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Abstract: The State-Dependent Riccati Equation (SDRE) filter, which is derived by constructing the dual 
of the well-known SDRE nonlinear regulator control design technique, has been studied in various papers, 
with mainly practical investigations of the filter. Until recently, theoretical aspects of the filter had not 
been fully investigated, leaving many unanswered questions, such as stability and convergence of the 
filter. The authors conducted an investigation of the conditions under which the state estimate given by this 
algorithm converges asymptotically to the first order minimum variance estimate given by the extended 
Kalman filter (EKF). Conditions for determining a region of stability for the SDRE filter were also 
investigated. The analysis was based on stable manifold theory and Hamilton-Jacobi-Bellman (HJB) 
equations. In this paper, the motivation for introducing HJB equations is justified with mathematical rigor, 
which is given by reference to the maximum likelihood approach to deriving the EKF. The application of 
the SDRE filter is then demonstrated on challenging examples to illustrate the theoretical aspects and 
design flexibility (additional degrees of freedom) of the algorithm when loss of observability is 
encountered. In particular, a realistic and detailed evaluation of the filter is carried out for the problem of 
target state estimation in an advanced tactical missile guidance application for analysis in the optimal 
guidance problem for air-air engagements using only passive sensor (angle-only) information. Simulation 
results are presented which show dramatic tracking improvement using the SDRE target tracker. 

 

1. INTRODUCTION 

During the past decade, State-Dependent Riccati Equation 
(SDRE) feedback control for nonlinear regulator systems has 
become well-known within the control community (see 
Çimen, 2008 and the references therein). Following the 
duality between linear-quadratic optimal regulation and 
linear-quadratic Gaussian estimation, SDRE filters have 
naturally been suggested in the literature (see Mracek et al., 
1996; Pappano and Friedland, 1997; Haessig and Friedland, 
1997) for continuous-time nonlinear systems. The algorithm 
is relatively well-known and involves solving, at a given 
point in state space, an algebraic state-dependent Riccati 
equation, or SDRE. The coefficients of this equation vary 
with the given point in state space. The resulting SDRE filter 
has the same structure as the infamous continuous steady-
state linear Kalman filter. In contrast to the linearized 
Kalman filter (LKF) (Kalman and Bucy, 1961) and the 
extended Kalman filter (EKF) (Sage and Melsa, 1971; 
Bryson and Ho, 1975), which are based on linearization, the 
SDRE filter fully captures the nonlinearities of the system 
using parameterization, and bringing the nonlinear system to 
a nonunique linear structure having state-dependent 
coefficients (SDCs). The nonuniqueness of the 
parameterization creates extra degrees of freedom, which are 
not available in traditional filtering methods. These additional 
degrees of freedom can be used to enhance filter 
performance, avoid singularities, and avoid loss of 
observability. 

The SDRE filter has been studied in various papers, with 
mainly practical investigations of the filter (Pappano, and 
Friedland, 1997; Harman and Bar-Itzhack, 1999). Theoretical 
aspects of the filter have recently been investigated in Çimen, 
McCaffrey, Harrison and Banks (2007), providing conditions 
under which the state estimate given by this algorithm 
converges asymptotically to the first-order minimum variance 
estimate given by the EKF. Behavioral differences and 
similarities between the SDRE filter, the LKF and the EKF 
were then discussed using a simple two-dimensional 
pendulum problem. Conditions for determining a region of 
stability for the SDRE filter were also investigated in that 
paper. The analysis was based on stable manifold theory and 
Hamilton-Jacobi-Bellman (HJB) equations. The motivation 
for introducing HJB equations was given by reference to the 
maximum likelihood approach to deriving the EKF, which is 
now rigorously justified. The application of the SDRE filter 
is also demonstrated on challenging examples throughout the 
paper to illustrate the theoretical aspects and design 
flexibility (additional degrees of freedom) of the algorithm. 

The paper is thus organized as follows. First, the SDRE filter 
is reviewed in Sections 2. In Section 3, the design flexibility, 
that is, the additional degrees of freedom, provided by the 
nonuniqueness of the SDC parameterization is discussed. 
Asymptotic minimum variance filter has been studied in 
Çimen et al. (2007); the maximum likelihood approach to 
deriving the EKF is now studied in Section 4. In Section 5, 
the application of the SDRE filter is illustrated numerically 
on a challenging problem involving loss of algorithmic 
observability. Here the properties of the SDRE algorithm are 
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illustrated by outlining the advantages, design flexibility, and 
implementation aspects. In Section 6, a realistic evaluation of 
the filter is carried out on a passive tracking application for 
the problem of target state estimation for advanced missile 
guidance laws. Simulation results are reported using (only) 
passive sensor information, where low observability is 
imminent. Concluding remarks are given in Section 7. 

2. THE SDRE FILTER 

The filtering counterpart of the SDRE Nonlinear Regulator 
(see Çimen, 2008) can be obtained by taking the dual of the 
steady-state linear-regulator and then allowing the coefficient 
matrices of the dual to be state-dependent. The dual of the 
steady-state linear regulator is the steady-state continuous 
Kalman observer, which in the absence of control reduces to 
the steady-state continuous Kalman filter. This leads to the 
following formulation. Consider the white-noise driven 
stochastic, nonlinear, autonomous system 
 0 0( ) ( ) ( ) ( ), ( )= + =� t t tx f x G x w x x  (1) 
together with white-noise-corrupted observations 
 ( ) ( ) ( )= +t tz h x v  (2) 
where ( ) nt ∈x \ , : n n→f \ \ , : →\ \n lz , ( )tw  and ( )tv  
are zero-mean, white Gaussian noise vectors, uncorrelated 
with themselves or with 0( )tx , such that for 0t t> , 

 
cov{ ( ), ( )} ( )
cov{ ( ), ( )} ( )

τ δ τ
τ δ τ

= −
= −

t t
t t

w w W
v v V

 

where ≥W 0  and >V 0 . Let us define the processes 
( ) ( )�d t t dtwω , ( ) ( )�d t t dtvυ  and ( ) ( )�d t t dty z . Then 

the system of equations (1) and (2) can be written more 
properly as the following Itô-sense stochastic differential 
equations 
 ( ) ( ) ( ) ( )= +d t dt d tx f x G x ω  (3) 
 ( ) ( ) ( )= +d t dt d ty h x υ  (4) 
where ( )tω  and ( )tυ  are independent Brownian motions 
uncorrelated with 0( )tx , such that 

 
cov{ ( ), ( )} min( , )
cov{ ( ), ( )} min( , ).

τ τ
τ τ

=
=

t t
t t

W
V

ω ω
υ υ

 

Let us bring (3) and (4) to the SDC form 
 ( ) ( ) ( ) ( )= +d t dt d tx F x x G x ω  (5) 
 ( ) ( ) ( )= +d t dt d ty H x x υ . (6) 
Let 0( ) { ( ) : }t t tτ τ≤ ≤Y y�  denote the observations up to 
time t . Let ˆ ( ) { ( ) ( )}t E t tx x Y�  denote the conditional mean, 
that is, the minimum variance optimal estimate, and 

ˆ( ) var{ ( ) ( ) ( )}t t t t−P x x Y�  denote the conditional error 
variance. Then, the SDRE filter for estimating the state x  is 
 ˆ ˆ ˆ ˆ( ) ( ) ( )[ ( ) ( ) ]= + −d t dt d t dtx f x K x y h x  (7) 
with initial condition 0 0ˆ ( ) { ( )}t E tx x� , where ˆ ˆ ˆ( ) ( )=f x F x x , 

ˆ ˆ ˆ( ) ( )=h x H x x , and 
 1ˆ ˆ ˆ( ) ( ) ( ) −= TK x P x H x V  (8) 
is the filter gain, such that ˆ( )P x  satisfies at x̂  the positive-
definite solution of the SDRE 

 
1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) .−

+ +

− =

T T

T

G x WG x F x P x P x F x
P x H x V H x P x 0

 (9) 

3. DESIGN FLEXIBILITY 

In a deterministic setting, before stochastic uncertainties are 
introduced, the SDC parameterization fully captures the 
nonlinearities of the system. In the multivariable case, the 
SDC parameterization is not unique and that the 
parameterization itself can be parameterized. This latter 
parameterization creates extra degrees of freedom that are not 
available in traditional filtering methods. These additional 
degrees of freedom provided by the nonuniqueness of the 
SDC parameterization can be used to enhance filter 
performance, avoid singularities, and avoid loss of 
observability, thus offering a more flexible nonlinear filter 
policy. 

Let us now review the additional degrees of freedom 
provided by the nonuniqueness of the SDC parameterization. 
If 1( )A x  and 2 ( )A x  are two distinct SDC parameterizations, 
then 
 1 2( , ) ( ) (1 ) ( )α α α= + −A x A x A x  
is also an SDC parameterization for any α . Note that 

( , )αA x  represents an infinite family of SDC 
parameterizations contained in a line. In general, an SDC 
parameterization ( , )αA x  can be constructed which is the 
parametric representation of a hyperplane containing k  
distinct parameterizations (if they exist), where α  is a vector 
of dimension 1k − . The introduction of α  creates extra 
degrees of freedom that can be used not only to enhance the 
performance of the SDRE controller, but also its dual, the 
SDRE filter. 

4. MAXIMUM LIKELIHOOD APPROACH 

In the analysis of the minimum variance filter in Çimen et al. 
(2007), the central equations have been those for the EKF. 
These are derived from a first-order approximate solution to 
the modified Fokker-Plank equation, which describes the 
evolution of the conditional probability density of ( )tx  (see 
Chapter 9 of Sage & Melsa, 1971). However, the stability 
proof in Çimen et al. (2007) was based on Hamilton-Jacobi 
equations, which have been introduced in a formal way, and 
were not directly related to, or required in, the derivation of 
the equations for the filter dynamics. In this paper, therefore, 
the maximum likelihood approach will be outlined to 
estimating ( )tx . This approach does lead directly to the 
Hamilton-Jacobi equations which have been used to prove 
stability in Çimen et al. (2007). Let us start by formulating a 
least squares version of the problem of estimating ( )tx  in (1) 
given by the observations ( )tz  from (2). Minimizing an 
appropriate error function subject to the dynamical constraint 
of (1) can be shown to be equivalent to maximizing the 
conditional probability density function of ( )tx . The 
corresponding estimate ˆ ( )tx  so obtained is the peak or mode 
of the conditional probability density function and constitutes 
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the maximum likelihood (Bayesian) estimate of ( )tx . A 
Hamilton-Jacobi equation is obtained by using dynamical 
programming to solve the least squares problem. 

Let 0 0( ) { ( )}t E t=x x  and 0 0( ) var{ ( )}t t=P x , and consider 
first the LQ estimation problem (around the equilibrium 

=x 0 ) of minimizing 

( ) ( )
( ) ( ){ }

0

11
0 0 0 0 02

1 11
2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T

t T T

t

J t t t t t

dτ τ τ τ τ τ τ

−

− −

= − −

+ − − +∫

x x P x x

z H 0 x V z H 0 x w W w
 

with respect to ( )τx  and ( )τw  subject to the constraint 
 ( ) ( ) ( ) ( ) ( )t t t= +x F 0 x G 0 w� . 
This can be thought of as attempting to determine (estimate) 

( )τx  for 0t tτ≤ ≤  so that, simultaneously, the errors in the 
dynamics and in the observations are small. In view of the 
constraint, it is enough to minimize J  with respect to 0( )tx  
and ( )τw  since ( )τx  is then determined for 0t tτ≤ ≤ . Let 
 

( )
( , ) minS t J

τ
=

w
x . 

Then, the dynamic programming equation is given by 

 
[ ]{

}
( )

1 11
2

min ( ) ( )

[( ( ) ) ( ( ) ) ] .

TS S
t

T T

τ

∂ ∂
∂ ∂

− −

− = +

− − − +

xw
F 0 x G 0 w

z H 0 x V z H 0 x w W w
 

This is minimized by ( )T S∂
∂= xw WG 0 , giving 

 
1
2

11
2

( ) ( ) ( )

( ( ) ) ( ( ) ).

T T TS S S S
t

T

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

−

− = +

− − −
x x xF 0 x G 0 WG 0

z H 0 x V z H 0 x
 (10) 

The linear filter is obtained by supposing there is a solution 
of the form 
 ( ) ( )11

2 ˆ ˆ( , ) ( ) ( ) ( ) ( )TS t t t t a t−= − − +x x x P x x . 

It can be shown that ( , )S t− x  is the exponent of the 
conditional probability density function of ( )tx . Thus 

( , )S t− x  can be interpreted as the likelihood of the state 
trajectory passing through x  at time t , given the 
observations z  made up to time t . This is clearly maximized 
by ˆ ( )t=x x , which is therefore the maximum likelihood 
filtering solution. The equations for x̂  and P  are obtained by 
calculating S t∂ ∂  and S∂ ∂x  and substituting in (10). Since 
the dynamics are linear, ( )tx  is normal and so the conditional 
mean coincides with the conditional mode. In other words, in 
the linear case, the minimum variance and maximum 
likelihood solutions coincide and, indeed, it turns out that the 
equations obtained from (10) are same as those for the LKF: 
 ˆ ( ) 1ˆ ˆ( ) ( ) ( ) ( ) { ( ) ( ) ( )}d t T

dt t t t t−= + −x F 0 x P H 0 V z H 0 x  (11) 

 
( )

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ).

d t T T
dt

T

t t

t t−

= + +

−

P F 0 P P F 0 G 0 WG 0

P H 0 V H 0 P
 (12) 

Details of the above are contained in Jazwinski (1970), 
Section 5.3 and Exs. 7.11-7.12, and will essentially be given 
in the derivation of the first-order nonlinear solution below. 
Consider now the nonlinear estimation problem away from 

=x 0 . Thus, consider minimizing 

( ) ( )
( ) ( ){ }

0

11
0 0 0 0 02

1 11
2

( ) ( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ( )) ( ) ( )

T

t T T

t

J t t t t t

dτ τ τ τ τ τ τ

−

− −

= − −

+ − − +∫

x x P x x

z h x V z h x w W w
 

subject to 
 ( ) ( ( )) ( ( )) ( )t t t t= +x f x G x w� . 
Letting 
 

( )
( , ) minS t J

τ
=

w
x , 

and repeating the above analysis leads to the following 
Hamilton-Jacobi equation 

 
1
2

11
2

( ) ( ) ( )

( ( )) ( ( )).

T T TS S S S
t

T

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

−

− = +

− − −
x x xf x G x WG x

z h x V z h x
 (13) 

The value of x  which maximizes S−  is the maximum 
likelihood estimate, and is denoted ˆ ( )tx . However, it is no 
longer true that this coincides with the minimum variance 
estimate. Also, it is not possible to derive an exact equation 
for ˆ ( )tx  from (13). A first-order approximate equation for 
ˆ ( )tx  can, however, be derived by expanding the various 

terms in (13) in Taylor series around ˆ ( )tx  in terms up to 
order 1. For the sake of brevity, the dependence of x̂  on t  
will be omitted in the following where x̂  appears inside 
another function. Since ˆ ( )tx  minimizes ( , )S tx , close to x̂ , 

 
2

2

ˆ( , ) ( , ) 1ˆ ˆ( ( )) ( )( ( ))S t S t t t t∂ ∂ −
∂ ∂

= − = −x x
x x

x x P x x , (14) 

where 
2

2

ˆ( ( ), )1 ( ) S t tt ∂−

∂
= x

x
P . Then, to a first-order approximation, 

 11
2 ˆ ˆ( , ) ( ( )) ( )( ( )) ( )TS t t t t a t−= − − +x x x P x x  (15) 

Substituting (14) into (13) gives 
1 11

2

1 11
2

ˆ( ( )) ( ) ( ) ( ( )) ( ( ))
ˆ ˆ( ( )) ( ) ( ) ( ) ( )( ( )).

T TS
t

T T

t t

t t t t

− −∂
∂

− −

− = − − − −

+ − −

x x P f x z h x V z h x

x x P G x WG x P x x
 (16) 

From (15), however, 

 
1

ˆ( , ) ( )1

( )1
2

ˆ( ) ( ( )) ( )

ˆ ˆ( ( )) ( ( )).

S t d tT
t dt

d tT
dt

a t t t

t t
−

∂ −
∂ = − −

+ − −

x x

P

x x P

x x x x

�
 (17) 

For the other terms in (16), the following are obtained: 

 

( )
( )

( )

ˆ( )

ˆ( )

ˆ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) .

t

t

t

∂
∂

∂
∂

∂
∂

⎫= + −
⎪⎪= + − ⎬
⎪

= + − ⎪⎭

f x
x

G x
x

h x
x

f x f x x x

G x G x x x

h x h x x x

 (18) 

Substituting (17) and (18) into (16), and ignoring terms of 
order higher than two in x , gives 

 

1ˆ ( ) ( )1 1
2

ˆ( )1 1

1 11
2

1 11 1
2 2

ˆ ˆ ˆ( ) ( ( )) ( ) ( ( )) ( ( ))

ˆ ˆ ˆ ˆ( ( )) ( ) ( ) ( ( )) ( ) ( ( ))
ˆ ˆ ˆ ˆ( ( )) ( ) ( ) ( ) ( )( ( ))

ˆ ˆ( ) ( ( ))

ˆ(

d t d tT T
dt dt

T T

T T

T T

a t t t t t

t t t t t

t t t t

−−

∂− −
∂

− −

− −

− + − − − −

= − + − −

+ − −

− + −

+ −

x P

f x
x

x x P x x x x

x x P f x x x P x x

x x P G x WG x P x x

z V z h x V z h x

x x

�

ˆ( ) 1

ˆ ˆ( ) ( )11
2

ˆ( )) ( ( ))

ˆ ˆ( ( )) ( ( )).

T

T

T

T

t

t t

∂ −
∂

∂ ∂−
∂ ∂

−

− − −

h x
x

h x h x
x x

V z h x

x x V x x

 

Now, equating terms of order 1 and 2 in ˆ( ( ))t−x x  gives the 
first-order approximate equations for x̂  and 1−P  as follows: 
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 ˆ ˆ( ) ( ) 1ˆ ˆ( ) ( ) ( ( ) ( ))
Td t

dt t t∂ −
∂= + −x h x
xf x P V z h x  (19) 

 
1 ˆ ˆ( ) ( ) ( )1 1

ˆ ˆ( ) ( )1 1 1

( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) .

T

T

d t
dt

T

t t

t t

− ∂ ∂− −
∂ ∂

∂ ∂− − −
∂ ∂

− = +

+ −

P f x f x
x x

h x h x
x x

P P

P G x WG x P V
 (20) 

The initial conditions are obtained from the boundary 
condition for (13), that is, 
 11

0 0 0 0 0 0 02( ( ), ) ( ( ) ( )) ( )( ( ) ( ))TS t t t t t t t−= − −x x x P x x . 

For S  of the form (15), this is satisfied by 0 0ˆ ( ) ( )t t=x x  and 
1 1

0 0( ) ( )t t− −=P P . Implementing the algorithm (19) and (20) 
involves inverting 1( )t−P  at each step. An explicit equation 
for ( )tP  is obtained from (20) by noting that 1− =PP I , 

which implies 1d d
dt dt

−
= −P PP P , and so 

 
ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( )1

( ) ( )

ˆ ˆ( ) ( ) ( ) ( ).

T

T

d t
dt

T

t t

t t

∂ ∂
∂ ∂

∂ ∂−
∂ ∂

= +

+ −

P f x f x
x x

h x h x
x x

P P

G x WG x P V P
 (21) 

Eqs. (19) and (21) thus constitute a first-order approximation 
to the maximum likelihood solution to the filtering problem 
(1) and (2). Note that these equations are the same as those 
for the EKF which gives the first-order minimum variance 
solution. As noted above, these solutions do not generally 
coincide and so one can expect the higher order 
approximations to diverge from one another. Also, note that 
the SDRE algorithm in (7)-(9) can be thought of as an 
approximation to the steady-state form of (19) and (21), 
should this exist. It is pointed out in Jazwinski (1970), 
Section 5.3, that maximum likelihood estimation is of 
questionable value unless it is known in advance that the 
conditional probability density function of ( )tx  is unimodal 
and concentrated near the mode. The point of this section, 
however, was to indicate where the Hamilton-Jacobi 
equations that were used to prove stability in Çimen et al. 
(2007) came from and how they are related to the derivation 
of the equations for the EKF. 
In order to analyze the performance of the SDRE filter and 
illustrate the theory developed, a numerical example from 
Mracek et al. (1996) has been reconsidered in Çimen et al. 
(2007), using a simple pendulum operating in the nonlinear 
regime. A comparative study by Monte Carlo simulations has 
been carried out between the SDRE filter, the LKF, and the 
EKF on this simple problem. The asymptotic behavior of the 
SDRE filter was shown to yield much improved performance 
and convergence properties compared with these local 
approximations, coping with highly misleading initial states, 
and converging rapidly to the true states. In the sequel, a 
more challenging problem with loss of algorithmic 
observability is considered. 

5. LOSS OF OBSERVABILITY PROBLEM 

Consider the following example with the system of equations 
(Mracek, Cloutier and D’Souza, 1996; Ewing, 2000) 
 1 1 2 2( ) ( ), ( ) ( )x t w t x t w t= =� �  
and measurement equations 

 1 1 2 1

2 1 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ),

y t x t x t v t
y t x t x t v t

= + +
= +

 

where 1( )w t , 2 ( )w t , 1( )v t  and 2 ( )v t  are zero-mean 
Gaussian-distributed random variables. Using the 
complementary estimation terms, this system can be shown 
to be weakly observable everywhere except at the origin. 
Now, the continuous EKF uses a Taylor series expansion to 
linearize the measurement about the current state estimate as 

 
2 1

1 1ˆ( )
ˆ ˆˆ x x

⎡ ⎤∂
= ⎢ ⎥∂ ⎣ ⎦

h x
x

. 

Thus, ˆ( )
ˆ

∂
∂
h x

x  loses rank whenever 1 2ˆ ˆx x= , at which point the 
system becomes unobservable to the EKF algorithm. 
Therefore, for the LKF filter, where the coefficient matrix is 
given by ( )

ˆ
∂

∂
h 0

x , loss of observability is encountered for all x̂ . 
There is no solution to the problem with loss of observability 
using the LKF or the EKF. Using the SDRE filter, however, 
there are two distinct parameterizations 

 1 2
2 1

1 1 1 1
( ) and ( )

0 0x x
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

H x H x , 

which can be combined to form the parameterized SDC 
measurement matrix as 

 
2 1

1 1
( , )

(1 )x x
α

α α
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
H x . 

Using this SDC parameterization, α  can be chosen such that 
loss of rank is avoided. 

The EKF and the SDRE filter were coded and evaluated 
numerically in MATLAB®, simulating the problem for 10 
seconds at an update rate of 100Hz. The dispersion of the 
estimation errors over 50 runs is illustrated in Fig. 1 for 
initial positions 1(0) 0.1=x  and 2 (0) 0.3=x , with initial 
variance set to 0 2 2×=P I . In the simulations, the value of α  
has been taken as 0.8 . 

 

Fig. 1. Error distribution between true and estimated states 
over 50 Monte Carlo runs when 1(0) 0.1=x , 2 (0) 0.3=x , 

0 2 2×=P I , 2 2×=W I , and 2 20.1 ×=V I  

When the state estimates cross the algorithmically 
unobservable condition of 1 2=x x , numerical instability is 
encountered in the EKF estimates, which is clearly seen from 
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the corresponding error plots. Note, however, how the SDRE 
filter still provides accurate nonlinear estimates of the true 
states, even in cases of algorithmic loss of observability. This 
simple academic problem illustrates the advantage of the 
SDRE filter when loss of algorithmic observability is an 
issue, which cannot be prevented using the LKF or the EKF. 
Using the SDRE filter formulation, however, the SDC 
parameterizations can be adjusted to avoid these conditions, 
so that when the state estimates cross the algorithmically 
unobservable condition, filter convergence can still be 
accomplished. Note also that, when the initial variance is 
increased, such that the filter initial conditions highly differ 
from the actual ones, the EKF estimates in each run end up 
diverging from the actual states. The SDRE filter estimates, 
on the other hand, still continue to converge to the true states. 

6. TARGET STATE ESTIMATION 

Estimation of the state trajectories of a moving target, also 
known as target tracking, has been a problem of active 
concern to practitioners in both military and civilian 
applications since the 1960’s. There are several nonlinear 
techniques available for maneuvering target tracking. From a 
computational standpoint, however, minimum-variance 
estimation is the most common choice of implementation 
because of its simplicity, compared to other techniques such 
as statistical linearization and batch least squares. The 
simplest implementation of minimum-variance estimation is 
the EKF, which has been applied extensively to interception 
problems. Specifically, this technology has been used to 
develop tracking algorithms that extract the maximum 
amount of information about a target trajectory from homing 
sensor data and to derive advanced guidance laws that 
optimize the use of this information in directing the missile 
towards the selected target. There are, however, severe 
problems associated with the synthesis of target trackers in 
intercept applications such as air-to-air missiles (Hepner and 
Geering, 1991). These problems include filter divergence due 
to lack of complete observability, modeling errors, and the 
restriction of the computation time due to high sampling 
rates. It is well-known that low observability always occurs 
when bearing angles or bearing rates are the only 
measurements available about the missile-target relative 
motion. These measurements are common in short-range 
missiles. In this section, the SDRE filter is used for 
addressing the critical problem of estimating the missile-to-
target position and velocity, and target acceleration (required 
by optimal guidance laws) when only passive seeker (angle 
only) information is available onboard a missile. The 
estimation effectiveness of the SDRE filter is evaluated to 
determine its influence on tactical missile guidance when 
coupled with an optimal linear-quadratic (LQ) guidance law. 
The tracking performance of this concept, implemented for a 
passive tracking system, is evaluated by simulations. 

6.1 Filter Dynamics 

In target tracking, the state vector ( )tx  of the target dynamics 
usually contains position, velocity, and acceleration as state 
variables. Target acceleration modeling is a critical design 

factor in the filter. In practical applications, it is impossible to 
model the target acceleration accurately because target 
motion cannot be exactly known, particularly a flying target. 
Due to a lack of knowledge of its dynamics, this unknown 
input is often modeled as a random process. One of the 
simplest models used in maneuvering target tracking is the 
Wiener-process acceleration model. Thus, when a target is 
treated as a point object, this maneuvering motion is 
described in continuous time by the vector-valued equation 

( ) ( )T Tt t=a w� , where the acceleration derivative ( )T ta�  (also 
known as “jerk”) is an independent process (white noise) 

( )T tw  with power spectral density TW  that accounts for 
unpredictable modeling errors in ( )T ta . In the literature, this 
model is also referred to simply as the continuous-time 
“nearly-constant-acceleration model”. 

The nonlinear filtering problem is now set up as a nine-state 
filter with the system model in Cartesian coordinates. The 
nine filter states are the three components of the relative 
position vector ( r ), relative velocity vector ( v� ), and target 
acceleration vector, all with respect to inertial coordinates. 
Therefore, using a nearly-constant-acceleration model to 
improve missile performance, a minimal representation for 
the state vector includes [ ]T T T T

T=x r v a  as the nine 
variables, which represent coordinates of a Cartesian 
coordinate system in three dimensions used to describe the 
missile-to-target relative motion and target acceleration. 
Based on equations of missile-target relative motion, the 
corresponding state-space representation can be derived as 
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where the commanded acceleration ( )M ta  is determined 
using the linear-quadratic (LQ) optimal guidance law 

 2
23 1

2ˆ 3 1
ˆ ˆˆ ˆˆ( ) ( ) ( ) ( )

go
M go go Tt

t t t t t t
×

⎡ ⎤= + +⎣ ⎦a r v a , 

with the estimate of time-to-go constructed from ˆˆ( ) ( )r t t= r  

and ˆ( )r t�  using the approximate relation ˆˆ ˆgot r r≈ − � . 

As mentioned before, estimating position, velocity and 
acceleration from angle-only (or rate-only) information is a 
very difficult problem because bearing angle-only or bearing 
rate-only measurements do not guarantee complete 
observability of the state x . Since the axial acceleration 
component is unobservable, the implementation of guidance 
laws that use this quantity is useless. However, it is simple to 
see that lateral and normal components of target acceleration 
are sufficient information to keep the missile on the homing 
path, thus ensuring intercept. Therefore, only estimates of the 
observable quantities are required in the LQ guidance law. 
The continuous-time vector-valued white noise process 
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1 3( ) [ ( ) ( )]T T T
M Tt t t×=w 0 w w  is used to characterize 

missile acceleration and target modeling errors. Its 
corresponding continuous-time process noise intensity matrix 

 
3 3 3 3 3 3

3 3 3 3

3 3 3 3 9 9

M

T

× × ×

× ×

× ×
×

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

0 0 0
W 0 W 0

0 0 W
, 

which is equivalent to the power spectral density matrix when 
time-invariant. 

6.2  Measurement Model 

Sensors used for target tracking provide measurements of a 
target in a natural sensor (3D spherical or 2D polar) 
coordinate system or frame. Therefore, while target motion 
models are best described by target state in Cartesian 
coordinates, measurements of the target state are directly 
available in the original sensor (non-Cartesian) coordinates. 
For passive sensors onboard the missile and range-denial 
countermeasures, the sensor only provides a measure of the 
bearing (or azimuth) angle θ  and elevation angle φ . As 
such, in the sensor coordinates, measurements for angle-only 
passive tracking from a strapdown (body-fixed) seeker are 
generally modeled in body axes as the spherical angles of the 
LOS vector r  in the following form of additive noise: 

 ( ) ( )2 2

1 1tan , tank k

k kkk k

z y
k k xx y

v vφ θφ θ− −

+
= + = + , 

where x , y , and z  are the three components of relative 
position r  in inertial coordinates, and ( , )k kNv 0 V∼ . 
Measurements are, therefore, nonlinear functions of the true 
state, corrupted by additive errors with Gaussian statistical 
properties. For tracking, however, these measurements in the 
sensor coordinates are converted to the Cartesian coordinates, 
using the spherical-to-Cartesian transformation. A unit vector 
in the line-of-sight direction is: 

 [ ]cos cos sin cos sin
T T

x y zλ λ λ θ φ θ φ φ⎡ ⎤= =⎣ ⎦λ . 

The LOS rates are determined by differentiating λ . Tracking 
is then performed entirely in the Cartesian coordinates as this 
provides equations with an attractive “linear-like” structure, 
which is desirable for the SDRE filter. From kinematic 
relations, for bearing-only and bearing-rate-only 
measurements, the state-dependent measurement sensitivity 
matrix ( )H x  for SDRE filtering becomes 

 ( )3 3

3

1
3 3 3 3 3 3

(1 )

3 3 3 3 3 3
6 9

( )
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T k kk k

k kk

k αα α ×

× × ×

− −
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×

⎡ ⎤
⎢ ⎥= ⎢ ⎥− +⎢ ⎥⎣ ⎦

r

Ir v
r rr

I 0 0
H x

I I 0
Τλ λ , 

where / r= rλ , and 0 1α≤ ≤  becomes a design parameter. 

6.3 Noise statistics 

The process noise covariance TW  associated with the 
process noise Tw  for target acceleration is selected so as to 

inform the filter of the estimated variance on the lateral and 
normal target acceleration components. For example, with an 
estimated variance of 3 2 47.8 10 m /s× , the filter is informed 
that the target acceleration is within ±9g of its true value. 
Random noise effects are included in the process noise Mw  
for missile acceleration to account for accelerometer noise. 
With an RMS error of 0.4g for an accelerometer, the 
corresponding process noise covariance is 2 2[0.4(9.81 m/s )] . 
The statistics of the measurement noise process kv  are 
selected to represent angle measurement errors. Measurement 
noise is assumed to be normally distributed with zero mean 
and with corresponding standard deviations of 0.01rad. 
Measurement update frequency is assumed to be 100Hz and 
the model propagation time step is set to 0.01st∆ = . Because 
of the transformation of measurements from spherical to 
Cartesian coordinates, it must be emphasized that the 
components of the measurement noise covariance matrix in 
the Cartesian coordinates become correlated. Due to space 
limitations, however, this particular aspect of the tracking 
model is not addressed in the paper. 

6.4 Simulation results 

Now consider a short-range air-to-air missile equipped with a 
passive seeker, and a highly maneuvering target aircraft. In 
the sequel, it will be assumed that only bearing angle 
information is available about the missile-target relative 
motion. Bearing rates are obtained by differentiating the 
noisy angular measurements in the Cartesian coordinates. 
The main goal is the synthesis of a tracking filter that 
supplies estimates of range, relative velocity, and target 
acceleration to the LQ guidance law of the missile. The basic 
approach is the SDRE filter employing a nearly-constant-
acceleration target model coupled with the LQ guidance law 
during a single flyout in the presence of process and 
measurement noise, where measurements are related to the 
target states in the Cartesian coordinates in a nonlinear way. 

In order to investigate the quick response capability of the 
SDRE algorithm to lateral maneuver acceleration, a 2D 
simulation is carried out for a particular engagement scenario, 
where the motion takes place in a horizontal plane. The 
missile is launched from the origin of the Cartesian 
coordinate system with velocity [500 0] m/sT

M =v , and 
with zero lateral acceleration. The target, on the other hand, 
flies at a constant speed of 270m/s  with velocity vector 

[250 100] m/sT
T =v . With initial position of the target 

[8000 500] mT
T =r , initial range is around 8km . During 

the engagement, the target starts with zero lateral 
acceleration. The first maneuver takes place in the middle of 
the engagement when 6000mr = , and is sustained until 

2000mr =  with magnitude 5.5g’s. The second maneuver 
occurs when 2000mr =  and lasts until intercept with a 
stronger magnitude of 8.8g’s in the opposite direction. Since 
range is unknown to the missile, the filter cannot be 
initialized at launch with the true relative position values. 
Furthermore, no knowledge about target velocity and 
acceleration is assumed to be provided at the beginning. As 
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such, initial range estimate is overestimated as 10km, 
whereas initial target velocity and acceleration estimates are 
both set to zero. Consequently, initial value of relative 
velocity is initialized using missile velocity from pursuer 
INS. Simulation results are of the engagement are displayed 
in Fig. 2, showing the exact and estimated histories of range, 
relative velocity, and target acceleration, along with the 
corresponding missile-target trajectories using these 
estimated quantities. The simulation results shown here are 
typical of a large number of runs made in a number of 
scenarios that verified the stable and exceptionally qualified 
performance of the SDRE filter during rapid maneuvers. Note 
that only the estimates in the y-coordinate have been given, 
because the components in the x-coordinate are unobservable 
with bearing-angle only measurements, and the SDRE 
algorithm cannot give the correct estimates of these 
quantities, albeit there is no divergence. 

 

Fig. 2. Exact and estimated states with missile-target 
trajectories of the engagement scenario 

The accuracy of the state estimates obtained to date using the 
EKF leaves much room for improvement. A method of 
selecting the initial values for the target variables in the 
tracking equation is extremely important for an EKF since the 
equations are linearized. If the selection of these values is in 
error by a large margin, the linearized elements of the 
tracking equation may produce a divergent track. This is in 
contrast to the SDRE filter, which does a good job of 
estimating the states with only passive seeker information in 
a highly dynamic environment. Large initial errors in range 
and velocity are quickly corrected soon after the engagement 
begins. When the target begins to maneuver, the SDRE filter 
is able to maintain track. With frequent updates but 
inaccurate measurements of LOS angle, excellent SDRE 
filter performance is demonstrated. The results ascertain the 
insensitivity of the SDRE filter to measurement noise, 
initialization error, and robustness in the presence of stressing 
target maneuvers. 

7. CONCLUSIONS 

As predicted from theoretical considerations, it is quite 
evident from simulation results that the SDRE filter becomes 
significant for increasing values of initial error and noise 
variances. The filter is capable of tracking the true values of 
the states, with little sensitivity to the selection of the 
statistics, or even to severe differences in the initial state 
estimates when compared with the EKF. Analysis of the 
SDRE filter also demonstrated an advantage over 
linearization techniques such as LKF and EKF when 
confronted with the problem of loss of algorithmic 
observability. The SDRE filter offers the advantage of 
multiple parameterizations in hopes of improving 
performance. This offers a distinct advantage over the EKF in 
successfully working the observability problem. These results 
also proved valuable in target state estimation for advanced 
missile guidance problems. The SDRE filter was compared 
to, and shown to outperform, both the LKF and the EKF 
throughout the authors’ studies, and is proved to be a viable 
candidate for nonlinear estimation. 
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