurable processes. The contribution of the proposed 

approach consists of treating the manufacturing automated 

systems project with higher efficiency, effectiveness and 

reliability when new applications are necessary. Such 

applications might come from the insertion of new products, 

from the reconfiguration of processes and existing products, 

from new demanding necessities or from technological 

modernization, among others. 

Secondly, this paper presents its main proposal: an 

environment for the accomplishment of the third step in the 

development cycle-implementation. Such environment makes 

use of a software and hardware devices in order to 

progressively implement and validate the control structure 

based on the SCT, and obtained in the synthesis stage. In this 

environment, simulation is systematically used. Furthermore, 

the present work introduces the Dynamic Environment (DE), 

a SCADA-based software (Supervisory Control And Data 

Acquisition) which aims for the integration of both the virtual 

(simulation) and real models (plant controllers).  In order to 

develop the DE and the simulation environment and integrate 

them with the physical system, some concepts from Hibino et 

al (2006), Holst et al (2000), Holst et al (2001) and Min et al 

(2002) were studied. 

This paper is structured as follows: section 2 introduces SCT 

fundamentals; section 3 presents the development cycle 

proposed to the design of reconfigurable automated systems; 

section 4 presents an application example; section 5 details 

the implementation stage, presenting all the software and 

hardware devices used; finally, chapter 6 brings the paper’s 

final conclusions, drawbacks and perspectives. 

2. SUPERVISORY CONTROL THEORY (SCT) 

The SCT  (Ramadge & Wonham, 1989) was developed as a 

proposal for a formal methodology for the automatic synthesis 

of optimum controllers for DES. The main premise of a SCT 

is the plant and specification modeling by means of Formal 

Languages and Automata (Carrol & Long, 1989). The 

resulting supervisor generates the maximum controllable 
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language, i.e., the most permissible control action. In this 

theory, a system (called a plant) is modeled by an automaton, 

and it is assumed to have an uncontrolled behavior that may 

violate some required properties (e.g., safety). Hence, this 

behavior has to be modified by means of a feedback controller 

(a supervisor) in order to achieve a given set of requirements 

(Ramadge & Wonham, 1989). In order to do that, the 

supervisor acts on the plant by forbidding some discrete 

events and allowing others.  

Queiroz and Cury (2000) extend the SCT with a modular 

approach named Local Modular Control (LMC). This 

approach takes advantage of the natural modularity of the 

physical system and control specifications for the synthesis of 

supervisors. Queiroz and Cury (2002) propose an architecture 

for structuring a modular supervisory Control System (CS). 

According to this architecture, the logical structure of the 

control program is composed of three levels: Modular 

Supervisors (MS), Product System (PS) and Operational 

Procedures (OP). Such levels carry out the control action of 

the supervisors and act as an interface between the theoretical 

model and the physical system to be controlled. This control 

structure is shown in Figure 1. 

 

Fig. 1. Control architecture proposed by Queiroz and Cury  

Based on architecture proposed by Queiroz and Cury (2002), 

Vieira et al. (2006) define a model for Programmable Logic 

Controller (PLC) implementation that preserves the natural 

modularity of the physical system and synthesized 

supervisors. This model leads the designer to systematically 

convert the set of supervisors and the set of automata 

describing the free behavior of the physical system into a set 

of Sequential Function Charts (SFC). The obtained PLC 

program is in accordance with the IEC 61131-3 (1993). The 

LMC architecture proposed by Queiroz and Cury (2002) and 

the implementation method proposed by Vieira et al. (2006) 

are used in our implementation environment as fundamental 

theoretical tools.   

3. PROPOSED DEVELOPMENT APPROACH 

The proposed implementation environment supports the 

development cycle of control system used by our research 

group. Figure 2 shows the development cycle, which is 

characterized by three stages: modeling, synthesis and 

implementation. In the modeling stage we select from the 

subsystem and specification libraries a set of models to 

represent the real system and the application, respectively. In 

the synthesis stage, those models are used to generate MS, 

according to the SCT (Ramadge & Wonham, 1989) and the 

LMC. In the implementation stage, the three levels of control 

structures are integrated according to Queiroz and Cury 

(2002) and gradually implemented in three steps: simulation, 

simulation and insertion of Control and Communication 

Technologies (CCT), and execution. 

 

Fig. 2. Development cycle proposed 

The control system development occurs cyclically in three 

stages – modeling, synthesis and implementation – up to the 

moment in which it complies with the real system’s demanded 

application, thus resulting in an integrated and automated 

system. This development mode allows a continuous review 

of the results obtained in each step. By doing this, the 

designer can receive a new application (for example, a need 

for processes reconfiguration) and select new specification or 

subsystem models, which will appropriately comply with this 

new application. 

4. AN APPLICATION EXAMPLE 

This section presents an application example that will be 

employed to illustrate the implementation environment 

proposed in this paper. This is example is used in this paper as 

a basis for the experiment accomplishment. Figure 3 presents 

this system, which is made up of three machines and two 

buffers, one between the machines 1 and 3, and another one 

between machines 2 and 3. The automata associated to the 

machines are also shown in figure 3, where: M1 in state 0 

means machine not working and in state 1, working; the same 

occurs to M2; M3 in state 0 means robot manipulator not 

working, in state 1, taking piece from B1 to B2, and in state 2, 

returning to the not-working position. The α events are 

controllable events (beginning of operation), β and µ events 

are uncontrollable events (end of operation). According to 

SCT, controllable events can be disabled by supervisors and 

uncontrollable events cannot. 

The objective is to use, in its utmost, the available resources 

in a correct and safe way. This way, the processing of several 

pieces in the system cannot cause buffers underflow or 

overflow. These two specifications are represented by the 

automata shown in figure 4. This figure also presents the 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10553



 

 

     

 

reduced MS obtained by the synthesis procedure described in 

Vaz and Wonham (1986). The events into a square are 

disabled events. They cannot occur in the corresponding states 

of MS. 

 

Fig. 3. Subsystems models 

 

Fig. 4. Specifications and reduced modular supervisors 

5. IMPLEMENTATION STAGE 

This section describes the dynamic environment which is used 

to support the implementation stage of development cycle (see 

Figure 1). Firstly, the automata corresponding to obtained 

reduced supervisors and the subsystems models are 

implemented in the control structure according to Queiroz and 

Cury (2002). Also, this structure is coded into a PLC program 

according to Vieira et al. (2006). To do that, it is necessary to 

stablishes the variables necessary to code the control 

structure. See table 1 with i = 1, 2, 3. 

Table 1.  Control Structure Variables 

Controllable 

event 

Associated 

command 

Uncontrollable 

event 

Associated 

response 

αi Cmdαi βi Rpsβi 

  µ i Rpsµ i 

According to Figure 2, the implementation stage includes 

three steps: Simulation, Simulation + CCT and Execution. In 

the implementation stage’s first step, we simulate the CS’ 

three levels (MS, PS and OP). To do that, the PLC is attached 

to a plant simulator (Arena®) (Rockwell Automation, 2007) so 

that both may exchange signals (commands and responses). In 

the simulator, the subsystems are implemented according to 

the real system’s configuration, which was used for the PS 

generation. This way, the simulation occurs according to the 

restrictions imposed by the MS. The simulation result allows 

us to evaluate the completion and correctness in the 

subsystem or specification models. The control structure 

simulation is useful either to do the first validation of the built 

models (subsystems and specifications) or to detect 

modifications and the necessary inclusions. The designer may 

start to run the MS level and the PS, and follow the evolution 

of the states and associated control actions. 

In the implementation stage’s second step, the subsystems 

implemented in the plant simulator are progressively 

substituted by real components of the plant that runs the real 

OP (e.g. PLC, PC-based control). This way, the PLC 

communicates simultaneously with the plant simulator and the 

real subsystems by inserting CCT. In this step, it is possible to 

progressively validate the control structure (software), when it 

is connected to the real system, and to analyse questions 

related to the distribution of the physical control system 

(hardware).   

In the third step, the devices (e.g. PLC, PC-based control) that 

implement the OP are completely attached to the respective 

sensors and actuators in the real subsystems.  

5.1 Dynamic Environment 

To make the implementation’s three stages possible, a 

computer platform must be conceived in order to establish the 

communication between the PLC and the Simulator. This 

platform is the DE (illustrated on figure 5). This consists of a 

computer platform that accomplishes several operations: i) It 

sends to the Simulator the commands (Cmdαi) generated in 

the Central PLC; ii) It receives acknowledgements 

(AckCmdαi) from the Simulator. This is done to turn off the 

corresponding command in the Central PLC; iii) It receives 

responses (Rpsβi) from the Simulator and sends to the Central 

PLC to generate the corresponding uncontrollable events; iv) 

It sends to Simulator acknowledgements (AckRpsβi) from the 

Central PLC. This is done to turn off in the Simulator the 

corresponding reply; v) It has a interface to switch between 

the build-in simulation and the real environment. However, 

the simulation carries on running with the real subsystem. So, 

DE reverses the responses and corresponding 

acknowledgments when a real subsystem is connected. This is 

done to stop the generation of responses by the Simulator. In 

this case the Simulator receives the responses from the 

corresponding real OP and generated the acknowledgement to 

the Local PLC. By using this technique, it is possible to 

retrieve real information from the manufacturing system. 

DE was made use of a SCADA software named Elipse E3 

(Elipse Software, 2007) to accomplish the DE. This platform 

was chosen due to the fact that it comprises programs which 

enable the communication with peripheral devices (drivers), it 

enables system integration with other software via Data Base 

(DB), and mainly, due to the feasibility of generating program 

libraries. Particularly, this feature allows us to store 

subsystems’ models (and their respective signals, according to 

the three-level implementation model).  

The methodology presented in this paper makes use of a 

Dynamic Environment Communication Model Library 

(DECML) (see figure 5). This library stores models from the 

proposed development modeling cycle’s stage (see figure 2). 

In so doing, implementation projects may make use of project 

models already accomplished. 

5.2 Simulation and the Dynamic Environment 

According to the development cycle shown in figure 2, the 

first implementation step corresponds to the simulation of the 
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plant under study. As described in section 3, simulation takes 

place by considering restrictions imposed by the MS. And to 

make this approach possible, the DE is connected to the 

Simulator, so that they switch signals between them. Each 

DECML model comprises a pair of communication channels. 

In that case, the DE’s goal is enabling the simulation to occur 

from events sent by the central PLC. Also, it is necessary to 

conceive an internal codification in the Simulator, so that both 

the communication with the DE and the simulation geared to 

external events be possible. 

As described before, Arena® was the simulation environment 

chosen. Based on an architecture divided into levels as stated 

by ISO TR10314-1, an adaptation of the model proposed by 

Hinino et al (2006) is intended. This way, the simulation is 

divided into three levels, according to figure 6. 

The interface level is the first one, and it is responsible for the 

communication between the simulation environment and the 

DE. Its main purpose is to perform the reading of the 

commands sent by the DE, process them, and run the OP 

related to each command. The commands sent from the PLC 

to the DE are stored in a DB, and read by the Simulator 

afterwards. Also in the Simulator, a codified decision-taking 

structure defines which commands have a true logical value. 

In that case, the interface level sends a signal to the OP level, 

otherwise it waits for a new DB reading. 

The second level is called OP level, and it is responsible for 

sending the commands from the interface level to the virtual 

models level. In order to minimize the data processing time, 

the event linked to a reply will be directly sent from the DE to 

the DB, without being processed by the interface level. At this 

level, log generation is intended. Such logs should contain 

quantitative data over the plant’s productive capacity. Thus, 

not only the control structure’s validation is possible, but also 

the decision-taking over the available resources’ planning in 

the plant. 

The third level is the Virtual Models level. It is responsible for 

the simulation of the subsystems, which make up the plant 

under study. In that case, this level has a direct 

communication with the OP’s level, both sending and 

receiving commands and responses, respectively. At this 

level, virtual models are formed by taking into consideration 

the physical disposition of both the real plant and the PS 

model. This way, for every subsystem model which is part of 

the PS, there is a corresponding virtual subsystem. 

According to the implementation stage proposal, OP may be 

simulated one by one, as shown in figure 7. Firstly, only one 

virtual model is simulated, after that the new models are 

gradually being simulated until achieve the full system 

simulation. By doing that, it is possible to gradually determine 

if the control action imposed by the LMC is correct, or if the 

designer has fully achieved specifications. OP’s gradual 

insertion enables a systematization-enhancing of the obtained 

CS’ verification, and a reliance-enhancing as real subsystems 

are inserted. 

5.3 Simulation + CCT and the Dynamic Environment 

According to the development cycle proposed, CCT are 

inserted in the implementation’s second stage, so that the 

central PLC communicates with the simulator and enables 

data transfer between them. These technologies may cover 

from industrial communication networks to data base, 

computer networks (Ethernet), among others. The industrial 

network is used for data exchange among PLC, the DE and 

the Ethernet network used for exchanging information 

between the DE and the Simulation system. Some of these 

technologies are part of the implementation environment since 

the first stage, once in that stage the central PLC must be 

 
Fig. 5. Implementation details 
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connected to the DE. It is considered, however, that the main 

insertion refers to the connection of technologies associated 

with the real plant. 

Gradually, Real Physical Subsystems (RPS) are inserted in the 

communication structure, as illustrated in figure 8. Each RPS 

controller runs a related OP. The signal exchange between the 

central PLC, responsible for the supervisory control structure, 

and the local PLC, which run the OP, is done by means of 

commands and responses, according to Vieira et al. (2006). 

This way, RPS are progressively performed, parallel to the 

virtual subsystems simulation. During this stage the DE thus 

acts as the PLC (central and local) and the Simulator’s 

integrator. 

 

Fig. 6. Levels of simulation environment 

 

Fig. 7. Evolution of the Simulation  

The reply originated from simulation, as a result of the Virtual 

Physical Subsystem (VPS) operation, must be sent to the CS 

only under off-line simulation, as shown in figure 7. In that 

case, the simulator executes only the VPS. In case of an on-

line simulation, a RPS generates the reply after the related 

operation is finished, as demonstrated in figure 8. Therefore, 

the reply-related channel must process such responses to the 

CS only if the implementation environment is under the off-

line simulation mode. RPS responses must, then, be processed 

under on-line simulation. In this case, the reply must be sent 

to the virtual system, since simulation synchronization is 

intended to obtain the time between the beginning and ending 

of a subsystem cycle. By using synchronization, it is possible 

to obtain the approximate time in which manufacturing 

system’s operations are executed. The store data can be used 

in the future to determinate the manufacturing needs. 

However, this synchronization does not occur in real-time, 

because the DE is applied in a non-real-time operational 

system. 

According to Bullock et al (2004), in off-line simulation 

system, the operations are executed as promptly as possible. 

Depending on the operational system and computational 

hardware used, it is possible to simulate hours, days, weeks 

and so on in few seconds. That is done to decrease the project 

lead-time of manufacturing systems. If a physical subsystem 

is inserted, it will run according to the time allowed by its 

physical configuration. However, the part of the system which 

is still simulated can be executed as soon as possible. 

 

Fig. 8. Evolution of the Simulation + CCT 

By using the manufacturing real subsystems’ gradual 

insertion, the CCT expansion occurs as a result of local PLC 

insertion and, consequently, of the industrial network used. 

The implementation of all local PLC (and the associated RPS) 

enables the global behavior of the manufacturing plant to be 

evaluated. In this step, it is possible to progressively validate 

the control structure (software), when it is connected to the 

real system, and to analyse questions related to the 

distribution of the physical control system (hardware). It is 

also possible to get data from the physical system through the 

simulation environment. This way, it is possible to determine 

productive needs and capacity, and consequently verify 

whether the manufacturing system is adapted to supply the 

production demand. 

5.4 Execution and the Dynamic Environment 

At this point, all RPS are connected to the implementation 

environment and the plant’s global behavior can be fully 

analyzed. It means that the devices (e.g. PLC, PC-based 

control) that implement the OP are completely attached to the 

respective sensors and actuators in the real subsystems. The 

responses generated by the local PLC are sent to the central 

PLC and to the Simulator (non-controllable events 

synchronization). In so doing, responses geared to the CS do 

not pass through the DE, only the ones geared to simulation, 

as shown in figure 8. 
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Still at this stage, productive processes can be continuously 

analyzed in the simulation environment by getting the 

production lead-times obtained through the DE. According to 

the logs returned, new capacities and productive needs can be 

determined. If that happens, the whole Development Cycle is 

started, but only to determine new models of subsystems and 

new operation specifications. After the synthesis of these 

models and specifications, the implementation stage is 

executed again. 

6. CONCLUSIONS 

This work presented an implementation environment applied 

to reconfigurable processes in automated manufacturing 

systems.  The insertion of the SCT, computational tools for 

synthesis and simulation, subsystems and specifications 

models libraries, brought a reduction of the manufacturing 

system’s development time. The SCT is a formal approach 

that allows automatic synthesis of supervisors. Model libraries 

make the modeling step easier and allow models to be reused 

in subsequent projects. The integration of the simulation and 

implementation steps allowed a greater liability for validating, 

optimizing and accomplishing the CS. 

Control structure simulation and the progressive 

implementation of control devices are also characterized as 

important tools for the methodology consolidation. These 

tools allow a time reduction in the global carrying out of the 

manufacturing automated and integrated system. In addition, 

by making use of a progressive implementation, the 

maintenance staff may scan and repair unexpected problems 

before and after the complete software and hardware’s 

execution. This feature surely enhances the global project’s 

reliance, and the maintenance staff’s prompt response. 

The proposed methodology still presents some limitations and 

this allows us to presume the continuity of the work that was 

developed. A drawback of the methodology application is 

associated with the progressive implementation of the control 

structure. Since this technique makes use of CCT, several 

problems related to integration and automation occur during 

implementation. The main cause of such problems is the 

adoption of proprietary systems (e.g. communication 

protocols, industrial networks, software, among others) by the 

existing manufacturers in the market. Traditionally, each 

equipment, device or software maker adopts a specific model 

or system. The drawback lies exactly in dealing with 

technologically heterogeneous systems, once the progressive 

establishment of communication with the various devices that 

control the plant is necessary. 
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