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Abstract: This paper presents a model-reference adaptive control algorithm with improved
transient behavior for MIMO uncertain plants with relative degree one. The algorithm employs
the control parametrization based on the SDU factorization of the high frequency gain matrix
and introduces a lead filter in the adaptive law. Using the singular perturbation method, it is
shown that for a sufficiently high adaptation gain and a sufficiently small time constant of the
filter, the output error decreases exponentially. Simulations illustrate the transient improvement
attained with the algorithm.
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1. INTRODUCTION

Over the last years a considerable amount of effort
has been devoted to improve the poor transient behav-
ior of adaptive control systems. Some results can be
found in, for example, (Sun (1993)), (Datta and Ioannou
(1994)), (Datta and Ho (1994)), (Papadakis and Tho-
mopoulos (1996)), (Zang and Bitmead (1994)), (Ortega
et al. (1994)), (Narenda and Balakrishnan (1994)), (Artega
and Tang (2002)), (Dixon et al. (2004)). In (Cao and
Hovakimyan (2006a)), (Cao and Hovakimyan (2006b)),
(Cao and Hovakimyan (2007a)) and (Cao and Hovakimyan
(2007b)) one can find some of the most recent results in
this area. However, even after all these efforts, a method-
ology focused on improving the transient behavior in the
case of MIMO adaptive systems is still lacking in the
literature.

This paper presents a generalization of the adaptive al-
gorithm introduced in (Costa (1999)) for MIMO linear
systems with relative degree one. The MIMO framework
is based on the design proposed by (Costa et al. (2003))
which employs a control parametrization derived from an
SDU factorization of the high frequency gain matriz. The
algorithm presented here employs a lead-filter to estimate
the tracking error derivative and uses this signal in the
update law. It is shown that the system stability does
not depend on the filter parameters. Moreover, if the
adaptation gain is sufficiently high and the filter time
constant is sufficiently small, then the transient behavior is
approximately exponentially decreasing with a rate of con-
vergence that depends only on the design parameters. The
improvement in the transient performance is concluded
from an analysis based on the standard singular pertur-
bation method (Kokotović et al. (1986)) (Khalil (1992)).

⋆ This work was supported in part by the CNPq/Brazil.

Some simulation results are presented to illustrate the
improvement achieved in the transient behavior by the
proposed adaptive algorithm.

2. PROBLEM STATEMENT

For an observable and controllable MIMO linear time-
invariant plant given by m × m transfer matrix G(s),

y = G(s)u , (1)

we make the following assumptions (Costa et al. (2003)):

(A1) The transmission zeros of G(s) have negative real
parts.

(A2) G(s) has relative degree n∗ = 1.
(A3) The observability index ν of G(s) is known.
(A4) The signs of the leading principal minors of the plant

high frequency gain (HFG) matrix Kp are known.

The adaptive control objective is to achieve asymptotic
tracking

e0(t) = y(t) − yM (t) → 0 as t → ∞ , (2)

where yM ∈ R
m is the output of the reference model

yM = WM (s) r , (3)

and r ∈ R
m is a piecewise continuous uniformly bounded

signal.
In view of assumption (A2), we select a diagonal strictly
positive real (SPR) reference model

WM (s) = KM diag

{

1

s + a1
, · · · ,

1

s + am

}

, (4)

where ai > 0, (i = 1, . . . ,m). Without loss of generality,
we let KM = I.

3. SYSTEM ERROR EQUATIONS

If G(s) is known, then a control law which achieves
matching between the closed-loop transfer matrix and
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WM (s), i.e. y = G(s)u∗ = WM (s)r = yM , is given by
(Sastry and Bodson (1989))

u∗ = θ∗T
1 ω1 + θ∗T

2 ω2 + θ∗3y + θ∗4r = θ∗T ω , (5)

where θ∗ =
[

θ∗T
1 θ∗T

2 θ∗3 θ∗4
]T

and the regressor vector

ω =
[

ωT
1 ωT

2 yT rT
]T

with

θ∗1 , θ∗2 ∈ R
m(ν−1)×m , θ∗3 ∈ R

m×m , θ∗4 = KM K−1
p ,

ω1 =
A(s)

Λ(s)
u , ω2 =

A(s)

Λ(s)
y , ω1 , ω2 ∈ R

m(ν−1) ,

A(s) =
[

I Is · · · Isν−2
]T

, I ∈ R
m×m ,

Λ(s) = λ0 + λ1s + · · · + sν−1 is Hurwitz .

Details on the calculation of the matching parameters
θ∗1 , θ∗2 and θ∗3 can be found in (Tao (2003), p:391). The
matched closed-loop system is obtained setting u = u∗.
After some algebraic manipulation, the output error equa-
tion can be written as (Tao (2003))

e0 = WM (s)Kp

[

u − θ∗T ω
]

. (6)

Except for the fact that WM (s) and Kp are matrices and
e and u are vectors, this MIMO error equation has the
same form as the well known SISO error equation. Another
important difference to be observed is the non-uniqueness
of θ∗ in the MIMO case.

4. REVIEW OF MIMO MRAC DESIGN

In this section we review the MIMO MRAC design pro-
posed by (Costa et al. (2003)). The algorithm employs a
control parametrization derived from an SDU factoriza-
tion of the matriz Kp .

4.1 Gain factorization

The following lemma was adapted from (Morse (1993)).

Lemma 1. Every m×m real matrix Kp with nonzero lead
principal minors ∆1,∆2, . . . ,∆m can be factored as

Kp = SDU, (7)

where S is symmetric positive definite, D is diagonal, and
U is unity upper triangular.

Proof: Since all ∆i are nonzero, there exists a unique
factorization (Strang (1988)),

Kp = L1Dp LT
2 , (8)

where L1 and L2 are unity lower triangular and

Dp = diag

{

∆1,
∆2

∆1
, . . . ,

∆m

∆m−1

}

. (9)

Factoring Dp as
Dp = D+D , (10)

where D+ is a diagonal matrix with positive entries, we
rewrite (8) as Kp = L1D+ LT

1 L−T
1 D LT

2 , so that (7) is

satisfied by S = L1 D+ LT
1 and U = D−1L−T

1 D LT
2 . �

Remark: In (Morse (1993)), the matrix D is made of
diagonal entries +1 or −1. Here, the factorization Kp =
SDU is not unique because the positive diagonal matrix
D+, introduced in (10), is a free parameter.

4.2 Control parametrization

Substituting Kp = SDU in the error equation (6) and
using (5) one obtains

e0 = WM (s)SDU [u − θ∗T ω]

= WM (s)SD[Uu − Uθ∗T
1 ω1 − Uθ∗T

2 ω2 − Uθ∗3y − Uθ∗4r] .
(11)

A further refinement of this expression will make sure that
the control law is well-defined. With the decomposition,

Uu = u − (I − U)u , (12)

where (I − U) is strictly upper triangular, it is possible
to define the control signal u as a function of (I − U)u.
No static loops can appear since u1 would depend on
u2, u3, · · · , um, while u2 would depend on u3, u4, · · · , um,
and so on. The unknown entries of U are incorporated in
the parametrization by defining K1 = Uθ∗T

1 , K2 = Uθ∗T
2 ,

K3 = Uθ∗3 , and K4 = Uθ∗4 , and rewriting (11) as

e0 = WM (s)SD[u−K1ω1−K2ω2−K3y−K4r−(I−U)u] .
(13)

Next, the parameter vectors Θ∗
i are introduced via the

identity








Θ∗T
1 Ω1

Θ∗T
2 Ω2...

Θ∗T
m Ωm









≡ K1ω1 +K2ω2 +K3y+K4r+(I−U)u . (14)

In addition to the concatenated ith rows of the matrices
K1,K2,K3,K4, each row Θ∗T

i includes the unknown en-
tries of the ith row of (I−U). The corresponding regressor
vectors are

ΩT
1 = [wT u2 u3 . . . um],

ΩT
2 = [wT u3 . . . um],
...

ΩT
m = [wT ] . (15)

To simplify the notation, it is also defined

ΩT =









ΩT
1 0 0 . . . 0
0 ΩT

2 0 . . . 0
...

...
...

...
0 0 0 . . . ΩT

m









and Θ∗ =









Θ∗
1

Θ∗
2...

Θ∗
m









. (16)

The error equation (13) has thus been brought to the form,

e0 =
(

WM (s)S
)

D (u − ΩT Θ∗) . (17)

In this parametrization the control law is

u = ΩT Θ , (18)

where Θ is an estimate of Θ∗. The key feature of the
error equation (17) is that the diagonal matrix D appears
in the place of the Kp, and an assumption can now
be made about the signs of its entries d1, d2, · · · , dm,
generalizing the sign condition of the SISO case. Although
an increase of apriori system plant information is required,
it results in a simpler MRAC design for a MIMO case.
This parametrization requires that the SPR condition is
to be satisfied by WM (s)S rather than by WM (s) alone.
The following lemma shows that for any diagonal WM (s),
a positive definite S = ST exists such that WM (s)S is
SPR.
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Lemma 2. For any A = diag{−a1,−a2, . . . ,−am}, ai > 0,
(i = 1, . . . ,m), and any m × m unity lower triangular
matrix L1, there is a matrix D+ = diag{d+

1 , d+
2 , . . . , d+

m},
d+

i > 0, such that WM (s)S = (sI−A)−1L1D+LT
1 is SPR.

Proof. See (Costa et al. (2003)). The proof uses the fact
that S in Kp = SDU is not unique.

Remark: The SDU approach intrinsically introduces
m(m−1

2 ) additional adaptive parameters which lead to an
MRAC scheme with overparametrization.

4.3 Adaptive Control

Define the state vector X = [xT wT
1 wT

2 ]T ∈ R
n+2m(ν−1),

where x ∈ R
n is the plant state and w1 and w2 are

the states of the filters used to generate the regressor.
With XM we denote the state of a corresponding nonmin-
imal realization CM (sI − AM )−1BM of WM (s)S, where
CMBM = S. Then, the state error

Z = X − XM , (19)

and the output error e0 in (17) satisfies

Ż = AMZ + BMD(u − ΩT Θ∗) ,

e0 = CMZ . (20)

Because WM (s)S is SPR, there exit matrices PM = PT
M >

0 and QM = QT
M > 0 that satisfies

AT
MPM + PMAM = −2QM ,

PMBM = CT
M . (21)

Define matrices

D = diag
{

d1I1, d2I2, . . . , dmIm

}

, (22)

Γ = diag
{

Γ1, Γ2, . . . , Γm

}

, (23)

where di are the diagonal elements of matrix D, Γi =
ΓT

i > 0 are adaptation gain matrices, and Ii and Γi ∈
R

(2n+m−i)×(2n+m−i). Also define

Θ̃ = Θ − Θ∗ and ũ = u − u∗ . (24)

Now, consider the Lyapunov function

2V (Z, Θ̃) = ZT PMZ + Θ̃T |D|Γ−1Θ̃ . (25)

Since DΩT = ΩTD, then the time derivative of (25) along
the trajectories of the error system (20) yields

V̇ (Z, Θ̃) = −ZT QMZ + Θ̃TDΩe0 + Θ̃T |D|Γ−1 ˙̃Θ

= −ZT QMZ + Θ̃T |D|Γ−1
[

Γsign(D)Ωe0 + ˙̃Θ
]

.

(26)

Choosing
˙̃Θ = −Γsign(D)Ωe0 , (27)

the expression for V̇ reduces to

V̇ (Z, Θ̃) = −ZT QMZ ≤ 0 . (28)

The result of the above analysis can summarized in the
following theorem.

Theorem 3. Consider system in (1) and the reference
model (3). Suppose that assumptions (A1)-(A4) hold.
If the vector r(t) is piecewise continuous and uniformly
bounded, then the adaptive control (18) with update law
(27) assures that all the closed loop signals are uniformly
bounded and the tracking error vector e0(t) → 0.

Proof. See (Costa et al. (2003)).

5. MODIFIED MIMO ADAPTIVE ALGORITHM

In this section, we extend the adaptive algorithm intro-
duced in (Costa (1999)) to the MIMO case and show its
stability and transient performance. The new algorithm is
referred to as MIMO α-MRAC. It employs a lead-filter to
estimate the derivative of e0 and uses this signal in the
update law. For a sufficiently high adaptation gain and
a sufficiently small time constant of the filter, it is shown
that the transient behavior is approximately exponentially
decreasing with a rate of convergence that depends only
on the design parameters.

To introduce the main idea, suppose that ė0 is available
for measurement. From the equation error

e0 = WM (s)SD[u − ΩT Θ∗]

= WM (s)SDΩT Θ̃ , (29)

one can compute the signal F (see Costa (1999))

F := WM (s)−1e0 = SDΩT Θ̃ . (30)

In other words, the signal F , which is a measure of
SDΩT Θ̃, can be computed as

F = ė0 − Ae0 . (31)

Consider the Lyapunov function (25) and its derivative
(26). Now, we propose to modify the update law (27) as

˙̃Θ = −Γsign(D)Ω[e0 + αF ] , (32)

where α is a positive constant. This way, instead of forcing
a cancelation, the proposed update law (32) keeps the Θ̃-

term in the expression of V̇ by completing the square as
follows,

V̇ (Z, Θ̃) = −ZT QMZ − α(ΩT Θ̃)T DSD(ΩT Θ̃) . (33)

Since DSD > 0, then V̇ ≤ 0.

Therefore, the update law (32) guarantees that the system
is at least globally uniformly stable.

When ė0 is not available then the signal F cannot be
computed as in (31). To circumvent this problem we use

an estimate ˙̂e0,

˙̂e0 = I

(

s

τs + 1

)

e0 = sT (s) e0 , (34)

where τ is a positive time constant and T (S) = I
(

1
τs+1

)

.

Replacing e0 in (30) by its estimate ê0 we obtain an

estimate F̂ of F as,

F̂ = WM (s)−1ê0 = WM (s)−1T (s) e0 = H(s)e0 , (35)

where H(s) is a diagonal matrix of lead filters.

Now, using (35), the update law is modified to
˙̃Θ = −Γsign(D)Ω[e0 + αF̂ ] . (36)

Figure 1 shows the block diagram of the MIMO α-MRAC.

6. STABILITY ANALYSIS

The expression (35) for F̂ can be written as

F̂ = T (s)F

= T (s)SDΩT Θ̃ . (37)
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+
+

αG(s) +
−

Filter Filter

ω1 ω2

y

yM

e0 F̂

r

u

Adaptive
algorithm

H(s)

WM (s)

Fig. 1. Block diagram of the MIMO α-MRAC.

To simplify the notation we define

F = DΩT Θ̃ . (38)

Defining the state vector (see (Costa (1999))

v =
[

êT
0 ZT

]T
, v ∈ R

n+m(2ν−1) , (39)

we have the following nonminimal realization for (37),

v̇ = Āv + B̄F , (40)

F̂ = C̄v,

where Ā, B̄, C̄ are given by

Ā =

[

−τ−1I τ−1CM

0 AM

]

, B̄ =

[

0
BM

]

,

C̄ =
[

(−A − τ−1I) τ−1CM

]

.

The state equation (40) is introduced only for analysis.
Since F is not available, it cannot be implemented. Since
T (s)S is strictly positive real, then from Kalman Meyer
Yakubovich Lemma there exist matrices P̄ = P̄T > 0 and
Q̄ = Q̄T > 0 such that the realization {Ā, B̄, C̄} satisfies

ĀT P̄ + P̄ Ā = −2Q̄ , (41)

P̄ B̄ = C̄T .

For convenience, we rewrite below the set of equations that
represents the system dynamics,

Ż = AMZ + BMF , (42)

e0 = CMZ , (43)

v̇ = Āv + B̄F , (44)

F̂ = C̄v , (45)

˙̃Θ = −Γsign(D)Ω[e0 + αF̂ ] . (46)

Now, consider the Lyapunov function

2V (Z, v, Θ̃) = ZT PMZ + αvT P̄ v + Θ̃T |D|Γ−1Θ̃. (47)

Using (41), the derivative of (47) along the trajectories of
(42)-(46) results

V̇ (Z, v, Θ̃) = −ZT QMZ − αvT Q̄v . (48)

Since, V̇ (Z, v, Θ̃) ≤ 0, it implies that V (Z, v, Θ̃) is nonin-

creasing along trajectories (42)-(46) in the (Z, v, Θ̃)-space.

Thus, V (Z, v, Θ̃) is bounded above by V (0) and below by

0 and Z, v, Θ̃ are bounded. Since the reference r(t) and
yM are bounded, consequently y is bounded. Now, since
Θ∗ is a constant and Θ̃ is bounded, it implies that Θ is
also bounded. Moreover, because r and y are bounded,

it can be shown in a recursive way as in (Costa et al.
(2003)) that the regressor matriz Ω is bounded. Thus,

from (42) and (44), it follows that Ż and v̇ are bounded

and consequently V̈ is also bounded. From (30) it follows

that F is bounded. From (46) one concludes that ˙̃Θ is
bounded. Now, applying the Barbalat’s Lemma, it follows
that Z, v → 0 when t → ∞.

The following theorem summarizes the result.

Theorem 4. : Consider system (1) and the reference model
(3). Suppose that assumptions (A1)-(A4) hold. If r(t) is
piecewise continuous and uniformly bounded, then the
adaptive control (18) with update law (36) assure that
all the closed loop signals are uniformly bounded and the
tracking error vector e0(t) → 0.

Notice that limt→∞ v = 0 implies that limt→∞ F̂ = 0. It
can also be verified that

lim
t→∞

F = 0 and lim
t→∞

ΩT Θ̃ = 0 . (49)

From (49) we conclude that ũ → 0 without identification
of the matching vector parameters and without any per-
sistency excitation or richness condition.

7. TRANSIENT ANALYSIS

It was shown that the system (42)-(46) is globally stable
for all time constant τ > 0, α > 0 and adaptation gain
matrix Γ = ΓT > 0. To analise the transient behavior
of the nonlinear MIMO system in (42)-(46) we use the
singular perturbations method (Kokotović et al. (1986)).
The purpose is to find a reduced model for the system
dynamics and to analise its transient behavior.

7.1 Reduced model

Consider the equations (31), (36) and (??). Rewriting
them in a conveniente form to apply the singular pertur-
bation method we have,

ė0 = Ae0 + F , (50)

τ
˙̂

F = −F̂ + F , (51)

Γ−1 ˙̃Θ = −sign(D)Ω[e0 + αF̂ ] . (52)

Now, considering τ and Γ−1 as the singular parameters,
and formally setting τ = 0 and Γ−1 = 0, and disregarding
the initial conditions for Θ̃ and F̂ , the differential equa-
tions (51) and (52) degenerate into the algebraic equations
(see Kokotović et al. (1986))

0 = −
¯̂
F + F̄ , (53)

0 = ē0 + α
¯̂
F , (54)

where the bar indicates that the variables belong to a
reduced order system (with τ = 0 and Γ−1 = 0). Notice
that both τ and Γ−1 should be considered as singular
parameters. This way, the algebraic equations (53)-(54)
have a isolated real root given by

F̄ = −α−1ē0 . (55)

Upon substituting (55) into (50), we have that

˙̄e0 = (A − α−1I)ē0. (56)
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Defining Ā = (A − α−1I), we rewrite the system reduced
order model (56) as

˙̄e0 = Āē0 , (57)

which has solution given by

ē0 = eĀtē0(0) . (58)

Thus, for a sufficiently high adaptation gain Γ and suffi-
ciently small time constant τ , the tracking error e0 (ap-
proximately) converges exponentially fast to zero.

8. SIMULATION RESULTS

In the first example we consider the plant G1(s) =

Kp diag
{

1
s+1 , 1

s+1

}

, where Kp =

[

0.5 0.866
−0.866 0.5

]

is

the only unknown, and the reference model WM (s) =

diag
{

1
s+1 , 1

s+1

}

. For comparison purpose Fig. 2 presents

the simulation results obtained when the MIMO standard-
MRAC (Costa et al. (2003)) is used. Fig. 3 shows the
corresponding plots obtained with the proposed α-MRAC
algorithm. The data used in this simulations are: Γ = 5I,
τ = 0.1, α = 1, r(t) = [sin(3t) sin(5.5t)]T , y(0) =

ê0(0) = [2.7 −0.7]
T
. All other initial conditions are zero.

As predicted in the above analysis, the improvement in
the transient behavior is apparent in Fig. 3(a), even for
the values of Γ and τ used.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3

t

Γ = 5IMIMO standard-MRAC
e0

(a)

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

t

||Θ||

(b)

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

t

u

(c)

Fig. 2. Simulation of plant G1(s) using the MIMO
standard-MRAC.

As our second example, we consider the plant G2(s) =

Kp diag
{

(s+6)
s(s+2) ,

(s+6)
s(s+3)

}

, where Kp is as in the first exam-

ple and the reference model is WM (s) = diag
{

1
s+1 , 1

s+2

}

.

The results from simulations carried out using the MIMO
standard-MRAC are shown in Fig. 4 and using the pro-
posed MIMO α-MRAC are shown in Fig. 5. The following
data were used: Γ = 10I, α = 1, τ = 0.05, r(t) =

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

t

Γ = 5I, α = 1, τ = 0.05MIMO α-MRAC
e0

(a)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

t

||Θ||

(b)

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

t

u

(c)

Fig. 3. Simulation of plant G1(s) using the MIMO α-
MRAC.

[sin(1.1t) − sin(6t)]
T
, y(0) = ê0(0) = [0.956 −0.256]

T
. All

other initial conditions are zero.

The plots in Fig. 5 show a notable improvement in tran-
sient behavior compared to the response obtained with the
MIMO standard-MRAC.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

t

MIMO standard-MRAC Γ = 10I
e0

(a)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

t

||Θ||

(b)

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

t

u

(c)

Fig. 4. Simulation results of plant G2(s) using MIMO
standard-MRAC.

9. CONCLUSION

In this paper we have presented a MRAC scheme for
MIMO systems, named MIMO α-MRAC, and analyzed its
stability and transient behavior. The main result states
that, if the adaptation gain is set sufficiently high and
the filter time constant is set sufficiently small, then the
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0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

t

Γ = 10I, α = 1, τ = 0.05α-MRAC
e0

(a)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

t

||Θ||

(b)

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

t

u

(c)

Fig. 5. Simulation results of plant G2(s) using MIMO α-
MRAC.

initial tracking error and the mismatch control decrease
(monotonically) exponentially with a rate that is dictated
by the design parameters. Moreover, the transient behav-
ior of the MIMO α-MRAC does not depend on any kind
of richness or persistent excitation condition. An accepted
idea found in the literature says that the class of adaptive
algorithm based on certainty equivalence principle cannot
provide a satisfactory transient without a good estimation
of the plant parameters. This is not verified by the MIMO
α-MRAC, which has shown that this is, in fact, possible.
Extensive simulations have confirmed the improved tran-
sient behavior of the MIMO α-MRAC.
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tović. Lyapunov-based adaptive control of mimo sys-
tems. volume 39, 2003.

A. Datta and M. T. Ho. On modifying model reference
adaptive control schemes for performance improvement.
IEEE Trans. Aut. Contr., 39, 1994.

A. Datta and P. A. Ioannou. Performance analysis and
improvement in model reference adaptive control. IEEE
Trans. Aut. Contr., 39, 1994.

W. E. Dixon, M. S. Queiroz, D. M. Dawson, and T. J.
Flynn. Adaptive tracking and regulation of a wheeled
mobile robot with controller/update law modularity.
IEEE Trans. on Contr. Systems Technology, 12:138–
147, 2004.

Hassan K. Khalil. Nonlinear Systems. Macmillan Publish-
ing Company, 1992.
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