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Abstract:
Type 1 diabetes is characterized by a lack of insulin production from the pancreas, causing high
blood glucose concentrations and requiring external insulin infusion to regulate blood glucose. A novel
procedure of “human-friendly” identification testing using multisine inputs is developed to estimate
suitable models for use in an artificial pancreas. A human-friendly multisine input signal offers improved
identifiability on the dynamics of insulin to glucose, not causing serious deviations from the normal
glucose concentration and satisfying insulin delivery pump specifications within acceptable time periods.
An integrated formulation of constrained MPC is considered in order to reduce risks of hypoglycemia
and hyperglycemia. Furthermore, a set of meal detection and meal size estimation algorithms are
developed to improve meal glucose disturbance rejection when incoming meals are unknown. Closed-
loop performance is evaluated by simulation studies of a type 1 diabetic individual, illustrating the ability
of the MPC-based artificial pancreas strategy to handle measured and unmeasured meals.

1. INTRODUCTION

Type 1 diabetes is characterized by a lack of insulin production
from the pancreas causing high blood glucose. Type 1 diabetes
currently relies on the insulin therapy that uses subcutaneous
insulin infusion to regulate blood glucose concentration. How-
ever, it demands significant attention and frequent clinical de-
cisions each day to adjust infusion rates and decide amounts of
insulin boluses for meals. The current therapy is a considerable
burden to type 1 diabetic subjects and their guardians every day.

Continuous glucose sensors can be coupled with continuous in-
sulin infusion pumps to create a closed-loop artificial pancreas
(Hovorka et al., 2004; Bequette, 2005). Closed-loop control
algorithms automatically adjust insulin infusion rates to main-
tain blood glucose at a desired concentration (e.g., 80 ∼ 100
mg/dL). It is desirable to develop efficient model identification
techniques to yield accurate models for desirable closed-loop
performance.

As in the chemical process industries, the development of
a good model inherently requires a trade-off. More frequent
and different magnitude changes in the input (insulin delivery
rate) result in more deviations of the output (glucose) away
from the desired value. A methodology of “human-friendly”
identification that accounts for desirable limits in changes in the
insulin infusion rate and acceptable deviations from the glucose
setpoint with shorter test duration. This idea springs from
“plant-friendly” system identification that have been developed
for use in manufacturing plants (Lee, 2006). Using a priori
knowledge, a deterministic multisine input signal is generated
for identifying the insulin-to-glucose dynamics.

A novel artificial pancreas strategy using constrained model
predictive control is developed in this paper to achieve high-
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performance closed-loop glucose control for type 1 diabetes.
A system of meal detection and meal size estimation is also
developed to automatically administer meal insulin boluses as
feed-forward action to unmeasured meals. This initial work
is verified on the simulation model developed by Hovorka et
al. (2004) and Wilinska et al. (2005). This paper is organized
as follows: Section 2 briefs the simulation model for type 1
diabetes, Section 3 gives the generation of multisine input
signals. Section 4 details the integrated MPC formulation for
glucose control. Section 5 introduces the meal detection and
meal size estimation algorithm. Section 6 presents the results
of model experiment and evaluation with integrated MPC, and
Section 7 provides the summary and conclusions.

2. SIMULATION MODELS FOR TYPE 1 DIABETES

A number of mathematical models have been developed to sim-
ulate the dynamics of insulin to glucose. Bolie (1961) presented
a pioneering model using two simple differential equations. The
Bergman “minimal model” consists of three differential equa-
tions for glucose-insulin dynamics (Bergman et al., 1979; Tof-
folo et al., 1980). The AIDA diabetes software simulator is
based on 4 differential and 12 algebraic equations that provides
the interactive simulation of insulin and glucose profiles, de-
veloped for teaching, demonstration, and self-learning purposes
(Patrizio and Lehmann, 2002).

A physiological model using continuous subcutaneous insulin
infusion is developed by Hovorka et al. (2004) and modified
by Wilinska et al. (2005). The Hovorka model has three com-
partments of glucose, insulin, and insulin action subsystems,
consisting of 9 nonlinear equations. The details for parameter
units and values are available in (Hovorka et al., 2004) and
(Wilinska et al., 2005). The insulin action subsystem involves
insulin sensitivity as a ratio of insulin-to-glucose relationship,
we use a 50% reduced insulin sensitivity and 80 kg weight
for all experiments (Figure 1). Meal glucose absorption dy-
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namics is described by a two-compartment model with equal
time constants tmax,G. Meals with tmax,G=40 minute are tested in
this paper; tmax,G indicates that the highest glucose absorption
rate occurs 40 minutes after a meal. The open-loop test with a
basal rate (1.1 U/hr) and three meals (50g carbohydrate each) is
shown in Figure 2.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
40

60

80

100

120

140

160

180

200

220

240
80 kg, nominal and reduced sensitivity

Insulin [U/hr]

G
lu

c
o

s
e

  
[m

g
/d

L
]

 

 

nominal

reduced (50%)

Fig. 1. Steady-state glucose conc. as a function of insulin
infusion. Comparison of nominal (published) parameter
values with reduced insulin sensitivity (50%), for an 80
kg individual.

0 10 20 30 40 50
50

100

150

200

250

G
lu

c
o

s
e

 [
m

g
/m

L
]

0 10 20 30 40 50
0

20

40

60

80

In
s
u

lin
 [

U
/h

r]

0 10 20 30 40 50
0

20

40

60

80

M
e

a
l 
[g

 C
H

O
]

Time [hr]

Fig. 2. Response of 80 kg subject with 50% reduced (compared
to the published values) insulin sensitivity, to 50 g car-
bohydrate meals. Comparison of no meal bolus with 12.5
carbohydrate-insulin ratio. Basal rate is 1.10 U/hr.

3. MULTISINE INPUT SIGNAL DESIGNS FOR
MODELING EXPERIMENTS

Multisine inputs are deterministic, periodic signals whose
power spectrum can be directly specified by the user. A mul-
tisine input u j(k) for the j-th channel of a system with m inputs
can be defined as,

u j(k) =
mδ

∑
i=1

δ̂ ji cos(ωikT + φδ
ji)+

m(δ+ns)

∑
i=mδ+1

α ji cos(ωikT + φ ji)

+
m(δ+ns+na)

∑
i=m(δ+ns)+1

â ji cos(ωikT + φa
ji), j = 1, . . . ,m(1)

where T is sampling time, Ns is the sequence length, m is the
number of channels, δ , ns, na are the number of sinusoids per

channel (m(δ + ns + na) = Ns/2), φδ
ji,φ ji,φ

a
ji are the phase an-

gles, α ji represents the Fourier coefficients defined by the user,

δ̂ ji, â ji are the “snow effect” Fourier coefficients (Guillaume et
al., 1991), and ωi = 2π i/NsT is the frequency grid.

In designing an input signal, the primary frequency band of
interest for excitation is determined by the dominant time
constants of the system to be identified and the desired closed-
loop speed-of-response,

ω∗ =
1

βs τH
dom

≤ ω ≤ ω∗ =
αs

τL
dom

(2)

αs and βs are parameters that specify the high and low fre-
quency ranges of interest in the signal, respectively for a given
range of low and high dominant time constants (defined by τL

dom

and τH
dom). The input power spectrum via a series of Fourier

coefficients must satisfy the primary bandwidth that in con-
sequence determines design parameters such as Ns, ns, and T
(Lee, 2006).

Fig. 3. A comparison of two multisine inputs by different
phasing using the identical input power spectrum (Lee,
2006).

One measure that can count for plant-friendliness is the crest
factor (CF) that is defined as the ratio of the ℓ∞ (or Chebyshev)
norm and the ℓ2-norm of a signal,

CF(x) =
ℓ∞(x)

ℓ2(x)
, ℓp(x) =

[

1

Ns

∫ Ns

0
|x(t)|pdt

]
1
p

(3)

provides a measure of how well distributed the signal values
are over the input span, ranging from 1 to ∞. In Figure 3,
the two signals have the identical input power spectrum but
the phase realization makes a difference in the time-domain. A
multisine signal of a lower crest factor is meaningful for plant-
friendliness.

4. INTEGRATED MODEL PREDICTIVE CONTROL

A model predictive controller (MPC) (Muske and Rawlings,
1993) is formulated subject to input and output constraints
with a combination of additive output disturbance, state input
disturbance, a first-order reference trajectory filter, and a first-
order control action filter (see Figure 4). In MPC, a state in-
put disturbance estimated by Kalman filtering and an additive
output disturbance compensation are both implemented and are
switchable in order to have robust glucose control performance.
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A first-order reference trajectory is to avoid aggressive insulin
infusions, and a first-order control action filter is to smoothen
noise-like insulin infusion rates. When constrained optimiza-
tion has an infeasible solution, output constraints are released
but input constraints are always forced. Specially, a simple
pump shut-off scheme is considered to prevent hypoglycemia.

Fig. 4. A schematic diagram of the integrated MPC for closed-
loop glucose control.

4.1 MPC Structure with Input Disturbance and Kalman Filtering

An MPC structure with measured and unmeasured step input
disturbances is presented in the following

[

x̂k|k−1

d̂k|k−1

]

=

[

Φ Γd

0 1

][

x̂k−1|k−1

d̂k−1|k−1

]

+

[

Γu

0

]

uk−1|k−1 +

[

Γd

0

]

dk−1|k−1

[

x̂k|k

d̂k|k

]

=

[

x̂k|k−1

d̂k|k−1

]

+Lk

(

yk − [ C 0 ]

[

x̂k|k−1

d̂k|k−1

])

(4)

ŷk|k = [ C 0 ]

[

x̂k|k

d̂k|k

]

+ vk

where uk is the input, dk is the measured disturbance, d̂k is the
unmeasured estimated disturbance, yk is the measured output,
and ŷk is the estimated output. With assumptions of noise in the
input (insulin) and variance in the output (glucose), we consider
a Kalman filter to reduce noise effects on the internal state
vector. Lk is the Kalman Filter gain calculated as

Lk = PkC
T (CPkC

T + R)−1 (5)

where Pk is the error covariance of the state estimate, which is
calculated by

Pk = ΦPk−1ΦT +(Γw)Q(ΓwT )

−ΦPk−1CT
(

CPk−1CT + R
)−1

CPk−1ΦT (6)

4.2 Additive Output Disturbance

Another MPC formulation commonly used in the process in-
dustry is additive output disturbance rejection. At each time k,
model prediction error is corrected as

ŷk|k = ŷk|k−1 + pk, pk = yk − ŷk|k−1 (7)

where it uses the current output measurement to adjust the
current model prediction. As a result, the model update is

[

x̂k|k−1

p̂k|k−1

]

=

[

Φ 0

0 1

][

x̂k−1|k−1

p̂k−1|k−1

]

+

[

Γu

0

]

uk−1|k−1 +

[

Γd

0

]

dk−1|k−1

[

x̂k|k

p̂k|k

]

=

[

x̂k|k−1

p̂k|k−1

]

+

[

0

1

](

yk − [ C 1 ]

[

x̂k|k−1

p̂k|k−1

])

(8)

ŷk|k = [ C 1 ]

[

x̂k|k

p̂k|k

]

4.3 Output Constraint Relaxation in Quadratic Programming

The MPC objective function is

minΦ =
P

∑
i=1

Wy(rk+i − ŷk+i|k)
2 +

M−1

∑
i=0

W∆u∆u2
k+i|k (9)

subject to ∆umin ≤ ∆u≤ ∆umax, umin ≤ u≤ umax, and ymin ≤ y ≤
ymax. While computing the optimal control output, an infeasible
solution might be generated with output constraints. If this
occurs, we relax the output constraint for solving the quadratic
program. However, MPC satisfies input constraints at every
sampling time.

4.4 First-Order Reference Trajectory

A reference trajectory is also desirable to assure a smooth return
to setpoint

{

ek+i|k = aek+i−1|k +(1−a)ek|k

rk+i|k = ek+i|k + yk|k
(10)

where a = exp(−T/τ), i = 1...p, and τ is selected that rk+p|k is
settled to rk within the prediction horizon.

4.5 First-Order Filter for Controller Output

The closed-loop system takes only one step control action out
of Mhor number of computed control moves. This may generate
noise-like control moves particularly under noisy conditions;
therefore, a first-order filter is located between the controller
and the system for smoothing control moves as

τu =











5 mins dy/dt > 1.5 [mg/dL min]

15 mins dy/dt ≤ 1.5 [mg/dL min]

40 mins y < 130 [mg/dL]

(11)

4.6 Insulin Pump Shut-Off for Hypoglycemia

Since hypoglycemia is more critical than hyperglycemia, an
adaptive constraint is useful to prevent hypoglycemia by shut-
ting off insulin infusion as

i f dy/dt < 0 & y < 95mg/dL then umax = 0 U/hr

5. MEAL DETECTION AND MEAL SIZE ESTIMATION

Although the MPC shows good performance to measured
meals, unmeasured meals cause high glucose peaks and slow
disturbance rejection. A relaxed set of input constraints often
lead into hypoglycemia because of excessive insulin infusions
from the controller. A system of meal detection and meal size
estimation is thus developed to automatically administer meal
insulin boluses as feed-forward action to unmeasured meals
(Figure 4).

A Kalman filter with three states smoothes the noisy time-
domain glucose measurement before the glucose concentration
enters the controller (Dassau et al., 2008). If the rate-of-change
of the rate-of-change is assumed to be varying in a random
fashion, the modeling equations are





gk+1

∆gk+1

∆2gk+1



 =

[

1 1 0
0 1 1
0 0 1

]





gk

∆gk

∆2gk



+

[

0
0
1

]

wk (12)

yk = [1 0 0]





gk

∆gk

∆2gk



+ vk (13)
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where gk is glucose concentration, ∆gk is the first-order deriva-

tive, and ∆2gk is the second-order derivative. The above can be
written into

xk+1 = Φxk + Γwwk, yk = Cxk + vk (14)

The estimate of state vector is

x̂k|k−1 = Φx̂k−1|k−1 (15)

and then the estimate is corrected with a Kalman gain

x̂k|k = x̂k|k−1 + L(yk −Cx̂k|k−1) (16)

where L is the steady-state Kalman filter gain and yk is the
measured noisy glucose concentration.

The estimated first-order and second-order derivatives are used
for the meal detection and meal size estimation algorithms.
An incoming meal is detected when either of the following
conditions is satisfied with 5 minute sampling time such that

{

∆yk ≥ 1.2 and ∆2yk−1 < 0.45 and ∆2yk ≥ 0.45

∆yk ≥ 1.5 and ∆2yk ≥ 0.45
(17)

where ∆y ≡ [mg/dL min] and ∆2y ≡ [mg2/dL2 min2]. When a
meal is detected at k, a meal size of carbohydrate is estimated
with the following FIR filter

m(g) = γ [a0 a1 ... an]× [1 ∆2yk−n+1 ... ∆2yk]
T (18)

where γ is the sensitivity for meal estimation (0 < γ ≤ 1), ai are
the coefficients of a FIR filter, and n is the filter length.

For example, a test of [50 50 50]g meals is estimated as [46.1
50.1 53.4]g under noisy condition (σ2 = 11.0mg2/dL2). The
meal detected times are 6-9 samples (30-45 minutes) after meal
intakes.

6. MODELING EXPERIMENT AND CLOSED-LOOP
EVALUATION WITH MPC

6.1 Open-loop Experiment

Firstly, a clinical treatment dataset that involves basal rates
and insulin boluses is considered for model identification. A
modeling comparison is available from three experiments: (i)
insulin bolus test with dt= 0 min, (ii) insulin bolus test with
dt = -20 min, and (iii) multisine-based test with dt =0 min.
dt denotes a time delay between insulin boluses and meals,
e.g., dt=-20 min indicates that insulin boluses are injected 20
minutes prior to meals. Based on a priori knowledge, a set
of design parameters for a multisine input on the Hovorka
simulation is given in Table 1 that produces one cycle of 170
samples (14.17 hours). This multisine signal is adjusted based
on the basal insulin rate [1.1 U/hr] so that it moves between 0
and 2.2 [U/hr] as shown in Figure 5.

Open-loop experiments are performed for 56.67 hours [2.36
days]. Three meals of 50g carbohydrates are given for breakfast
(7AM), lunch (noon), and dinner (6PM). A noise variance
σ2 = 11.0 mg2/dL2 is selected as the worst noise condition as
a realistic measured noise variance. Figure 6 shows the three
experiments where the insulin bolus and multisine-based tests
display similar deviations in the output. Particularly, the test
using the multisine input as insulin infusion does not generate
any serious deviations.

6.2 Modeling Experiments and Subspace Estimation

In this paper, we use subspace modeling for the insulin bolus
and multisine tests with a range of 2∼ 6 states using the System
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Fig. 5. A multisine input signal for subcutaneous insulin infu-
sion rate for the Hovorka simulation: 1 cycle is 14.17 hours
where the sampling time is 5 minutes.

Identification Toolbox in MATLAB (Ljung, 1999). A closed-
loop data is used as a validation dataset for all the cases to select
the best models; 5-states for the insulin bolus test (dt=0 min),
3-states for the insulin bolus test (dt= -20 min), 5-states for the
multisine-based test (dt=0 min). The estimated models are then
examined by open-loop prediction, step test, and closed-loop
MPC evaluation, as shown in Figure 7.

Table 2 and Figure 7a show the output prediction of the es-
timated models. All the models have equivalent accuracy for
30 min and 1 hour ahead-of-time predictions, but the multisine
test shows the best accuracy at 3 hour prediction. The step tests
using 1.1 U/hr indicate an interesting problem; the insulin bolus
test (dt=0 min) shows a positive gain for insulin-to-glucose,
which is not true for type 1 diabetes. The other models with
negative gains provide reasonable closed-loop results in Fig-
ure 7c.

Test Ahead-of-Time Prediction (FIT(%)) 30 min 1 hour 3 hour

Insulin-bolus (dt=0 min) 74.9 64.2 43.8

Insulin-bolus (dt=-20 min) 74.9 65.3 49.7

Multisine (dt= 0 min) 77.8 69.3 64.2

Table 2. Output predictions of subspace models
estimated from the modeling experiment datasets;
FIT (%) = 100× (1−‖ŷ− y)‖2/‖y− ȳ‖2) where

ŷ is prediction and ȳ is mean of the output.

6.3 Closed-Loop MPC Evaluation

In this section, we focus on the subspace model estimated from
the multisine test to be evaluated with the integrated MPC
formulation. An MPC tuning for glucose control is determined:
Phor = 48 (4 hours), Mhor = 6, Wy = 1, and W∆u = 10. Input
constraints are umax = 5.5 U/hr, umin = 0 U/hr, and ∆umax = 2.9
U/hr. Output constraints are given as ymax = 200 mg/dL and
ymin = 99 mg/dL. Often constrained optimization generates
infeasible solutions and constraint violations, and a tight lower
bound as 80 mg/dL is not be specified.

The Kalman filtering for disturbance rejection is tuned at
Q/R = 0.00003 (Q is process noise variance and R is measure-
ment noise variance) (see Eqn. (4)). The first-order reference
trajectory filter is assigned with the time constant 15 minutes.
The input disturbance rejection by Kalman filtering is used in
the MPC; however, it is switched to the additive output dis-
turbance rejection for 15 minutes (3 samples) when measured
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Phasing α β hf ω∗ ω ∗ T (min) Ns ns 1cycle (min) CF(x)

Guillaume 2 3 0.9 0.0074 0.1 5 170 14 850 (14.7hrs) 1.3994

Table 1. Design parameters of generating a multisine input signal as insulin infusion rate for model
identification using the Hovorka simulation.
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(a) Insulin-bolus, dt=0 min
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(b) Insulin-bolus, dt=-20 min
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(c) With multisine input

Fig. 6. Open-loop tests for modeling experiments: insulin bolus test (dt=0 min, a), insulin bolus test (dt= -20 min, b), and multisine
based test (dt=0 min, c) under noisy output measurement conditions (σ2 = 11.0 mg2/dL2).
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Fig. 7. Model evaluation tests: 1-hour open-loop prediction with (a) a validation data, (b) unit step tests by 1 U/hr, and (c) closed-
loop MPC test with unmeasured meals.
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Fig. 8. Closed-loop tests with MPC (Phor = 36, Mhor = 3, Wy = 1, & W∆u = 5) for glucose control using the Hovorka simulation

under measurement noisy conditions (σ2 = 11mg2/dL2); (a) without and (b) with control action filter.
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meal information is given to the MPC or a meal is detected. The
sensitivity for the meal size estimation is set to γ = 0.90.

The closed-loop MPC tests with measured, unmeasured, and
estimated meals are shown in Figure 8. Comparing the insulin
infusion in Figures 8a and b, the first-order filter in control
output reduces noise-like insulin infusion but results in little
difference in glucose. Meal insulin boluses on measured meals
clearly reduce meal glucose peaks, but the unmeasured meal
case shows the highest values for the minimum and maximum
glucose concentration because it relies only on insulin by the
control output (Table 3). The measured meal case provides the
lowest mean absolute deviation (MAD) value, and its glucose
concentration is between 81.4 and 193.9 mg/dL. A statistical
data analysis of the measured meal and unmeasured cases
shows that daily average rates of insulin infusion are [1.51,
1.50, 1.58] U/hr and [1.43, 1.37, 1.38] U/hr, respectively.

The estimated meal case by means of meal detection and meal
size estimation presents significant improvement compared to
the unmeasured case. Insulin boluses are automatically injected
based on the estimated carbohydrates 30 ∼ 45 minutes later
from meals. Although the delayed insulin boluses give slightly
higher glucose concentration than the measured meal case, it
still provides a comparable result to the measured meal without
serious over- or underestimated meals.

Test MAD Mean Min Max

Measured meal case 28.8 125.8 81.4 193.9

Unmeasured meal case 91.0 191.0 96.6 311.4

Estimated meal case 38.6 137.4 87.3 234.9

Table 3. Statistics of the closed-loop data using a
subspace model from the multisine-based test.

7. SUMMARY AND CONCLUSIONS

A novel approach of developing the artificial pancreas is pre-
sented in this paper, integrating key components for automatic
closed-loop glucose control for type 1 diabetes. The human-
friendly identification procedure using a multisine input signal
improves model quality for use in the artificial pancreas. A clin-
ical test using insulin boluses is not able to produce proper gains
of insulin-to-glucose dynamics; the insulin-bolus test with early
insulin boluses gives a negative gain, but early insulin boluses
might be against the common clinical practice. The test using
the multisine signal provides sufficient persistent excitation,
leading to a proper gain of insulin-to-glucose.

An effective formulation of constrained MPC is achieved for
closed-loop glucose control. The MPC incorporates additive
output disturbance, state input disturbance with Kalman filter-
ing, first-order reference trajectory, first-order control action,
output constraint relaxation, and pump shut-off methods. The
current MPC control performance is, nevertheless, significantly
sensitive to input constraint magnitudes.

The measured meal case shows faster meal glucose rejection
performance taking advantage of measured meal information.
The unmeasured case produces higher glucose concentration
which might require different MPC tunings. Although the un-
measured meal case has higher glucose peaks, it reduces glu-
cose concentration slowly without hypoglycemia. The meal
size estimator requires additional training for its filter coeffi-
cients, and it automatically gives insulin boluses to reduce meal
glucose disturbances when a meal is detected. Therefore, satis-
factory control performance without meal inputs is achieved.

An efficient strategy of developing the artificial pancreas is pre-
sented in this paper by taking advantage of the human-friendly
modeling test, integrated MPC formulation, meal detection,
and meal size estimation. The proposed closed-loop framework
shows acceptable glucose control performance under daily life
situations. On-going research incorporates time-varying insulin
sensitivity to account for circadian effects such as the well-
known dawn phenomenon.
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