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Abstract: In this paper,the observation issue of the partial pressure of oxygen and nitrogen and the mass
flow rate of dry air in the cathode channel of a fuel cell stack is addressed. The proposed approach
considers the mass flow rate of dry air as an unknown input and uses the voltage and the total pressure as
measurements. By using the Jacobian of the nonlinear functions and the convexity principe, the observer
design problem is turned into a LMI feasibility problem. Simulation results with a detailed model show
the good convergence properties of the observer.
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1. INTRODUCTION

Fuel cell stacks are known since the XIXth century and have
received considerable interest over the years. More recently,
with the increase of the oil price, new solutions have to be
developed for the energy issues. One solution could be to use
hydrogen for stocking energy and to use fuel cell stacks in order
to convert it into electricity. Hydrogen could be produced from
electric energy produced by any source, including solar cells.

Fuel cells are complex dynamical systems that include sev-
eral unknown quantities. Over the last decades, tremendous re-
search activities have focused on observer design for these sys-
tems. (Arcak et al. (2004); McKay and Stefanopoulou (2004);
Görgün et al. (2005); Benallouch et al. (2007b)). These ob-
servers can be used for different applications, such as con-
trol (Pukrushpan et al. (2002, 2003)), diagnosis (Görgün et al.
(2005); Mays et al. (2001)) and communication (Boutayeb et al.
(2002); Benallouch et al. (2007a); Liao and Huang (1999)).

The purpose of this paper is to investigate the problem of the
observation of the partial pressure of oxygen, nitrogen and
the mass flow rate of dry air treated here as an unknown in-
put. When the input is not completely available for measure-
ment, the existence conditions for an unknown input observer
are more restrictive than the classical detectability condition
(Boutayeb et al. (2002), Ha and Trinh (2004) Corless and Tu
(1998)). Unknown input observers find a wide applicability in
the design of robust observers, decentralized control, and for
fault detection (Chen and Saif (2006)).

This paper is organized as follows. Section 2 presents the
models of the cathode flow (Pukrushpan et al. (2004b,a)) and
of the stack voltage (Pukrushpan et al. (2004b,a); Larmine
and Dicks (2000)). In section 3, a novel algebraic method is
introduced for simultaneous estimation of the partial pressure
of oxygen, of nitrogen and of the mass flow rate of dry air.

It consists in sufficient LMI conditions. Simulation results are
presented in Section 4, that illustrate the interest of the proposed
method.

List of Symbols

R̄ : universal gas constant (J.(mol.K)−1)
Tst : fuel cell temperature (K)
Vca : cathode volume (m3)
Ist : current (A)
nst : the number of cells in the stack
Fd : Faraday number (Coulombs)
A f c : fuel cell active area
tm : membrane thickness
Psat(Tst) : vapor saturation pressure (Pa)

2. MODEL

2.1 Cathode Flow Model

The mass continuity and the ideal gas law are used to balance
the pressure of the oxygen and nitrogen inside the cathode
volume:







dPO2,ca

dt
=

R̄Tst

MO2
Vca

(
WO2,ca,in −WO2,ca,out −WO2,reacted

)

dPN2,ca

dt
=

R̄Tst

MN2
Vca

(
WN2,ca,in −WN2,ca,out

)

(1)
where PO2

and PN2
are the oxygen and nitrogen partial pressure,

MO2
(kg.mol−1) and MN2

(kg.mol−1) are the molar masses of
oxygen and nitrogen, respectively.
WO2,ca,in and WN2,ca,in are the oxygen and nitrogen mass flow
rate entering the cathode, as shown by:
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WO2,ca,in = xO2,ca,inWa,ca,in (2.a)

WN2,ca,in = (1− xO2,ca,in)Wa,ca,in (2.b)

where xO2,ca,in is the Oxygen mass fraction; and Wa,ca,in rep-
resent the mass flow rate of dry air considered here in as an
unknown input. Furthermore WO2,ca,out and WN2,ca,out are the
oxygen and nitrogen mass flow rate leaving the cathode:

WO2,ca,out =
PO2

MO2
PO2

MO2
+PN2

MN2
+Pν ,caMν

Wca,out (3.a)

WN2,ca,out =
PN2

MN2
PO2

MO2
+PN2

MN2
+Pν ,caMν

Wca,out (3.b)

where Wca,out = kca,out(Pca −Prm) the total flow rate is deter-
mined using the simplified orifice equation, kca,out is the ori-
fice constant, Pca = PO2

+ PN2
+ Psat(Tst) is the cathode total

pressure, Prm is the return manifold pressure, Pν ,ca vapor partial

pressure and Mν (kg.mol−1) is the vapor molar mass.

The rate of oxygen consumed in the reaction is a function of the
stack current Ist :

WO2,reacted = MO2

nstIst

4Fd

(4)

In order to simplify the calculation, we assume that MO2
=

MN2
= Mν , then system (1) can be rewritten in the following

form:






dPO2

dt

dPN2

dt







=
R̄Tst

Vca

{

kca,out

[

−1 0

0 −1

][

PO2

PN2

]

+





−MO2
nst

4Fd

0



 Ist

+kca,out







PO2
Prm

PO2
+PN2

+Pν ,ca

PN2
Prm

PO2
+PN2

+Pν ,ca







+

[
xO2,ca,in

(1− xO2,ca,in)

]

Wa,ca,in

}

(5)

2.2 Stack voltage model

The voltage E produced by one cell is affected to different
voltage losses: the loss voltage responsible for the activation
polarization is denoted vact; the ohmic voltage loss is denoted
vohm; the concentration polarization is caused by the concen-
tration overpotential, leading to voltage loss vconc, as given by
Pukrushpan et al. (2004a). Therefore, the voltage provided by
the stack writes:

νst = nst

(
E −νact −νohm −νconc

)
(6)

The open-circuit voltage is a function of the stack temperature
Tf c, and oxygen partial pressure PO2

, and hydrogen partial
pressure PH2

.

E = 4.308×10−5Tf c[ln(PH2
)+

1

2
ln(PO2

)]

+1.482−8.5×10−4Tf c

The activation voltage drop is approximated by:

νact = ν0 +νa

(
1− e

−c1
Ist
Afc

)

Where ν0 = ν0

(
Tfc,Pca,Psat

)
is the voltage drop at zero current

density and νa = νa

(
Tf c,PO2

,Psat

)
and c1 are constants.

y

Stack Voltage

Model

Ist

λm

Observer
PO2

Vst

P̂O2

P̂N2

Ŵa,ca,in

PH2

Cathode

Model
Wa,ca,in

Ist

Fig. 1. Bloc diagram of the Fuel cell and the observer

The ohmic overvoltage writes:

νohm = Ist

Rohm

A f c

where Rohm = tm

σm

(
λm,Tfc

) is the electrical resistance by unit of

surface, which has units of Ω.m2. σm is the membrane conduc-
tivity, it is a function of fuel cell temperature and membrane
water content λm.

The concentration loss is given by:

νconc = I
c3+1
st

1

Afc

( c2

imaxAfc

)c3

where c2, c3 and imax are constants that depend on the tempera-
ture and the reactant partial pressure.

2.3 Measurements

We consider that the measurements available the system are: the
Stack voltage νst and the total pressure at the cathode defined
by:

y = Pca −Psat(Tst) = PO2
+PN2

3. MAIN RESULTS

3.1 Reformulation of the model

The equations of the system can be reformulated as following:






ẋ = Ax+BWa,ca,in + f (x,y)+DIst

y = Cx

Vst = h(x,y, Ist)

(7)

where A = R̄Tst
Vca

kca,out

[

−1 0

0 −1

]

, B = R̄Tst
Vca

[
xO2,ca,in

(1− xO2,ca,in)

]

f (x,y) =
R̄Tstkca,out

Vca







PO2
Prm

PO2
+PN2

+Pν ,ca

PN2
Prm

PO2
+PN2

+Pν ,ca







, C = [1 1]

D =
R̄Tst

Vca





−MO2
nst

4Fd

0





Assume that matrix B has full column rank. Then there exists a
matrix N such that:

T = [N B] (8)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2775



is non singular. Let define T1 and T2 such that:

T−1 =
[

T T
1 T T

2

]T
(9)

The change of state variable x = T z is introduced, leading to:






ż = T−1AT z+T−1BWa,ca,in +T−1 f (T z,y)+T−1DIst

y = CT z

Vf c = h(T z,y, Ist)
(10)

where

Ā = T−1AT =

[
a11 a12

a21 a22

]

and T−1B =

[
0
1

]

.

In order to eliminate the component Wa,ca,in, we multiply the
state equation (10) by matrix E = [1 0], yielding the following
descriptor system:







Eż = A z+T1 f (T z,y)+T1DIst

y = Hz

Vf c = h(T z,y, Ist)

(11)

with A = [a11 a12] and H = CT .

3.2 Full-order observer design

We consider the nonlinear observer of the following form:
{

ω̇ = Nω +Ly+RT1 f (T ẑ,y)+RT1DIst +K(V̂f c −Vf c)

ẑ = ω +Qy

(12)

where ẑ denotes the state estimation vector of z. L, R, K are
matrices to be determined such that ẑ converges asymptotically
to z.

The main contribution of the paper consists in LMI sufficient
condition for the observer synthesis problem. This result is
formulated in the following theorem.

Theorem 1. The observer error e(t) converge asymptotically
towards zero if there exist matrices P = PT > 0, X and Y
of appropriate dimensions such that the following LMIs are
feasible:
(
RA

)T
P+P

(
RA

)
+
(
RT1J f (α)T

)T
P+P

(
RT1J f (α)T

)

−HT X −XT H +
(
Jh(β )T

)T
Y +Y T (Jh(β )T

)
< 0

∀ α,β ∈ VH . (13)

If these LMIs are feasible, matrices F , K, N and L are given by:
F = P−1XT , K = P−1Y T , N = RA −FH and L = F +NQ.

Proof.

Consider the error vector:

e = ẑ− z, (14)

Substituting (11) and (12) into (14), we obtain:

e = ω +(QH − I2)z (15)

where I2 represents the identity matrix of dimension 2.
Let R be a matrix such that:

RE +QH = I2 (16)

Then (15) becomes e = ω −REz and the error dynamics write:

ė = Ne+(LH +NRE −RA )z+RT1{ f (T ẑ,y)− f (Tz,y)}

+K{h(T ẑ,y, Ist)−h(T z,y, Ist)}

We assume that f is differentiable on Co(z(t), ẑ(t)). From the
differential mean value theorem (see in Appendix), there exist
constant vectors η1andη2 ∈ Co(z(t), ẑ(t)) such that:

f (T ẑ,y)− f (Tz,y) =
2

∑
i, j=1

e2(i)e
T
2 ( j)

∂ fi

∂ z j

(ηi,y)T (ẑ− z)

with e2(1) = [1 0]
T

and e2(2) = [0 1]
T

. For simplicity, we

introduce the notations J f (ρ) = ∑2
i, j=1 e2(i)e

T
2 ( j)ρi j and ρi j =

∂ fi
∂ z j

(ηi,y) which is equivalent to

f (T ẑ,y)− f (Tz,y) = J f (ρ(y))T (ẑ− z)

A same reasoning yields Jh(µ) = ∑2
j=1 eT

2 ( j)µ j with µ j =
∂h
∂ z j

(η j,y) we obtain

h(T ẑ,y, Ist)−h(T z,y, Ist) = Jh(µ(y))T (ẑ− z)

If we set
F = L−NQ

and:
N = RA −FH

then the error dynamics write:

ė =
(
RA −FH +RT1J f (ρ)T +KJh(µ)T

)
e (17)

Choose a quadratic Lyapunov function as V = eT Pe. Its time-
derivative writes:

V̇ =
(
RA −FH +RT1J f (ρ)T +KJh(µ)T

)T
P

+P
(
RA −FH +RT1J f (ρ)T +KJh(µ)T

)

Based on the Lyapunov stability theory, if V̇ is negative-definite
then the convergence of the estimation error is guaranteed,
which is equivalent to:

Γ =
(
RA

)T
P+P

(
RA

)
−HT X −XT H +

(
RT1J f (ρ)T

)T
P

+P
(
RT1J f (ρ)T

)
+
(
Jh(µ)T

)T
Y +Y T (Jh(µ)T

)
< 0

(18)
with X = FT P and Y = KT P.

Since Γ is affine in ρ and µ , the relationship holds for any ρ and
µ in H as soon as it is verified at the vertices, that is to say for
α,β ∈ VH (Appendix). By using the notations X = FT P and
Y = KT P, condition (18) is equivalent to (13), which completes
the proof.

3.3 Estimation of the mass flow rate of dry air

The aim of this section is to estimate the mass flow rate of dry
air Wa,ca,in. For this, we need to estimate firstly the state x. Since
z → ẑ when t → ∞, then the estimate of x is given by x̂ = T ẑ.

Now, let use the state estimates to reconstruct the unknown
input. From (7), we have:

Ŵa,ca,in = (CB)−1(ẏ−CAx̂−C f (x̂,y)−CDIst)

4. SIMULATION RESULTS FOR A FUEL CELL MODEL

We apply this approach to the fuel cell model. Refereing to
Subsection 3.1, we choose:

N =

[
1
0

]

(19)
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We get:

T =

[
1 2.441
0 8.035

]

(20)

and

Ā =

[

−22.81 7.451×10−9

0 −22.81

]

(21)

Matrices R et Q are chosen in order to satisfy Eq. (16):

R =

[
1

−0.5100×10−8

]

(22)

Q = 10−7

[
0

0.9544

]

(23)

The initial conditions considered in the results presented in the
sequel are:

[
P0

O2
P0

N2

]T
=
[

1.0951×104 8.2070×104
]T

(Pa)

In the current case, a simplification is possible, allowing to
obtain a formulation with 3 uncertain parameters instead of 4.

The Jacobian then write J f (ρ) = ∑3
i=1 J fi ρi are:

J f1 =

[
0 −1
0 1

]

, (24)

J f2 =

[
1 0
−1 0

]

(25)

and

J f3 =

[
1 0
0 1

]

. (26)

with ρ
1

= 1.597, ρ̄1 = 2.187, ρ
2

= 11.70, ρ̄2 = 14.28, ρ
3

=

3.315 and ρ̄3 = 6.867.

The Jacobian of Jh(µ) = ∑2
i=1 Hiµi is obtained with:

H1 = [1 0] (27)

and
H2 = [0 1] (28)

with µ
1
= −6.639×107, µ̄1 = −6.945×106, µ

2
= −9.342×

10−5 and µ̄2 = −3.717×10−5.

Resolution of the LMIs of (13) provides the following solu-
tions:

P =

[
9.010×10−8 2.940×10−6

2.940×10−6 9.987×10−1

]

, F =

[
−7.685×10−1

2.600×10−6

]

,

N =

[

−22.04 8.051×106

−4.700×10−7 −27.71

]

, K =

[
0.245

−3×10−7

]

and

L =

[
0.666

0

]

Simulations were done, considering step variations of the load.
The results are presented in Fig. 2 to 5.

5. CONCLUSION

We have proposed an efficient method for designing a nonlinear
observer for fuel cells systems with unknown inputs. The pro-
posed theorem makes use of two elementary principles: first the
notion of Jacobian that allows to simplify the equations, second
the convexity principle for deriving a LMIs feasibility problem.

Based on this design method, a nonlinear observer was de-
signed for the estimation of the partial pressure of oxygen and

0 5 10 15 20 25
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k 
cu

rr
en

t

Fig. 2. stack current (A)
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Fig. 3. Response of P02
and its estimate
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and its estimate

nitrogen in addition to the mass flow rate of dry air. Simulation
results showed the fast convergence of the obtained estimator.

Appendix A. DIFFERENTIAL MEAN VALUE THEOREM
(DMVT) FOR VECTOR VALUED FUNCTION (Zemouche

et al. (2005))

Let ϕ : R
m 7→ R

n. Let a,b ∈ R
m. We assume that ϕ is differen-

tiable in Co(a,b). There exist ηi(t)∈Co(a,b) for all i = 1, ...,n,

such that:

ϕ(a)−ϕ(b) =

(
n,m

∑
i, j=1

Hi j

∂ϕi

∂x j

(ηi)

)

(a−b), (A.1)

where

Co(a,b) = {λa+(1−λ )b(t),0 ≤ λ ≤ 1}
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Fig. 5. Response of Wa,ca,in and its estimate

and
Hi j = en(i)e

T
m( j), i = 1, ...,n, j = 1, ...,m,

where

en(i) =
(

0, ...,0,

i th
︷︸︸︷

1 ,0, ...,0
︸ ︷︷ ︸

n components

)T

is a vector of the canonical basis of R
n. Then, using the

notations:

ρi j(t) =
∂ϕi

∂x j

(ηi(t)) (A.2)

we deduce that

ϕ(a)−ϕ(b) =

(
n,m

∑
i, j=1

Hi jρi j(t)

)

(a−b),

Proof. we can write ϕ(x) = ∑n
i=1 en(i)ϕi(x), where ϕi : R

n 7→R

is the ith component of ϕ . We know that for all scalar function
ϕi thats differentiable on Co(a,b). There exists ηi ∈ Co(a,b)

such that ϕi(a)−ϕi(b) = ∂ϕi

∂x
(ηi)(a−b). For i = 1....n we have

∂ϕi

∂x
(ci) = ∑m

j=1 eT
m( j) ∂ϕi

∂x j
(ci), we deduce that

ϕ(a)−ϕ(b) =

(
n,m

∑
i, j=1

en(i)e
T
m( j)

∂ϕi

∂x j

(ηi)

)

(a−b),

end of prof.

Let assume that parameters ρi j(t) evolve in a bounded domain

Hn of which 2n2
vertices are defined by:

VHn
=
{

α = (α1, ...,αn) | αi ∈ {ρ
i j
, ρ̄i j}

}
(A.3)

where

ρ̄i j = max
t

(
ρi j(t)

)
and ρ

i j
= min

t

(
ρi j(t)

)
.
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