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Abstract: This paper propose a method to achieve wall juggling of a ball without rebound
from a table by a racket attached to a robot manipulator with two visual camera sensors. The
proposed method is composed of juggling preservation problem and ball regulation problem. The
juggling preservation problem means going on hitting the ball iteratively. The ball regulation
problem means regulating the hitting position of the ball. The juggling preservation problem is
achieved by the tracking control of the racket position for a symmetry trajectory of the ball with
respect to a horizontal plane. The ball regulation problem is achieved by controlling the racket
orientation, which is determined based on a discrete transition equation of the hitting position
of the ball. The effectiveness of the proposed method is shown by an experimental result.

1. INTRODUCTION

Since Ball juggling is a typical example to represent
dexterous rhythmic tasks of humans, the ball juggling by
robots has been studied by many researchers. The kinds
of the juggling are toss juggling, paddle juggling, bouncing
juggling, wall juggling and so on. Especially, the paddle
juggling are studied by many researchers because it is
simple iterative hitting of a ball by a racket. The paddle
juggling by robots is composed of three parts: the iteration
of hitting the ball, the regulation of the ball state which
are the height and the incident angle to the racket, and the
regulation of the hitting position of the ball. M. Buehler et
al. (1994) proposed the mirror algorithms for the paddle
juggling of one or two balls by a robot having one degree
of freedom in two dimensional space, where the robot
motion was symmetry of the ball motion with respect
to a horizontal plane. This method achieved hitting the
ball iteratively. R. Mori et al. (2005) proposed a method
for the paddle juggling of a ball in three dimensional
space by a racket attached to a mobile robot, where the
trajectory of the mobile robot was determined based on
the elevation angle of the ball. This method achieved
hitting the ball iteratively and regulating the incident
angle. A. Nakashima et al. (2006) proposed a method for
the paddle juggling of a ball in three dimensional space
by a racket attached to a robot manipulator having 5
degrees of freedom. This method achieved hitting the ball
iteratively, regulating the incident angle and the hitting
point simultaneously. These methods were the feedback
control based on the ball state. On the other hand, T.
M. H. Dijkstra (2004) proposed an open loop algorithm
without the ball state for one-dimensional paddle juggling
of one ball. They derived the condition for the racket
trajectory to stabilize the periodic trajectory of the ball.

However, the paddle juggling can be achieved easier than
the other jugglings because there does not exist any
contacts with environments around robots in the paddle

juggling. There are few studies of the other jugglings. M.
Takeuchi et al. (2002) considered the wall juggling of a ball,
which means hitting a ball against a wall iteratively by a
racket attached to a robot having 2 degrees of freedom.
They allowed rebound from a table after the rebound from
the wall. They analyzed the stability of periodic trajectory
around its equilibrium states of the ball and proposed a
feedback law to stabilize the trajectory. On the other hand,
there is the another wall juggling which means hitting the
ball against the wall without the rebound from the table.
In this juggling, the racket motion is almost in the parallel
direction to the wall because it is forced to hit the ball
before the rebound while the racket in the former can move
in any direction. This constrained racket motion make the
wall juggling without the rebound more difficult.

This paper propose a method to achieve wall juggling of
a ball without rebound from a table by a racket attached
to a robot manipulator with two visual camera sensors.
The proposed method is composed of juggling preservation
problem and ball regulation problem. The juggling preser-
vation problem means going on hitting the ball iteratively.
The ball regulation problem means regulating the hitting
position of the ball. The juggling preservation problem is
achieved by the tracking control of the racket position
for a symmetry trajectory of the ball with respect to a
horizontal plane. The ball regulation problem is achieved
by controlling the racket orientation, which is determined
based on a discrete transition equation of the hitting posi-
tion of the ball. The effectiveness of the proposed method
is shown by an experimental result.

In Section 2, the system configuration and the models
of the manipulator and the ball motion are shown. The
manipulator dynamics are linearized for preliminary in
Section 3. In Section 4, the control designs for the juggling
preservation and the ball regulation problems are shown.
An experimental result is shown in Section 5 and the
conclusion is described in Section 6.
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Fig. 1. Wall Juggling of a Ball by Camera-Robot System

2. MODELING

2.1 System Configuration

In this paper, we consider control of wall juggling of one
ball by a racket attached to a robot manipulator with two-
eyes camera as shown in Fig. 1. The robot manipulator
has 6 joints, which is denoted by Ji (i = 1, · · · , 6) shown
in Fig. 1. In this paper, the juggled ball is supposed
to be smaller and lighter than the racket. The physical
parameters of the manipulator, the racket and the ball are
shown in Section 5. The reference frame ΣB is attached at
the base of the manipulator. The position and orientation
of the racket are represented by the frame ΣR, which
is attached at the center of the racket. The camera is
calibrated with respect to ΣB . Therefore, the position of
the juggled ball can be measured as the center of the ball
which the two cameras system detects (B. K. Ghosh et
al. (1999)). It is obvious that the orientation of the racket
about z-axis with respect to ΣB does not effect on the ball
motion at the time when the racket hits the ball. Therefore
we need only 5 degrees of freedom of the manipulator. In
the following discussion, the fourth joint J4 is assumed to
be fixed by an appropriate control.

2.2 Dynamical Equation of Manipulator

The dynamical equation of the manipulator is given by

M(q)q̈ + C(q, q̇)q̇ + N(q) = τ , (1)

where q ∈ R
5 and τ ∈ R

5 describe the joint angles and
the input torques respectively, and M ∈ R

5×5, C ∈ R
5×5

and N ∈ R
5 are the inertia matrix, the coriolis matrix and

the gravity term respectively. For the latter discussion, we
introduce the following coordinate transformations:

BpR := h1(q) ∈ R
3, BθR := h2(q) ∈ R

2, (2)

where BpR = [BpRx
BpRy

BpRz]
T ∈ R

3 is the position

of ΣR with respect to ΣB , BθR = [BθRx
BθRy]T ∈ R

2

is the orientation of ΣR with respect to x- and y- axes
of ΣB . The left superscripts B of vectors denote that the
vectors are expressed with respect to the frame ΣB . This
notation is utilized for another frames in the following.
The functions h1(q) and h2(q) describe the relationships
between the position/orientation of the racket and the
joint angles respectively. Differentiating (2) with respect

to time t and getting together the resultant equations yield
the velocity relationship

ẋR = JR(q)q̇, (3)

where

JR := [ (∂h1/∂q)T (∂h2/∂q)T ]T ∈ R
5×5

xR := [ BpT
R

BθT
R ] ∈ R

5.

Applying the relationship (3) for the dynamical equation
(1) yields the dynamical equation with respect to the
position and orientation of the racket

MR(q)ẍR + CR(q, q̇)ẋR + NR(q) = JR(q)−Tτ , (4)

where

MR := J−T
R MJ−1

R ∈ R
5×5

CR := J−T
R CJ−1

R + J−T
R M d

dt
J−1

R ∈ R
5×5

NR := J−T
R N ∈ R

5.

2.3 Equation of Motion and Rebound Phenomenon of Ball

For the modeling of the equation of motion and the
rebound phenomenon of the ball, we make the following
assumptions:

[Assumption 1] There does not exist the air resistance for
the ball.

[Assumption 2] The surfaces of the ball, the racket and the
wall are uniform and smooth. Therefore, the components
of the velocity of the ball parallel to the surfaces do
not change due to the rebound phenomenon, that is, the
restitution coefficients parallel to the surfaces are zero.

[Assumption 3] The mass of the racket is bigger than the
mass of the ball such that the racket velocity does not
change due to the rebound phenomenon.

Define the ball position as Bpb := [Bpbx
Bpby

Bpbz]
T ∈

R
3. From Assumption 1, the equation of motion of the ball

is given by

B ṗbx = vbx
, B ṗby = vby

, (5)

mB p̈bz =−mg, (6)

where vbx
and vby

are the velocity components in the
(x, y) plane respectively, m[kg] is the mass of the ball
and g[m/s2] is the gravitational constant. Note that (5)
represents the ball motion in the (x, y) plane, which is the
uniform motion, and vbx

and vby
are changed only at the

rebounds from the racket and the table.

From Assumption 2 and 3, the mathematical model of the
rebound phenomenon at the rebound from the racket is
given by
Bṗb(tr +dt) = RBRERT

BR(Bṗb(tr)−
BṗR(tr))+BṗR(tr),

(7)
where tr is the start time of the collision between the ball
and the racket, dt is the time interval of the collision,
RBR ∈ R

3×3 is the rotation matrix from ΣR to ΣB and
E := diag(0, 0,−e) ∈ R

3×3 represents the restitution
coefficients of the x, y and z directions with respect to
ΣR. Note that the rebound phenomenon from the wall is
the same as (7) without BṗR(tr).
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Fig. 2. The concept for Wall Juggling of one Ball

3. LINEARIZING COMPENSATOR FOR
MANIPULATOR

As for the preliminary to control the wall juggling, we
linearize the manipulator dynamics (4) by the following
linearizing compensator:

τ = JT
R(MRuR + CRẋR + NR), (8)

where uR := [ uT
Rp uT

Rθ ]T ∈ R
5 is the new input for ẍR.

Substituting (8) into (4) results in

MR(ẍR − uR) = 0.

Since MR = J−T
R MJ−1

R is the positive definite matrix
because the inertia matrix M is positive definite, MR

always has the inverse matrix. Therefore, we get the
linearized equations given by

Bp̈R = uRp, (9)
B θ̈R = uRθ. (10)

The tracking control of BpR and BθR can be easily realized
by PD controller for uRp and uRθ, for example. In the
following discussion, let us consider the desired values of
BpR and BθR to realize the wall juggling of the ball.

4. CONTROL DESIGN FOR WALL JUGGLING

4.1 Control Objectives

Figure 2 illustrates the concept of the wall juggling.
Without loss of generality, the wall is located parallel to
(YB , ZB) plane. The initial point of the ball is above the
racket and the ball is freely released. The control purpose
is to achieve the wall juggling of the ball at the desired
hitting point BpRd

by hitting the ball with the racket
iteratively. This is described by the following specified
control problems:

(1) [Juggling Preservation Problem] The juggling Preser-
vation problem means going on hitting the ball itera-
tively. The control of the ball position is not included
in this problem.

(2) [Ball Regulation Problem] The ball regulation prob-
lem means regulating the hitting position of the hit
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Fig. 3. Control Scheme for the Racket Position Control

ball. The regulation of the ball height at the rebound
from the wall is not included in this problem.

In the following sections, the control designs for these
control problems are shown.

4.2 Control Design for Juggling Preservation Problem

The control design for the juggling preservation problem
with controlling the racket position BpR is shown. We
firstly consider that the ball is always hit by the racket
in a same (x, y) plane as shown in Fig. 2. More specific
determination of the racket position is shown in Fig. 3.
The trajectories of the z coordinates of the ball and the
racket are shown in the right figure (a), where the vertical
axis is the ZB coordinate and the horizontal axis is time
t respectively. The z coordinate of the racket is forced
to follow the symmetric trajectory of the z coordinate of
the ball with respect to a horizontal plane. This plane is
called the hitting horizontal plane in this paper. Due to
this determination, the racket can hit the ball at the same
height without the prediction of the z coordinate of the
ball.

On the other hand, let us consider the (x, y) trajectories
of the racket in order to guarantee that the racket always
hits the ball. For the paddle juggling, A. Nakashima et al.
(2006) considered a method to force the (x, y) coordinates
of the racket to follow the (x, y) coordinates of the ball.
We modify this method for the wall juggling because the
racket clashes the wall with the method. The trajectories of
the (x, y) coordinates of the ball and the racket are shown
in the left figure (b), where the vertical and horizontal
axes are the YB and XB coordinates respectively. The y
coordinate of the racket is forced to follow the y coordinate
of the ball while the x coordinate of the racket moves to
the point of fall of the ball before the z coordinate of the
ball is equals to the height of the hitting horizontal plane.
The prediction of the point of fall is shown in Section 4.4.

To sum up, the desired value of the racket position BpRd

to satisfy the mentioned in the above is given by

BpRd
:=




B p̂bx
Bpby

Bph − kh(Bpbz
− Bph)



 , (11)

where B p̂bx
is the predicted value of the x coordinate of

the ball, Bph is the height of the hitting horizontal plane
and 0 < kh < 1 is the constant to make the z coordinate
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of the racket small appropriately. Note that kh effects on
the height of the hitting ball.

Due to determining the desired value of the racket position
BpR by (11), there always exists the racket under the ball
at the hit and the ball is hit in the same horizontal plane
automatically.

4.3 Control Design for Ball Regulation Problem

The control design for the ball regulation problem with
controlling the racket orientation BθR is shown. Suppose
that the juggling preservation problem is achieved.

Control of the x coordinate of the ball The transition of
the x coordinate of the ball due to the rebound from the
racket and the wall in (x, z) plane is illustrated in Fig. 4.
xb[i] is the x coordinate of the ball at the ith hit, θRy

[i] is

the racket orientation about YB-axis at the ith hit, vb ∈ R
2

and v′

b ∈ R
2 are the ball velocity just before and after the

hit, and V R ∈ R
2 is the racket velocity. The constant i

(i = 0, 1, 2, · · · ) represents the number of the hitting. We
derive the discrete transition equation of the x coordinate
of the ball in order to design the controller.

From the model of the rebound phenomenon (7), the
relationship between vb, v′

b and V R is given by

v′

b =

[
1 − (1 + e) sin2 θRy

1+e
2 sin 2θRy

1+e
2 sin 2θRy

1 − (1 + e) cos2 θRy

]
vb

+

[
(1 + e) sin2 θRy

− 1+e
2 sin 2θRy

− 1+e
2 sin 2θRy

(1 + e) cos2 θRy

]
V R, (12)

where e is the restitution coefficient between the ball and
the racket in the normal to the racket. Sine the racket
position BpR follows the target position (11), the racket
velocity V R is expressed as the following by differentiating
(11):

V R =

[
0

−khvbz

]
. (13)

Substituting (13) into (12) yields

v′

b =

[
{1 − (1 + e) sin2 θRy

}vbx+ (1+e)(1+kh)
2 sin 2θRy

vbz
1+e
2 sin 2θRy

vbx+{1 − (1 + e)(1 + kh) cos2 θRy
}vbz

]
.

(14)

On the other hand, from (5)–(7), the relationship between
xb[i] and xb[i + 1] is given by

xb[i + 1] = −ewxb[i] + (1 + ew)l −
2ew

g
v′bxv′

bz, (15)

where ew is the restitution coefficient between the ball and
the wall in the normal to the wall and l is the distance of
the wall from the origin of the reference frame.

Substituting (14) into (15), we can get the discrete transi-
tion equation of xb[i]. However, since the resultant equa-
tion is nonlinear, we linearize it around θRy

= θ̄Ry
and

kh = k̄h for the control design:

xb[i+1] = −ewxb[i]+(1+ew)l−
2ew

g
B

[
θRy

− θ̄Ry

kh − k̄h

]
, (16)

where

B :=

[
∂(v′

bxv′bz)

∂θRy

∂(v′bxv′

bz)

∂kh

]∣∣∣∣
θRy =θ̄Ry ,kh=k̄h

. (17)

For simplicity, suppose that the control gain kh is a
constant k̄h. Therefore, the linearized discrete equation of
the x coordinate of the ball for the control design is given
by

xb[i + 1] = −ewxb[i] + (1 + ew)l −
2ew

g
b1∆θRy

, (18)

where b1 is the first component of B and ∆θRy
:= θRy

−

θ̄Ry
. For the system (18), we propose the following state

feedback law:

∆θRy
= −kx(xb[i] − xbd

), (19)

where kx is the control gain and xbd
is a target value of

the x coordinate of the hitting position. Substituting (19)
into (18) yields the closed loop system

xb[i+1]=(−ew +
2ew

g
b1kx)xb[i]+ (1+ ew)l−

2ew

g
b1xbd

kx.

(20)
From (20), the conditions to stabilize xb to xbd

are given
by

∣∣∣∣−ew +
2ew

g
b1kx

∣∣∣∣ < 1 (21)

(1 + ew)l −
2ew

g
b1xbd

kx = xbd
. (22)

The condition (22) leads to the control gain kx:

kx =
g

2ewb1

{
(1 + ew)l

xbd

− 1

}
. (23)

Substituting (23) into (21) yields the range of the target
value xbd

:
1 + ew

2 + ew

l < xbd
<

1 + ew

ew

l. (24)

Control of the y coordinate of the ball From Assumption
2, the transition of the y coordinate of the ball is the same
as the one of the ball without the rebound from the wall.
Therefore, it is enough to consider the rebound between
the ball and the racket as shown in Fig. 5, where yb[i] is the
y coordinate of the ball at the ith hit, θb[i] is the incident
angle at the ith hit and θRx

[i] is the racket orientation
about XB-axis at the ith hit. The linearized discrete
transition equation of yb[i] and θb[i] around θb[i] = 0 and
θRx

[i] = 0 is given by A. Nakashima et al. (2006):
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[
yb

θb

]
[i + 1] =

[
1

2v2

b0

g

0 1

] [
yb

θb

]
[i] +

[
−

4v2

b0

g

−2

]
θRx

[i], (25)

where vb0 :=
√

(vby[i])2 + (vbz[i])2. From the transi-
tion equation (25), the controller for θRx

[i] to stabilize
(yb[i], θb[i]) is easily obtained as

θRx
[i] = −[kyp kyθ]

[
yb[i] − ybd

θb[i]

]
, (26)

where ybd
is the target value and kyp > 0 and kyθ > 0 are

the control gains for yb[i] and θb[i] to be determined such
that the eigenvalues of the closed system is smaller than
1.

4.4 Prediction of Ball State

As mentioned in Section 4.2, we need the point of fall of the
y coordinate of the ball p̂bx

at the ithe hit. Furthermore,
from (14), (17), (23) and (25), we need the ball velocity
just before the ith hit vbx[i], vby[i] and vbz[i]. From (26), we
also need the ball position yb[i] and the incident angle θb[i].
In this subsection, a simple prediction method of these
variables is proposed. Note here that p̂bx

is described by
xb[i].

As shown in Fig. 6, (xb(t), yb(t), zb(t)) are the ball position
and (vbx(t), vby(t), vbz(t)) are the ball velocity at time t
between the i − 1th and ith hits. yb(t) and vby(t) are

)(tvbx

)(tvbz

)(txb

)( Ttxb +=

BZ

BX
B

Y ]1[ˆ −ixb

]1[ˆ −ivb

l

h

B p

)(tzb

][ˆ ivb

][ˆ ixb

Fig. 6. Prediction of Ball State

omitted for simplicity. Suppose the position and velocity
of the ball can be detected by the visual sensor. From
Assumption 1, the velocity (vbx[i], vby[i]) at the ith hit
are the same as (vbx(t), vbz(t)). For the velocity vbz[i], the
predicted z velocity v̂bz[i] can be obtained from vbz(t) and
zb(t) before the ith hit based on the energy conservation
law:

v̂bz[i] =
√

g(zb(t) − ph) + v2
bz(t) (27)

Furthermore, the predicted incident angle θ̂b[i] can be ob-

tained from vby[i] and v̂bz[i] by θ̂b[i] = tan−1(vby[i]/v̂bz[i]).

On the other hand, the predicted point of fall p̂bx := x̂b[i]
can be obtained as

x̂b[i] =

{
l − ewvbx(t)(T − Tw) (vbx > 0)
x(t) + vx(t)T (vbx < 0)

, (28)

where

T :=
vbz(t) +

√
v2

bz(t) + 2g(zb(t) − ph)

g
, Tw :=

l − xb(t)

vbx(t)
.

(29)
T is the time interval from time t to the time of the ith
hit and Tw is the time interval from time t to the time
of the ith rebound from the wall. Note that yb[i] can be
easily predicted by the same method as (28) without the
rebound from the wall.

5. EXPERIMENTAL RESULT

The effectiveness of the proposed method is shown by an
experimental result. The physical parameters of the robot
are shown in Fig 7. Ji and Wi (i = 1, · · · , 6) denote the
ith joint and the center of mass of the ith link respectively.
The values of W1, W2, W3, W4, W56 are 6.61, 6.60, 3.80,
2.00 and 2.18 [kg] respectively. the restitution coefficients e
and ew are 0.84 and 0.91. The distance of the wall l is set to
0.9[m]. The sampling period for the manipulator control is
120[Hz]. The racket is a square plate made from aluminum.
The sides, the thickness and the mass are 150, 3[mm] and
0.20[kg] respectively. The ball is a ping-pong ball with the
radius and the mass being 35[mm] and 2.50×10−3[kg]. The
vision system is composed of two CCD cameras and the
image processing system. The pixel and the focal length
of the each camera are 768(H) × 498(W) and 4.8[mm]
respectively. The image processing system can measure the
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center of the ball based on its brightness. The sampling
period is 120[Hz]. The target values are set to xbd

= 0.65,
ybd

= −0.25 and Bph = 0.35[m]. The control gains are set
to kyp = 15

180π, kyθ = 0.625 and kh = 0.2. The equilibrium

value for the linearization θ̄Ry
is −15[deg]. Since enough

height of the ball is necessary for the wall juggling, the
wall juggling is started when the apex of the ball is higher
than 0.75[m].

The experimental result is shown in Fig. 8. The left figure
shows the trajectories of the ball and racket positions
in the time interval 0–15[s]. The solid and the dashed
trajectories represent the ball and the racket respectively.
The solid horizontal lines represent the desired hitting
values. The wall juggling was started at time t = 2.2[s]
and stopped a time t = 14.25[s] because the robot couldn’t
hit the ball against the wall. We can confirm that the
wall juggling was achieved 19 times. We can also confirm
that the x and y coordinates of the racket follow those of
the ball and the z coordinate of the racket is symmetric
to the ball with respect to the horizontal surface Bph =
0.35[m]. This result shows the effectiveness of the juggling
preservation by controlling the racket position.

On the other hand, the right figure shows the ball trajec-
tory from the 1st to 5th hits (2.2–5.5[s]) in the (x, z) and
(y, z) planes. The blue circle is the initial position and
the red circle is the desired hitting point. We can confirm
that the x and y coordinates of the hitting point stay near
the target point. However, the average x and y positions
have the errors 7.9[cm] and 5.4[cm] from the desired hit-
ting position. As for this reason, the air resistance, the
calibulation errors and the uncertainty of the robot model
can effect on the errors of the hitting position.

6. CONCLUSION

This paper proposed a method to achieve wall juggling of a
ball without rebound from a table by a racket attached to
a robot manipulator with two visual camera sensors. The
proposed method was composed of juggling preservation
problem and ball regulation problem. The juggling preser-
vation problem was achieved by the tracking control of the

racket position for a symmetry trajectory of the ball with
respect to a horizontal plane. The ball regulation problem
was achieved by controlling the racket orientation, which
was determined based on a discrete transition equation of
the hitting position of the ball. The effectiveness of the
proposed method was shown by an experimental result.

The proposed method can adjust the ball height but not
control it completely. It is our further work because the
control of the height improve the stability of the wall
juggling.
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