

An Implementation Environment for Automated Manufacturing Systems

Ricardo A. Diogo, Carlos A. Vicari, Eduardo de F. R. Loures, Marco A. Busetti,

Eduardo A. P. Santos

Pontifical Catholic University of Paraná, Curitiba, CO 80215-901 Brazil

(Tel: +55(41)3271-1333; e-mail: r.diogo, carlos.vicari, eduardo.loures, marco.busetti, eduardo.portela@pucpr.br)

Abstract: This paper presents an implementation environment applied to reconfigurable processes in

automated manufacturing systems. This environment is based on a methodology which consists of a cyclic

three-stage development – modeling, synthesis and implementation – until the real system accomplishes

the required specification, resulting in the project of the automated system. This kind of development

allows a continuous result revision of each stage. The present paper describes the methodology and details

of components of the proposed environment.

1. INTRODUCTION

In order to be competitive, manufacturing, more than any

other activity area in economy, needs to continuously adapt to

changes in the market. The increase in global competition is

pushing enterprises to reduce the time response when

launching new products and to offer competitive prices.

Diversity, fluctuations in demand, the short life cycle of

products due to the frequent introduction of new needs, in

addition to the increase in the client’s expectations in terms of

quality and delivery time, are nowadays the main challenges

with which companies have to deal in order to keep

competitiveness and stay in the market.

Moore et al. (2003) add that the system flexibility is related to

a control system’s implementation time. Generally, the

system’s flexibility imposes that the implementation time for

new applications, which can demand the reconfiguration of

software and hardware, be as short as possible, since new

products invariably have new requirements and specifications

related to automation, layout and integration. In order to

approach the flexibility issue in the context of reconfigurable

processes, it is essential to establish systematic procedures

that may characterize the development cycle of a control

system. This systematization consists of using formal models

for analysis, synthesis and implementation of control systems

for Discrete Event Systems (DES). A DES can be defined as a

dynamic system that evolves according to the occurrence of

events. A classical example of DES is a manufacturing system

(Cassandras & Lafortune, 1999).

The model proposed by Ramadge & Wonham (1989) allows

an automatic control synthesis process instead of the usual

manual and heuristic procedures. In addition to this

advantage, the synthesis procedure demands that the obtained

supervisor must always fulfill the control specifications. This

way, new control systems may be rapidly and automatically

designed when modifications, such as redefinition of

specifications and physical changes, are necessary. For these

reasons, the present work uses the Supervisory Control

Theory (SCT) as a formal tool to obtain the supervisors for

the manufacturing automated systems.

This work initially presents an approach for the project and

for the development of the control system in a context of

reconfigurable processes. The contribution of the proposed

approach consists of treating the manufacturing automated

systems project with higher efficiency, effectiveness and

reliability when new applications are necessary. Such

applications might come from the insertion of new products,

from the reconfiguration of processes and existing products,

from new demanding necessities or from technological

modernization, among others.

Secondly, this paper presents its main proposal: an

environment for the accomplishment of the third step in the

development cycle-implementation. Such environment makes

use of a software and hardware devices in order to

progressively implement and validate the control structure

based on the SCT, and obtained in the synthesis stage. In this

environment, simulation is systematically used. Furthermore,

the present work introduces the Dynamic Environment (DE),

a SCADA-based software (Supervisory Control And Data

Acquisition) which aims for the integration of both the virtual

(simulation) and real models (plant controllers). In order to

develop the DE and the simulation environment and integrate

them with the physical system, some concepts from Hibino et

al (2006), Holst et al (2000), Holst et al (2001) and Min et al

(2002) were studied.

This paper is structured as follows: section 2 introduces SCT

fundamentals; section 3 presents the development cycle

proposed to the design of reconfigurable automated systems;

section 4 presents an application example; section 5 details

the implementation stage, presenting all the software and

hardware devices used; finally, chapter 6 brings the paper’s

final conclusions, drawbacks and perspectives.

2. SUPERVISORY CONTROL THEORY (SCT)

The SCT (Ramadge & Wonham, 1989) was developed as a

proposal for a formal methodology for the automatic synthesis

of optimum controllers for DES. The main premise of a SCT

is the plant and specification modeling by means of Formal

Languages and Automata (Carrol & Long, 1989). The

resulting supervisor generates the maximum controllable

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10552 10.3182/20080706-5-KR-1001.3748

language, i.e., the most permissible control action. In this

theory, a system (called a plant) is modeled by an automaton,

and it is assumed to have an uncontrolled behavior that may

violate some required properties (e.g., safety). Hence, this

behavior has to be modified by means of a feedback controller

(a supervisor) in order to achieve a given set of requirements

(Ramadge & Wonham, 1989). In order to do that, the

supervisor acts on the plant by forbidding some discrete

events and allowing others.

Queiroz and Cury (2000) extend the SCT with a modular

approach named Local Modular Control (LMC). This

approach takes advantage of the natural modularity of the

physical system and control specifications for the synthesis of

supervisors. Queiroz and Cury (2002) propose an architecture

for structuring a modular supervisory Control System (CS).

According to this architecture, the logical structure of the

control program is composed of three levels: Modular

Supervisors (MS), Product System (PS) and Operational

Procedures (OP). Such levels carry out the control action of

the supervisors and act as an interface between the theoretical

model and the physical system to be controlled. This control

structure is shown in Figure 1.

Fig. 1. Control architecture proposed by Queiroz and Cury

Based on architecture proposed by Queiroz and Cury (2002),

Vieira et al. (2006) define a model for Programmable Logic

Controller (PLC) implementation that preserves the natural

modularity of the physical system and synthesized

supervisors. This model leads the designer to systematically

convert the set of supervisors and the set of automata

describing the free behavior of the physical system into a set

of Sequential Function Charts (SFC). The obtained PLC

program is in accordance with the IEC 61131-3 (1993). The

LMC architecture proposed by Queiroz and Cury (2002) and

the implementation method proposed by Vieira et al. (2006)

are used in our implementation environment as fundamental

theoretical tools.

3. PROPOSED DEVELOPMENT APPROACH

The proposed implementation environment supports the

development cycle of control system used by our research

group. Figure 2 shows the development cycle, which is

characterized by three stages: modeling, synthesis and

implementation. In the modeling stage we select from the

subsystem and specification libraries a set of models to

represent the real system and the application, respectively. In

the synthesis stage, those models are used to generate MS,

according to the SCT (Ramadge & Wonham, 1989) and the

LMC. In the implementation stage, the three levels of control

structures are integrated according to Queiroz and Cury

(2002) and gradually implemented in three steps: simulation,

simulation and insertion of Control and Communication

Technologies (CCT), and execution.

Fig. 2. Development cycle proposed

The control system development occurs cyclically in three

stages – modeling, synthesis and implementation – up to the

moment in which it complies with the real system’s demanded

application, thus resulting in an integrated and automated

system. This development mode allows a continuous review

of the results obtained in each step. By doing this, the

designer can receive a new application (for example, a need

for processes reconfiguration) and select new specification or

subsystem models, which will appropriately comply with this

new application.

4. AN APPLICATION EXAMPLE

This section presents an application example that will be

employed to illustrate the implementation environment

proposed in this paper. This is example is used in this paper as

a basis for the experiment accomplishment. Figure 3 presents

this system, which is made up of three machines and two

buffers, one between the machines 1 and 3, and another one

between machines 2 and 3. The automata associated to the

machines are also shown in figure 3, where: M1 in state 0

means machine not working and in state 1, working; the same

occurs to M2; M3 in state 0 means robot manipulator not

working, in state 1, taking piece from B1 to B2, and in state 2,

returning to the not-working position. The α events are

controllable events (beginning of operation), β and µ events

are uncontrollable events (end of operation). According to

SCT, controllable events can be disabled by supervisors and

uncontrollable events cannot.

The objective is to use, in its utmost, the available resources

in a correct and safe way. This way, the processing of several

pieces in the system cannot cause buffers underflow or

overflow. These two specifications are represented by the

automata shown in figure 4. This figure also presents the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10553

reduced MS obtained by the synthesis procedure described in

Vaz and Wonham (1986). The events into a square are

disabled events. They cannot occur in the corresponding states

of MS.

Fig. 3. Subsystems models

Fig. 4. Specifications and reduced modular supervisors

5. IMPLEMENTATION STAGE

This section describes the dynamic environment which is used

to support the implementation stage of development cycle (see

Figure 1). Firstly, the automata corresponding to obtained

reduced supervisors and the subsystems models are

implemented in the control structure according to Queiroz and

Cury (2002). Also, this structure is coded into a PLC program

according to Vieira et al. (2006). To do that, it is necessary to

stablishes the variables necessary to code the control

structure. See table 1 with i = 1, 2, 3.

Table 1. Control Structure Variables

Controllable

event

Associated

command

Uncontrollable

event

Associated

response

αi Cmdαi βi Rpsβi

 µ i Rpsµ i

According to Figure 2, the implementation stage includes

three steps: Simulation, Simulation + CCT and Execution. In

the implementation stage’s first step, we simulate the CS’

three levels (MS, PS and OP). To do that, the PLC is attached

to a plant simulator (Arena®) (Rockwell Automation, 2007) so

that both may exchange signals (commands and responses). In

the simulator, the subsystems are implemented according to

the real system’s configuration, which was used for the PS

generation. This way, the simulation occurs according to the

restrictions imposed by the MS. The simulation result allows

us to evaluate the completion and correctness in the

subsystem or specification models. The control structure

simulation is useful either to do the first validation of the built

models (subsystems and specifications) or to detect

modifications and the necessary inclusions. The designer may

start to run the MS level and the PS, and follow the evolution

of the states and associated control actions.

In the implementation stage’s second step, the subsystems

implemented in the plant simulator are progressively

substituted by real components of the plant that runs the real

OP (e.g. PLC, PC-based control). This way, the PLC

communicates simultaneously with the plant simulator and the

real subsystems by inserting CCT. In this step, it is possible to

progressively validate the control structure (software), when it

is connected to the real system, and to analyse questions

related to the distribution of the physical control system

(hardware).

In the third step, the devices (e.g. PLC, PC-based control) that

implement the OP are completely attached to the respective

sensors and actuators in the real subsystems.

5.1 Dynamic Environment

To make the implementation’s three stages possible, a

computer platform must be conceived in order to establish the

communication between the PLC and the Simulator. This

platform is the DE (illustrated on figure 5). This consists of a

computer platform that accomplishes several operations: i) It

sends to the Simulator the commands (Cmdαi) generated in

the Central PLC; ii) It receives acknowledgements

(AckCmdαi) from the Simulator. This is done to turn off the

corresponding command in the Central PLC; iii) It receives

responses (Rpsβi) from the Simulator and sends to the Central

PLC to generate the corresponding uncontrollable events; iv)

It sends to Simulator acknowledgements (AckRpsβi) from the

Central PLC. This is done to turn off in the Simulator the

corresponding reply; v) It has a interface to switch between

the build-in simulation and the real environment. However,

the simulation carries on running with the real subsystem. So,

DE reverses the responses and corresponding

acknowledgments when a real subsystem is connected. This is

done to stop the generation of responses by the Simulator. In

this case the Simulator receives the responses from the

corresponding real OP and generated the acknowledgement to

the Local PLC. By using this technique, it is possible to

retrieve real information from the manufacturing system.

DE was made use of a SCADA software named Elipse E3

(Elipse Software, 2007) to accomplish the DE. This platform

was chosen due to the fact that it comprises programs which

enable the communication with peripheral devices (drivers), it

enables system integration with other software via Data Base

(DB), and mainly, due to the feasibility of generating program

libraries. Particularly, this feature allows us to store

subsystems’ models (and their respective signals, according to

the three-level implementation model).

The methodology presented in this paper makes use of a

Dynamic Environment Communication Model Library

(DECML) (see figure 5). This library stores models from the

proposed development modeling cycle’s stage (see figure 2).

In so doing, implementation projects may make use of project

models already accomplished.

5.2 Simulation and the Dynamic Environment

According to the development cycle shown in figure 2, the

first implementation step corresponds to the simulation of the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10554

plant under study. As described in section 3, simulation takes

place by considering restrictions imposed by the MS. And to

make this approach possible, the DE is connected to the

Simulator, so that they switch signals between them. Each

DECML model comprises a pair of communication channels.

In that case, the DE’s goal is enabling the simulation to occur

from events sent by the central PLC. Also, it is necessary to

conceive an internal codification in the Simulator, so that both

the communication with the DE and the simulation geared to

external events be possible.

As described before, Arena® was the simulation environment

chosen. Based on an architecture divided into levels as stated

by ISO TR10314-1, an adaptation of the model proposed by

Hinino et al (2006) is intended. This way, the simulation is

divided into three levels, according to figure 6.

The interface level is the first one, and it is responsible for the

communication between the simulation environment and the

DE. Its main purpose is to perform the reading of the

commands sent by the DE, process them, and run the OP

related to each command. The commands sent from the PLC

to the DE are stored in a DB, and read by the Simulator

afterwards. Also in the Simulator, a codified decision-taking

structure defines which commands have a true logical value.

In that case, the interface level sends a signal to the OP level,

otherwise it waits for a new DB reading.

The second level is called OP level, and it is responsible for

sending the commands from the interface level to the virtual

models level. In order to minimize the data processing time,

the event linked to a reply will be directly sent from the DE to

the DB, without being processed by the interface level. At this

level, log generation is intended. Such logs should contain

quantitative data over the plant’s productive capacity. Thus,

not only the control structure’s validation is possible, but also

the decision-taking over the available resources’ planning in

the plant.

The third level is the Virtual Models level. It is responsible for

the simulation of the subsystems, which make up the plant

under study. In that case, this level has a direct

communication with the OP’s level, both sending and

receiving commands and responses, respectively. At this

level, virtual models are formed by taking into consideration

the physical disposition of both the real plant and the PS

model. This way, for every subsystem model which is part of

the PS, there is a corresponding virtual subsystem.

According to the implementation stage proposal, OP may be

simulated one by one, as shown in figure 7. Firstly, only one

virtual model is simulated, after that the new models are

gradually being simulated until achieve the full system

simulation. By doing that, it is possible to gradually determine

if the control action imposed by the LMC is correct, or if the

designer has fully achieved specifications. OP’s gradual

insertion enables a systematization-enhancing of the obtained

CS’ verification, and a reliance-enhancing as real subsystems

are inserted.

5.3 Simulation + CCT and the Dynamic Environment

According to the development cycle proposed, CCT are

inserted in the implementation’s second stage, so that the

central PLC communicates with the simulator and enables

data transfer between them. These technologies may cover

from industrial communication networks to data base,

computer networks (Ethernet), among others. The industrial

network is used for data exchange among PLC, the DE and

the Ethernet network used for exchanging information

between the DE and the Simulation system. Some of these

technologies are part of the implementation environment since

the first stage, once in that stage the central PLC must be

Fig. 5. Implementation details

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10555

connected to the DE. It is considered, however, that the main

insertion refers to the connection of technologies associated

with the real plant.

Gradually, Real Physical Subsystems (RPS) are inserted in the

communication structure, as illustrated in figure 8. Each RPS

controller runs a related OP. The signal exchange between the

central PLC, responsible for the supervisory control structure,

and the local PLC, which run the OP, is done by means of

commands and responses, according to Vieira et al. (2006).

This way, RPS are progressively performed, parallel to the

virtual subsystems simulation. During this stage the DE thus

acts as the PLC (central and local) and the Simulator’s

integrator.

Fig. 6. Levels of simulation environment

Fig. 7. Evolution of the Simulation

The reply originated from simulation, as a result of the Virtual

Physical Subsystem (VPS) operation, must be sent to the CS

only under off-line simulation, as shown in figure 7. In that

case, the simulator executes only the VPS. In case of an on-

line simulation, a RPS generates the reply after the related

operation is finished, as demonstrated in figure 8. Therefore,

the reply-related channel must process such responses to the

CS only if the implementation environment is under the off-

line simulation mode. RPS responses must, then, be processed

under on-line simulation. In this case, the reply must be sent

to the virtual system, since simulation synchronization is

intended to obtain the time between the beginning and ending

of a subsystem cycle. By using synchronization, it is possible

to obtain the approximate time in which manufacturing

system’s operations are executed. The store data can be used

in the future to determinate the manufacturing needs.

However, this synchronization does not occur in real-time,

because the DE is applied in a non-real-time operational

system.

According to Bullock et al (2004), in off-line simulation

system, the operations are executed as promptly as possible.

Depending on the operational system and computational

hardware used, it is possible to simulate hours, days, weeks

and so on in few seconds. That is done to decrease the project

lead-time of manufacturing systems. If a physical subsystem

is inserted, it will run according to the time allowed by its

physical configuration. However, the part of the system which

is still simulated can be executed as soon as possible.

Fig. 8. Evolution of the Simulation + CCT

By using the manufacturing real subsystems’ gradual

insertion, the CCT expansion occurs as a result of local PLC

insertion and, consequently, of the industrial network used.

The implementation of all local PLC (and the associated RPS)

enables the global behavior of the manufacturing plant to be

evaluated. In this step, it is possible to progressively validate

the control structure (software), when it is connected to the

real system, and to analyse questions related to the

distribution of the physical control system (hardware). It is

also possible to get data from the physical system through the

simulation environment. This way, it is possible to determine

productive needs and capacity, and consequently verify

whether the manufacturing system is adapted to supply the

production demand.

5.4 Execution and the Dynamic Environment

At this point, all RPS are connected to the implementation

environment and the plant’s global behavior can be fully

analyzed. It means that the devices (e.g. PLC, PC-based

control) that implement the OP are completely attached to the

respective sensors and actuators in the real subsystems. The

responses generated by the local PLC are sent to the central

PLC and to the Simulator (non-controllable events

synchronization). In so doing, responses geared to the CS do

not pass through the DE, only the ones geared to simulation,

as shown in figure 8.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10556

Still at this stage, productive processes can be continuously

analyzed in the simulation environment by getting the

production lead-times obtained through the DE. According to

the logs returned, new capacities and productive needs can be

determined. If that happens, the whole Development Cycle is

started, but only to determine new models of subsystems and

new operation specifications. After the synthesis of these

models and specifications, the implementation stage is

executed again.

6. CONCLUSIONS

This work presented an implementation environment applied

to reconfigurable processes in automated manufacturing

systems. The insertion of the SCT, computational tools for

synthesis and simulation, subsystems and specifications

models libraries, brought a reduction of the manufacturing

system’s development time. The SCT is a formal approach

that allows automatic synthesis of supervisors. Model libraries

make the modeling step easier and allow models to be reused

in subsequent projects. The integration of the simulation and

implementation steps allowed a greater liability for validating,

optimizing and accomplishing the CS.

Control structure simulation and the progressive

implementation of control devices are also characterized as

important tools for the methodology consolidation. These

tools allow a time reduction in the global carrying out of the

manufacturing automated and integrated system. In addition,

by making use of a progressive implementation, the

maintenance staff may scan and repair unexpected problems

before and after the complete software and hardware’s

execution. This feature surely enhances the global project’s

reliance, and the maintenance staff’s prompt response.

The proposed methodology still presents some limitations and

this allows us to presume the continuity of the work that was

developed. A drawback of the methodology application is

associated with the progressive implementation of the control

structure. Since this technique makes use of CCT, several

problems related to integration and automation occur during

implementation. The main cause of such problems is the

adoption of proprietary systems (e.g. communication

protocols, industrial networks, software, among others) by the

existing manufacturers in the market. Traditionally, each

equipment, device or software maker adopts a specific model

or system. The drawback lies exactly in dealing with

technologically heterogeneous systems, once the progressive

establishment of communication with the various devices that

control the plant is necessary.

REFERENCES

Bullock, D., B. Johnson, R. B. Wells, M. Kyte and Z. Li

(2004). Hardware-in-the-loop simulation. Transportation

Research Part C, 73-89, Elsevier, West Lafayette, IN,

USA.

Carrol, J. and D. Long (1989). Theory of finite automata,

Prentice-Hall, Inc, Upper Saddle River, NJ, USA.

Cassandras, C. G. and S. Lafortune (1999). Introduction to

discrete event systems, Kluwer Academic Publishers,

USA.

Elipse Software (2007), available in

<http://www.elipse.com.br>, access in September 19th
,

2007.

Erbe, H. (2002). Low Cost Intelligent Automation in

Manufacturing. In: Proceedings of the 15th Triennial

IFAC World Congress, Barcelona, Spain.

Hibino, H., T. Inukai and Y. Fukuda (2006). Efficient

manufacturing system implementation based on

combination between real and virtual factory.

International Journal of Production Research, 44, 18–19.

Holst, L., L. Randell and G. Bolmsjö (2000). Integrated

Development of Manufacturing Systems Using

Simulation – Proposing the Fundamentals for a Joint

Research Project. In: Proceedings of the 33
rd

 CIRP

International Seminar on Manufacturing Systems: The

Manufacturing Systems in its Human Context – A Tool to

Extend the Global Welfare, 5-7, Stockholm, Sweden.

Holst, L., G. Bolmsjö, L. Randell and J. Norgren (2001).

Integrating Simulation into Manufacturing System

Development: A Methodological Framework. In:

Proceedings of the Twelth Annual Conference of the

Production and Operations Management Society, POM-

2001, Orlando, USA.

IEC 61131-3 (1998). International Electrotechnical

Commission. Programmable Controllers. Programming

Languages.

ISO/TR10314-1 (1990). Industrial Automation: Shop Floor

Production: Part 1: Reference Model for Standardization

and Methodology for Identification of Requirements.

Lauzon, S. C., A. K. L. Ma, J.K Mills and B. Benhabib

(1995). Application of Discrete-Event-System Theory to

Flexible Manufacturing. In: 1995 IEEE International

Conference on Robotics and Automation, Nagoya, Japan.

Min, B., Z. Huang, Z. J. Pasek, D. Yip-Hoi, F. Husted and S.

Marker (2002). Integration of Real-time Control

Simulation to a Virtual Manufacturing Environment.

Journal od Advanced Manufacturing Systems, 1, 67-87.

Moore, P. R., J. Pu and H. C. Ng (2003). Virtual engineering:

an integrated approach to agile manufacturing machinery

design and control. Mechatronics, 13, 1105–1121.

Queiroz, M. H. and J. E. R. Cury (2000). Modular

Supervisory Control of Large Scale Discrete-Event

Systems. In: Proceedings of WODES 2000.

Queiroz, M. H. and J. E. R. Cury (2002). Synthesis and

implementation of local modular supervisory control for a

manufacturing cell. Discrete Event Systems: Analysis and

Control, 103-110, Kluwer Academic Publishers.

Ramadge, P.J., and W. M. Wonham (1989). The control of

discrete event systems. In: Proceedings of IEEE, Special

Issue on Discret Event Dynamic Systems, 77, 81-98.

Rockwell Automation (2007), available in

<http://www.arenasimulation.com>, access in September

19th
, 2007.

Vieira, A. D., J. E. R. Cury and M. H. Queiroz (2006). A

Model for PLC Implementation of Supervisory Control of

Discrete Event Systems. In: 11
th

 IEEE International

Conference on Emerging Technologies and Factory

Automation, 225-232.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10557

